On the scaling limits of Galton–Watson processes in varying environments - Archive ouverte HAL
Article Dans Une Revue Electronic Journal of Probability Année : 2015

On the scaling limits of Galton–Watson processes in varying environments

Résumé

We establish a general sufficient condition for a sequence of Galton–Watson branching processes in varying environments to converge weakly. This condition extends previ- ous results by allowing offspring distributions to have infinite variance. Our assumptions are stated in terms of pointwise convergence of a triplet of two real- valued functions and a measure. The limiting process is characterized by a backwards integro-differential equation satisfied by its Laplace exponent, which generalizes the branching equation satisfied by continuous state branching processes. Several examples are discussed, namely branching processes in random environment, Feller diffusion in varying environments and branching processes with catastrophes.
Fichier principal
Vignette du fichier
Bansaye_20909.pdf (443.2 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-01890532 , version 1 (08-10-2018)

Identifiants

Citer

Vincent Bansaye, Florian Simatos. On the scaling limits of Galton–Watson processes in varying environments. Electronic Journal of Probability, 2015, 20 (75), pp.1-36. ⟨10.1214/EJP.v20-3812⟩. ⟨hal-01890532⟩
253 Consultations
91 Téléchargements

Altmetric

Partager

More