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Asymptotic Behavior of Local Times of Compound
Poisson Processes with Drift in the Infinite Variance
Case

Amaury Lambert · Florian Simatos

Abstract Consider compound Poisson processes with negative drift and no negative
jumps, which converge to some spectrally positive Lévy process with nonzero Lévy
measure. In this paper, we study the asymptotic behavior of the local time process, in
the spatial variable, of these processes killed at two different random times: either at the
time of the first visit of the Lévy process to 0, in which case we prove results at the excur-
sion level under suitable conditionings; or at the time when the local time at 0 exceeds
some fixed level. We prove that finite-dimensional distributions converge under gen-
eral assumptions, even if the limiting process is not càdlàg. Making an assumption
on the distribution of the jumps of the compound Poisson processes, we strengthen
this to get weak convergence. Our assumption allows for the limiting process to be a
stable Lévy process with drift. These results have implications on branching processes
and in queueing theory, namely, on the scaling limit of binary, homogeneous Crump–
Mode–Jagers processes and on the scaling limit of the Processor-Sharing queue length
process.
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1 Introduction

Let Xn be a sequence of spectrally positive compound Poisson processes with drift
which converges weakly to X , then necessarily a spectrally positive Lévy process. The
limiting process has continuous paths as soon as E(Xn(1)2) → β for some finite β, a
case henceforth referred to as the finite variance case. In this paper, we focus on the
infinite variance case, when the limiting Lévy process has nonzero Lévy measure. Let
Ln and L be the local time processes associated with Xn and X , respectively, defined
by the occupation density formula

t∫

0

f (Xn(s))ds =
+∞∫

−∞
f (x)Ln(x, t)dx and

t∫

0

f (X (s))ds =
+∞∫

−∞
f (x)L(x, t)dx .

Since Xn converges to X , it is natural to also expect Ln to converge to L . Note
however that the map that to a function associates its local time process is not contin-
uous, and so such a result does not automatically follow from the continuous mapping
theorem. In the finite variance case, i.e., when X is Brownian motion, this question
has been looked at in [29] under the assumption that both Xn and X drift to −∞.
Previously, Khoshnevisan [23] investigated this question under different assumptions
on Xn and X but with a different goal, namely to derive convergence rates. The goal of
the present paper is to investigate the asymptotic behavior of Ln in the infinite variance
case, i.e., when the Lévy measure of X is nonzero.

Except for the two aforementioned papers, it seems that this question has not
received much attention. In sharp contrast, there is a rich literature in the closely
related case where X , still a Lévy process, is approximated by a sequence Xn of ran-
dom walks. There are results looking at, e.g., strong and weak invariance principles,
convergence rates, and laws of the iterated logarithm. Nonetheless, the compound
Poisson case in which we will be interested is of practical interest since it finds appli-
cations in the theory of branching processes and in queueing theory (see discussion
below and Sect. 6); besides, the setup that we consider offers specific technical diffi-
culties that do not seem to have been addressed in the random walk case. An overview
of existing results in the random walk case can give insight into the specific technical
difficulties that arise in our framework.

1.1 The Random Walk Case

The most studied case in the random walk case is when Xn is of the form Xn(t) =
S(nt)/n1/2 with S a lattice random walk with finite variance, say with step size



distribution ξ , so that X is of the form σ 2 B with B a standard Brownian motion. One
of the earliest works is in this area was done by Knight [24], see also [5,10,22,33–
35,39] for weak convergence results, laws of the iterated logarithm, strong invariance
principles, and explicit convergence rates. The introduction of Csörgő and Révész [11]
presents a good overview of the literature.

When one drops the finite variance assumption on S (but keeps the lattice assump-
tion), Xn is of the form Xn(t) = S(nt)/sn for some normalizing sequence (sn) and X is
a stable Lévy process. In this case, significantly fewer results seem available: Borodin
[6] has established weak convergence results, Jain and Pruitt [19] a functional law of
the iterated logarithm and Kang and Wee [20] L2-convergence results.

Focusing specifically on weak convergence results, the best results have been
obtained by Borodin [5,6], who proved that Ln converges weakly to L if E(ξ2) < +∞
(finite variance case) or if ξ is in the domain of attraction of a stable law with index
1 < α < 2 (infinite variance case).

On the other hand, the picture is far to be as complete in the non-lattice case, even
when one only focuses on weak convergence results. First of all, in this case, the very
definition of the local time process is subject to discussion, since in contrast with the
lattice case, it cannot be defined by keeping track of the number of visits to different
points in space. In [11] for instance, five different definitions are discussed. In the
finite variance case, Perkins [33] has proved that Ln converges to L , in the sense of
finite-dimensional distributions if E(ξ2) < +∞, and weakly if E(ξ4) < +∞ and
lim sup|t |→∞ |E(eitξ )| < 1; see also [7,11]. In view of the sharp results obtained by
Borodin [5] in the lattice case, it is not clear that the conditions derived by Perkins
[33] to get weak convergence are optimal. Also, note that this discrepancy, in terms of
existing results, between the lattice and non-lattice case, reflects the fact that tightness
is significantly more difficult in the non-lattice case. In the non-lattice case, the most
involved part of the proof concerns the control of small oscillations of the local time, a
difficulty that does not appear in the lattice case, as soon as the amplitude of oscillations
is smaller than the lattice mesh (see the discussion after Proposition 7.3).

We finally stress that to our knowledge, the present work is the first study of the
asymptotic behavior of Ln in the non-lattice and infinite variance case.

1.2 Main Results

In the present paper, we will be interested in Xn of the form Xn(t) = Yn(nt)/sn with
(sn) some normalizing sequence, Yn(t) = Pn(t) − t and Pn a compound Poisson
process whose jump distribution ξn ≥ 0 has infinite second moment. We assume that
Xn does not drift to +∞ and that it converges weakly to a spectrally positive Lévy
process X . We will focus on the variations in space of the local time processes and
consider the asymptotic behavior of the processes Ln( · , τn) for some specific choices
of τn . Since Ln(a, t) is increasing in t , this contains the most challenging part of the
analysis of local time processes; moreover, this allows for results at the excursion level
(see Theorem 2.3). This setup presents two main differences with previous works on
random walks.



First, the sequence Xn stems from a sequence of compound Poisson processes,
when all the aforementioned works in the random walk case consider one random
walk S that is scaled. Besides being of practical interest for branching processes and
queueing theory, since this allows X to have a drift and, more generally, not to be stable,
this variation triggers one important technical difference. Indeed, most of the works
on random walks heavily exploit embedding techniques, typically embedding S into
X . It is therefore not clear whether such techniques could be adapted to a triangular
scheme such as the one considered here.

Second, the image set {Xn(t), t ≥ 0} is not lattice and Xn has infinite variance;
thus, the corresponding random walk counterpart would be the case of non-lattice
random walk with infinite variance which, as mentioned previously, has not been
treated. Similarly as Perkins [33] in the case of non-lattice random walk with finite
variance, we will show that finite-dimensional distributions converge under minimal
assumptions and that tightness holds under more stringent ones. However, in contrast
with Perkins [33], our assumptions to get tightness will not be in terms of finiteness of
some moments but in terms of the specific distribution of ξn . In particular, under our
assumptions, the limiting process X can be any process of the form X (t) = Y (t)− dt
with Y a spectrally positive stable Lévy process with index 1 < α < 2 and d ≥ 0.

1.3 Implications

As alluded to above, our results have implications for branching processes and in
queueing theory, see Sect. 6 for more details. In short, the process (Ln(a, τn), a ≥
0) for the random times τn that will be considered has been shown in [27] to be
equal in distribution to a (rescaled) binary, homogeneous Crump–Mode–Jagers (CMJ)
branching process. Although the scaling limits of Galton–Watson processes and of
Markovian CMJ have been exhaustively studied, see [15,17,31], except for Lambert et
al. [29] and Sagitov [37,38], little seems to be known for more general CMJ processes.
In particular, we study here for the first time, a sequence of CMJ processes that
converges toward a non-Markovian limit process.

Also, CMJ processes are in one-to-one relation with busy cycles of the Processor-
Sharing queue via a random time change sometimes called Lamperti transformation in
the branching literature. Thus, our results also show that busy cycles of the Processor-
Sharing queue converge weakly to excursions that can be explicitly characterized.
Leveraging on general results by Lambert and Simatos [28], this implies uniqueness
(but not existence) of possible accumulation points of the sequence of queue length
processes. This constitutes therefore a major step toward determining the scaling limit
(called heavy traffic limit in the queueing literature) of the Processor-Sharing queue
in the infinite variance case, which has been a long-standing open question.

1.4 Organization of the Paper

Section 2 sets up the framework of the paper, introduces notation, states assump-
tions enforced throughout the paper and the two main results. Section 3 is devoted to
some preliminary results on Lévy processes. In Sect. 4, we prove that under general
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assumptions, finite-dimensional distributions converge while tightness is taken care of
under specific technical assumptions in Sect. 5. The (long and tedious) “Appendix” is
the most technical part of the paper: It proves the tightness of an auxiliary sequence of
processes, which is exploited in Sect. 5 to prove tightness of the processes of interest.

2 Notation and Main Results

2.1 Space D

Let D be the set of functions f : [0,∞) → R which are right-continuous and have
a left limit denoted by f (t−) for any t > 0. If f is increasing, we write f (∞) =
limx→+∞ f (x) ∈ [0,∞]. For f ∈ D , we define f ∈ D the function f reflected
above its past infimum through the following formula:

f (t) = f (t)− min

(
0, inf

0≤s≤t
f (s)

)
.

For fn, f ∈ D , we note fn → f for convergence in the Skorohod J1 topology
(see for instance [4] or Chapter VI in [18]). For any function f ∈ D , we introduce
the family of mappings (T f (A, k), A ⊂ R, k ≥ 0) defined recursively for any subset
A ⊂ R by T f (A, 0) = 0 and for k ≥ 1,

T f (A, k) = inf
{
t > T f (A, k − 1) : f (t) ∈ A or f (t−) ∈ A

}
.

We will write for simplicity T f (A) = T f (A, 1) and when A = {a} is a singleton,
we will write T f (a, k) and T f (a) in place of T f (A, k) and T f (A), respectively. A
function f ∈ D is called an excursion if T f (0) = +∞, or if T f (0) ∈ (0,+∞) and
f (t) = 0 for all t ≥ T f (0). By E ⊂ D , we will denote the set of excursions.

We use the canonical notation for càdlàg stochastic processes. Let � = D and
X = (X (t), t ≥ 0) be the coordinate process, defined by X (t) = Xω(t) = ω(t). We
will systematically omit the argument of functional operators when they are applied
at X; T (A, k) for instance stands for the random variable TX (A, k). Finally, let X0 =
X ( · ∧ T (0)) be the process X stopped upon its first visit to 0, with X0 = X when
T (0) = +∞.

2.2 Sequence of Lévy Processes

For n ≥ 1, fix κn ∈ (0,+∞), and 
n some positive random variable. For x ∈ R, let
P

x
n be the law of a Lévy process started at x with Laplace exponent ψn given by

ψn(λ) = λ− κnE
(
1 − e−λ
n

)
, λ ≥ 0.

Noting πn(da) = κnP(
n ∈ da), one sees that X under P
0
n is of the form Pn(t) − t

with Pn a compound Poisson process with Lévy measure πn . If we denote by ηn the
largest root of the convex mapping ψn , then ψn is increasing in [ηn,+∞) and its



inverse is denoted by φn . In particular, φn(0) = ηn , which equals zero as soon as
ψ ′

n(0+) ≥ 0.
Let 
∗

n be the forward recurrence time of 
n , also called size-biased distribution,
which is the random variable with density P(
n ≥ x)/E(
n)with respect to Lebesgue
measure. Let Pn and P

∗
n be the measures defined by Pn( · ) = ∫

P
x
n( · )P(
n ∈ dx)

and P
∗
n( · ) = ∫ P

x
n( · )P(
∗

n ∈ dx). We will use repeatedly the following result, which
characterizes the law of the overshoot of X under P

0
n when X under P

0
n does not drift

to +∞ (an assumption that will be enforced throughout the paper).

Lemma 2.1 (Theorem VII.17 in [2]) If X under P
0
n does not drift to +∞, then

X
(
T ((0,∞))

)
under P

0
n( · | T ((0,∞)) < +∞) is equal in distribution to 
∗

n.

Letwn be the scale function of X under P
0
n , which is the only absolutely continuous

increasing function with Laplace transform

∞∫

0

e−λxwn(x)dx = 1

ψn(λ)
, λ > φn(0).

It is well known and can be easily computed that wn(0)= limλ→+∞(λ/ψn(λ))=1.
Scale functions play a central role with regard to exit problems, see forthcoming
formula (1). We now define the sequence of rescaled processes that will be the main
focus of the paper.

Fix from now on some sequence (sn) of strictly positive real numbers, which
increases to infinity, and for n ≥ 1 define rn = n/sn . Let Px

n , Pn and P∗
n be the

laws of X (nt)/sn under P
xsn
n , Pn and P

∗
n , respectively, and let P0

n be the law of X
under P0

n . Then, Pa
n is the law of a Lévy process started at a, with Lévy exponent

�n(λ) = nψn(λ/sn), Lévy measure �n(da) = nκnP(
n/sn ∈ da) and scale func-
tion Wn(a) = wn(asn)/rn . Set also �n(λ) = snφn(λ/n) so that �n(0) is the largest
root of �n and �n is the inverse of �n on [�n(0),+∞). Throughout the paper, we
use ⇒ to denote weak convergence.

Convergence of Lévy Process In the rest of the paper, we consider P0 the law of
a spectrally positive Lévy process with infinite variation and nonzero Lévy measure
started at 0. It is assumed throughout that (1) for each n ≥ 1, X under P

0
n does not

drift to +∞ and (2) P0
n ⇒ P0.

We also define � the Lévy exponent and W the scale function associated with P0,
as well as P0 the law of X under P0. The previous assumptions have two immediate
consequences: (1) X under P0 does not drift to +∞; in particular,� is increasing and
letting� be its inverse, it is not hard to show that�n → � and (2) κnE(
n) ≤ 1 and
κnE(
n) → 1; in particular, P

0
n is close to the law of a critical Lévy process.

As alluded to above, scale functions play a central role with regard to exit problems.
This comes from the following relation, that holds for any 0 ≤ a < b ≤ ∞, see for
instance Theorem VII.8 in [2]:



P0
n (T (−(b − a)) < T (a)) = Wn(a)

Wn(b)
and P0 (T (−(b − a)) < T (a)) = W (a)

W (b)
.

(1)

2.3 Local Times and Excursion Measures

For a given function f ∈ D , let μt, f for any t ≥ 0 be its occupation measure defined
via

∫

R

ϕ(a)μt, f (da) =
t∫

0

ϕ( f (s))ds

for every measurable function ϕ ≥ 0. Whenμt, f is absolutely continuous with respect
to Lebesgue measure, we denote by L f ( · , t) its Radon–Nikodym derivative restricted
to [0,∞), satisfying the so-called occupation density formula

t∫

0

ϕ( f (s))ds =
∞∫

0

ϕ(a)L f (a, t)da

for any t ≥ 0 and any measurable function ϕ ≥ 0 with ϕ(a) = 0 for a < 0. The
functional L f ( · , · ) is known as the local time process of f and is uniquely determined
up to sets of zero Lebesgue measure (in the space variable). Let T L

f (ζ ) for ζ ≥ 0 be
the first time the amount of local time accumulated at level 0 exceeds ζ :

T L
f (ζ ) = inf

{
t ≥ 0 : L f (0, t) ≥ ζ

}
.

In the sequel, we will be interested in the local time process L = L X under various
measures. Under P0

n, L is simply given by

L(a, t) = 1

rn

∑
0≤s≤t

1{X (s)=a}, t, a ≥ 0, P0
n-almost surely.

Further, it is known that L under P0 is almost surely well defined, see for instance
[2]. We will consider N the excursion measure of X under P0 associated with the
local time (L(0, t), t ≥ 0), and N the excursion measure of X under P0 normalized
by considering the local time at 0 of X equal to (min(0, inf [0,t] X), t ≥ 0). Under N
and N , we will consider the process L0 defined as follows:

L0 = (L(a, T (0)), a ≥ 0
)
.

This process indeed is well defined on (0,∞) (its value at 0 is zero) under N and
N , since N and N both have the same semigroup in (0,∞) as the Lévy process
under (Pa, a > 0) killed upon reaching zero. Similarly, the process L X is well defined



under P0, because on [ε,∞), it can be expressed as a finite sum of the local time
processes of independent excursions distributed as N ( · | sup X > ε). Recall from
the beginning of the paragraph that the normalization at 0 of L X is slightly different,
so that the occupation formula for this local time only holds on (0,∞).

2.4 Additional Assumption for Tightness

It will be shown that the mere assumption P0
n ⇒ P0 implies that the finite-dimensional

distributions of L under P0
n converge toward those of L under P0 (see forthcoming

Theorems 2.3 and 2.4 for precise statements). However, it is known that the local time
process of a Lévy process is either jointly continuous or has a very wild behavior, see
[1] for a general criterion. In the latter case, for every t, ε > 0 the set {L(a, t), a ∈
Q ∩ (−ε, ε)} is almost surely dense in [0,∞). When focusing on spectrally positive
Lévy processes with infinite variation, Barlow’s criterion, which is in general difficult
to determine, takes the following simple form.

Lemma 2.2 The local time process of X under P0 is jointly continuous if and only if

∞∫
dλ

�(λ)
√

log λ
< +∞. (2)

Proof It will be proved in Lemma 3.6 that E0(L(0, T (−a)) = W (a) for any a >

0. Then, Lemma V.11 and Theorem V.15 in [2] ensure that L under P0 is jointly
continuous if and only if

∫

0

√
log(1/W −1(x))dx < +∞.

Using the change of variables y = W −1(x) and integrating by parts, it can be shown
that

W (1)∫

0

√
log(1/W −1(x))dx = 1

2

1∫

0

W (u)

u
√

log(1/u)
du.

Since there exist two finite constants 0 < c ≤ C such that c/(u�(1/u)) ≤ W (u) ≤
C/(u�(1/u)) for every u ≥ 0 (see Proposition III.1 or the proof of Proposition VII.10
in [2]), we obtain

∫

0

√
log(1/W −1(x))dx < +∞ ⇐⇒

∫

0

du

u2�(1/u)
√

log(1/u)
< +∞

and the change of variables λ = 1/u in the last integral therefore gives the result. ��



In particular, when (2) fails, L under P0 is not even càdlàg (in the spatial variable)
and so cannot be the weak limit of any sequence, when using Skorohod’s topology. It
is tempting to think that (2) is enough for L under P0

n to converge weakly toward L
under P0, and we leave this question open for future research. In the present paper, we
will prove tightness (and hence weak convergence) under the following assumption.

Tightness Assumption In the rest of the paper, we fix some 1 < α < 2 and denote by

 the random variable with tail distribution function P(
 ≥ s) = (1 + s)−α . We will
say that the tightness assumption holds if for n ≥ 1 we have sn = n1/α and 
n = 
.

Note that under this assumption, P0 is the law of a Lévy process of the form
Y (t) − dt with Y a stable Lévy process with index α and d ≥ 0. It is then not
difficult to check that (2) is satisfied and so our limiting processes will be continuous.
However, we will show weak convergence without the a priori knowledge given to
us by Lemma 2.2 that the limiting process is continuous. But since our pre-limit
processes make deterministic jumps of size 1/rn → 0, it follows from our approach
that (L(a, T ), a ≥ 0) is continuous for some specific random times T , thus proving
directly (without resorting to Barlow’s more general and complete result) that the local
time process of X is continuous.

2.5 Main Results

The following two theorems are the main results of the paper.

Theorem 2.3 For any a0 > 0, the two sequences of processes L0 under P∗
n( · | T (a0) <

T (0)) and Pn( · | T (a0) < T (0)) converge in the sense of finite-dimensional distribu-
tions to L0 under N ( · | T (a0) < T (0)) and N ( · | T (a0) < T (0)), respectively. If in
addition, the tightness assumption holds, then both convergences hold in the sense of
weak convergence.

When reading the following theorem, it is useful to have in mind that rn → +∞,
since rn = 1/Wn(0) and it will be proved in Lemma 3.4 that Wn(0) → W (0) = 0.

Theorem 2.4 Let ζ > 0 and (zn) be any integer sequence such that ζn = zn/rn → ζ .
Then, the sequence of processes L( · , T L(ζn)) under P0

n( · | T L(ζn) < +∞) converges
in the sense of finite-dimensional distributions to L( · , T L(ζ )) under P0( · | T L(ζ ) <

+∞). If in addition, the tightness assumption holds, then the convergence holds in the
sense of weak convergence.

Note that since X under P0 is assumed to have discontinuous paths, Theorem
1.1 in [13] guarantees that the limiting process in Theorem 2.4 is not Markovian.
Decomposing the path of X into its excursions away from 0, it could be also be shown
that L0 under N and N does not satisfy the Markov property.

As a last remark, we stress that it is possible to extend the proof of Theo-
rem 2.4 to get convergence of the processes (L(a, T L(ζn)), a ∈ R) instead of
(L(a, T L(ζn)), a ≥ 0). Both the proofs of convergence of the finite-dimensional dis-
tributions and of tightness can be adapted to this case with no major changes, though
at the expense of more computations.



3 Preliminary Results

We prove in this section preliminary results that will be used several times in the paper.
We first need results concerning the continuity of hitting times, cf. [18, Proposition
VI.2.11] for closely related results.

Lemma 3.1 Let fn, f ∈ D such that fn → f and A be any finite subset of R. Assume
that fn for each n ≥ 1 has no negative jumps and that:

(i) f (0) /∈ A;
(ii) T f (A) is finite;

(iii) f has no negative jumps;
(iv) for any a ∈ A and ε > 0, sup[T f (a),T f (a)+ε] f > a and inf [T f (a),T f (a)+ε] f < a;

Then, T fn (A) → T f (A). In particular, if in addition to (i)–(iv) above f also satisfies
the following condition:

(v) f is continuous at T f (a) for each a ∈ A;

then fn(T fn (A)) → f (T f (A)), with fn(T fn (A)) being well defined for n large enough.

Proof In the rest of the proof, let A = {ak, 1 ≤ k ≤ K }, T = T f (A) and Tn =
T fn (A). Assume that the result holds for K = 1: Then, for each a ∈ A, one has
T fn (a) → T f (a). Since T = mina∈A T f (a) and Tn = mina∈A T fn (a), one deduces
that Tn → T . Thus, the result only needs to be proved for K = 1, which we assume
from now on. We then write for simplicity a = a1.

We first prove that lim infn Tn ≥ T . Let ε > 0 and t ∈ (T − ε, T ) be such that f
is continuous at t : then

lim
n→+∞ inf[0,t] | fn − a| = inf[0,t] | f − a|.

Since f (0) �= a and t < T , we get inf [0,t] | f − a| > 0 and so inf [0,t] | fn − a| > 0
for n large enough. For those n, we therefore have Tn ≥ t and so lim infn Tn ≥ t .
Since t ≥ T − ε and ε is arbitrary, letting ε → 0 gives lim infn Tn ≥ T .

We now prove that lim supn Tn ≤ T . Fix ε > 0 and let t2 ∈ (T, T +ε)be a continuity
point of f such that f (t2) < a and t1 ∈ (T, t2) another continuity point of f such that
f (t1) > a. Since t1 and t2 are continuity points for f , we have fn(ti ) → f (ti ) for
i = 1, 2. Since f (t1) > a > f (t2), there exists n0 ≥ 0 such that fn(t1) > a > fn(t2)
for all n ≥ n0. Since fn has no negative jumps, for those n, there necessarily exists
t3 ∈ (t1, t2) such that fn(t3) = a which implies Tn ≤ t3. Since t3 ≤ t2 ≤ T + ε,
we obtain Tn ≤ T + ε for all n ≥ n0 and in particular lim supn Tn ≤ T + ε. Letting
ε → 0 achieves the proof. ��
Lemma 3.2 For any finite subset A ⊂ R \ {0}, (T (A), X (T (A))) under P0

n( · |
T (A) < +∞) converges weakly to (T (A), X (T (A))) under P0( · | T (A) < +∞).
If in addition min A > 0, then (T (A), X (T (A))) under P0

n converges weakly to
(T (A), X (T (A))) under P0.



Proof In the rest of the proof, let HA ⊂ D be the set of functions f ∈ D satisfying
the five conditions (i)–(v) of Lemma 3.1. Let us first assume that min A > 0 and show
the convergence under P0

n . By assumption, we have P0
n ⇒ P0 and so the continuous

mapping theorem implies that P0
n ⇒ P0. Moreover, since X under P0 has by assump-

tion infinite variation, one can easily check that P0(HA) = 1 and so the continuous
mapping theorem together with Lemma 3.1 gives the result for P0.

Let us now show the result under P0
n( · | T (A) < +∞), so we do not assume

anymore min A > 0. Since P0(HA) = 1, using the same arguments as under P0
n , one

sees that it is enough to prove that P0
n( · | T (A) < +∞) ⇒ P0( · | T (A) < +∞).

If min A ≤ 0 or if all the Lévy processes are critical, then P0
n(T (A) < +∞) =

P0(T (A) < +∞) = 1 and so this last convergence is the same as P0
n ⇒ P0. Otherwise,

since {T (A) < +∞} = {sup X ≥ min A}, it is sufficient to check that P0(sup X =
a) = 0 for all a and to prove that (X, sup X) under P0

n converges to (X, sup X) under
P0, which we do now.

Taking b = ∞ in (1) shows that

P0
n (sup X < a) = Wn(a)

Wn(∞)
and P0 (sup X < a) = W (a)

W (∞)
,

so that indeed P0(sup X = a) = 0 (W is continuous), and the laws of sup X converge
(by Lemma 3.4).

As a consequence, the laws of (X, sup X) are tight. Let (Y,M) be any accumulation
point of this sequence. Then, Y must be equal in distribution to X under P0 and M must
be equal in distribution to sup X under P0. As a consequence, M and sup Y have the
same distribution, but (Y,M) does not necessarily have the same law as (X, sup X).
To prove this, it is sufficient to show that M = sup Y . By Skorokhod embedding
theorem, we can find a sequence (Yn,Mn) defined on the same probability space as
(Y,M) and converging almost surely to (Y,M), such that for each n, (Yn,Mn) has
the law of (X, sup X) under P0

n . Then, for any continuity point t of Y, sup[0,t] Yn

converges to sup[0,t] Y . This shows that M ≥ sup[0,t] Y , and since continuity points
are dense, M ≥ sup Y . Now since M and sup Y have the same distribution, the almost
sure inequality M ≥ sup Y actually is an almost sure equality, hence the result. ��

Lemma 3.3 For any a > 0,

lim
n→+∞ κnsnPn (T (a) < T (0)) = N (T (a) < T (0)).

Proof Let a > 0 and S = sup[0,T (−1)] X : The exponential formula for the Poisson
point process of excursions gives

P0
n (S < a) = exp

(− κnsnPn (T (a) < T (0))
)

and

P0 (S < a) = exp
(−N (T (a) < T (0))

)
.



On the other hand, using Lemma 3.1 and continuity properties of the sup operator, it
is not hard to see that S under P0

n converges weakly to S under P0. Since the distribution
of S under P0 has not atom, we get P0

n (S < a) → P0 (S < a) which, in view of the
last display, concludes the proof. ��

It is well known that scale functions are everywhere differentiable, which justifies
the following statement.

Lemma 3.4 For every a ≥ 0, it holds that Wn(a) → W (a) and W ′
n(a) → W ′(a).

Moreover, Wn(∞) → W (∞).

Proof First observe that the pointwise convergence of 1/�n to 1/�, which are the
respective Laplace transforms of Wn and W , along with Theorem XIII.1.2 in [14] and
the continuity of W ensures that Wn(a) → W (a) for any a ≥ 0.

On the other hand, it is elementary to show that

Pn (T (a) < T (0)) = W ′
n(a)

κnsnWn(a)
,

and similarly, one can obtain N (T (a) < T (0)) = W ′(a)/W (a) as follows (which
will prove W ′

n(a) → W ′(a) in view of Lemma 3.3). Setting h(x) := N (T (x) <
T (0)), by the exponential formula for the Poisson point process of excursions, we get,
by (1), for any 0 < a < b,

W (a)

W (b)
= P0 (T (−(b − a)) < T (a))

= exp

⎛
⎝−

b−a∫

0

N (T (a + x) < T (0)) dx

⎞
⎠

= exp

⎛
⎝−

b∫

a

h(u) du

⎞
⎠ .

This entails h(a) = W ′(a)/W (a), for example, by differentiating the last equality.
The last convergence comes from the relations Wn(∞) = 1/� ′

n(0+) and W (∞) =
1/� ′(0+). ��
Lemma 3.5 For any ε > 0,

lim
n→+∞ κnsnPn (T (0) > ε) = N (T (0) > ε).

Proof We abbreviate T (0) into T . According to Chapter VII in [2], under P0 (resp.
P0

n), the first passage time process of X in the negative half line is a subordinator with
Laplace exponent � (resp. �n). This has two consequences.

The first one, obtained by considering X under P0, is that �(λ) = dλ + N (1 −
e−λT ), where d ≥ 0 is a drift coefficient. Actually, d = 0, since the Lévy process X



under P0 has infinite variation, so that limλ→∞ λ/�(λ) = 0 = limλ→∞�(λ)/λ = d.
We thus have �(λ) = N (1 − e−λT ). The second one, obtained by considering X
under P0

n , is that En
(
e−λT

) = E
(
e−�n(λ)
n/sn

)
, so that

En

(
1 − e−λT

)
= (n/sn)�n(λ)−�n(�n(λ))

nκn
= �n(λ)

κnsn
− λ

nκn
.

Multiplying each side with κnsn , letting n → +∞ and using that �n(λ) → �(λ),
this shows that κnsnEn(1 − e−λT ) converges to N (1 − e−λT ), i.e.,

lim
n→∞

∞∫

0

dx e−λxκnsnPn(T > x) =
∞∫

0

dx e−λxN (T > x).

Then, Theorem XIII.1.2 in [14] implies that κnsnPn(T > x) → N (T > x) for
any x > 0 such that N (T = x) = 0, that is, for any x > 0. ��

Lemma 3.6 Recall that rn = n/sn. If A is a finite subset of R such that 0 /∈ A, then

lim
n→+∞ rnP0

n (T (A) < T (0)) = N (T (A) < T (0)).

Proof Since X under P0
n is spectrally positive, the following simplifications occur:

• if min A > 0 then P0
n (T (A) < T (0)) = P0

n (T (min A) < T (0));
• if max A < 0 then P0

n (T (A) < T (0)) = P0
n (T (max A) < T (0));

• if min A < 0 < max A then P0
n (T (A) < T (0)) = P0

n (T (min A) ∧ T (max A)
< T (0)).

Thus, to prove the result, there are only three cases to consider: A = {a} with
a > 0, A = {a} with a < 0 or A = {a, b} with a < 0 < b.

First case: A = {a} with a < 0. For any x > 0, L(x, T (a)) under P0 is 0 if T (a) <
T (x) and otherwise it is exponentially distributed with parameter N (T (a − x) <
T (0)), so we get va(x) := E0(L(x), T (a)) = P0(T (x) < T (a))/N (T (a − x) <
T (0)). Now, since P0 only charges Lévy processes with infinite variation, the map
x �→ T (x) is P0-a.s. and N -a.e. continuous, so by monotone convergence, va is
right-continuous and va(0) = 1/N (T (a) < T (0)). Now, we refer the reader to,
e.g., the second display on page 207 of [3], to check that the Lévy process with
law P0 and killed upon hitting a has a continuous potential density, say ua , whose
value at 0 is equal to W (−a). In addition, by the occupation density formula and
Fubini–Tonelli theorem, for any non-negative function ϕ vanishing on the negative
half line, E0

∫ T (a)
0 ϕ(X (s))ds = ∫∞

0 ϕ(x)va(x)dx , which, by definition of ua , also
equals

∫∞
0 ϕ(x)ua(x)dx . Since ua is continuous and va is right-continuous, ua and

va are equal, and in particular va(0) = 1/N (T (a) < T (0)) = ua(0) = W (−a).



On the other hand, using the invariance in space of a Lévy process, (1) and recalling
that rn = 1/Wn(0), we get

P0
n (T (a) < T (0)) = P−a

n (T (0) < T (−a)) = 1

rnWn(−a)
.

The result therefore follows from Lemma 3.4.

Second case: A = {a, b} with a < 0 < b. Under P0
n , the event {T (a) < T (b)} is equal

to the event that all excursions away from 0 before the first one that hits a (which
exists since X does not drift to +∞) do not hit b. Hence

P0
n (T (a) < T (b)) =

∑
k≥0

P0
n (T (a) < T (0))

{
P0

n (T (0) < T (a) ∧ T (b))
}k

= P0
n (T (a) < T (0))

P0
n (T (a) ∧ T (b) < T (0))

so that

P0
n (T (a) ∧ T (b) < T (0)) = P0

n (T (a) < T (0))

P0
n (T (a) < T (b))

= Wn(0)/Wn(−a)

Wn(b)/Wn(b − a)
(3)

using (1) for the last equality. Using the same reasoning, we derive a similar formula for
N (T (a)∧ T (b) < T (0)) as follows. Let η be the time of the first atom of the Poisson
point process of excursions (et , t ≥ 0) of X away from 0 such that inf et < a. Then,
η is distributed like an exponential random variable with parameter N (inf X < a),
and the Poisson point process (et , t < η) is independent of η and has intensity measure
N ( · ; inf X > a). Thus, by a similar path decomposition as previously,

P0 (T (a) < T (b)) = E {exp (−ηN (sup X > b, inf X > a))}
= N (inf X < a)

N (inf X < a)+ N (sup X > b, inf X > a)

= N (inf X < a)

N (T (a) ∧ T (b) < T (0))

from which it follows that

N (T (a) ∧ T (b) < T (0)) = N (inf X < a)

P0 (T (a) < T (b))
= 1/W (−a)

W (b)/W (b − a)
(4)

using N (inf X < a) = 1/W (−a) which was proved in the first case. In view of (3)
and (4), we get

lim
n→+∞ rnP0

n (T (a) ∧ T (b) < T (0)) = N (T (a) ∧ T (b) < T (0)) .

This gives the result.



Third case: A = {a} with a > 0. Remember that X0 = X ( · ∧ T (0)), with X0 = X in
the event {T (0) = +∞}. Consider now c < 0: on the one hand, we have by definition

P0
n (T (c) ∧ T (a) < T (0)) = P0

n

(
inf X0 < c or sup X0 > a

)
.

On the other hand, (3) for the first equality and (1) for the second one give

P0
n (T (c) ∧ T (a) < T (0)) = Wn(0)/Wn(−c)

Wn(a)/Wn(a − c)
= Pa

n(T (0) < T (a − c))

rnWn(a)
.

Because X under Pa
n does not drift to +∞, Pa

n(T (0) < T (a−c)) → 1 as c → −∞.
Thus, letting c → −∞, we obtain

P0
n

(
inf X0 = −∞ or sup X0 > a

)
= 1

rnWn(a)
.

Since under P0
n, sup X0 > 0 implies inf X0 > −∞, we have

P0
n

(
inf X0 = −∞ or sup X0 > a

)
= P0

n (T (0) = +∞)+ P0
n (T (a) < T (0)) .

Finally, one obtains P0
n (T (0) = +∞) = 1/(rnWn(∞)) by taking a = 0 and letting

b = +∞ in (1), and in particular

P0
n (T (a) < T (0)) = 1

rnWn(a)
− 1

rnWn(∞)
.

Similar arguments also imply

N (T (a) < T (0)) = 1

W (a)
− 1

W (∞)

and so the result follows from Lemma 3.4. ��

4 Convergence of the Finite-Dimensional Distributions

Proposition 4.1 establishes the convergence of the finite-dimensional distributions
of the local time processes shifted at a positive level, from which we deduce the
finite-dimensional convergence of the processes appearing in Theorems 2.3 and 2.4
in Corollaries 4.2 and 4.3.

Proposition 4.1 Let a0 > 0. Then, the two sequences of shifted processes L0( · +
a0) under P∗

n ( · | T (a0) < T (0)) and Pn ( · | T (a0) < T (0)) converge in the sense
of finite-dimensional distributions to L0( · + a0) under N ( · | T (a0) < T (0)) and
N ( · | T (a0) < T (0)), respectively.



Proof Let A be a finite subset of [a0,∞) with a0 = min A, A0 = A ∪ {0} and let
(Qn,Q) be a pair of probability distributions either equal to

(
P∗

n( · | T (a0) < T (0)), N ( · | T (a0) < T (0))
)

or equal to

(
Pn( · | T (a0) < T (0)), N ( · | T (a0) < T (0))

)
.

We show that (L0(a), a ∈ A) under Qn converges weakly to (L0(a), a ∈ A) under
Q, which will prove the result.

Step 1. We begin by expressing the laws of (L0(a), a ∈ A)under Qn and of (L0(a), a ∈
A) under Q in a convenient form, cf. (5) and (6) below. Let M = (Mk, k ≥ 1) be the
sequence with values in A0 which keeps track of the successively distinct elements
of A visited by X before the first visit to 0. More specifically, let σ1 = T (A) and for
k ≥ 1 define recursively

σk+1 =
{

inf
{
t > σk : X (t) ∈ A0\{X (σk)}

}
if X (σk) ∈ A,

σk else.

Note that for every k ≥ 1, σk under both Qn and Q is almost surely finite, so the
above definition makes sense (in this proof we will only work under Qn or Q). Let
Mk = X (σk) and for a ∈ A define

S(a) =
∞∑

k=1

1{Mk=a}.

For each a ∈ A, this sum is finite, since M under Qn and Q only makes a finite
number of visits to A before visiting 0. When Mk ∈ A, X accumulates some local
time at Mk between times σk and σk+1 before visiting Mk+1 ∈ A0 \{Mk}. The amount
of local time accumulated depends on whether we are working under Qn or Q.

Under Qn and conditionally on Mk ∈ A, X reaches Mk ∈ A at time σk and then
returns to this point a geometric number of times before visiting Mk+1 ∈ A0 \ {Mk}.
Identifying the parameter of the geometric random variables involved, one sees that
(L0(a), a ∈ A) under Qn can be written as follows (with the convention

∑0
1 = 0):

(L0(a), a ∈ A) =
⎛
⎝ 1

rn

S(a)∑
k=1

(
1 + Gn

k (a)
)
, a ∈ A

⎞
⎠ (5)

where Gn
k (a) is a geometric random variable with success probability qn(a) given by

qn(a) = Pa
n (T (A0\{a}) < T (a))



and the random variables (Gn
k (a), k ≥ 1, a ∈ A) are independent and independent of

the vector (S(a), a ∈ A).
Similarly, under Q and conditionally on Mk = a ∈ A, it is well known by excursion

theory that X accumulates an amount of local time at level a between times σk and
σk+1 which is exponentially distributed with parameter q(a) given by

q(a) = N a(T (A0\{a}) < T (a)),

where N a is the excursion measure of X away from a. Iterating this decomposition,
one sees that

(
L0(a), a ∈ A

)
under Q can be written as follows:

(L0(a), a ∈ A) =
⎛
⎝S(a)∑

k=1

Ek(a), a ∈ A

⎞
⎠ (6)

where Ek(a) is an exponential random variable with parameter q(a) and the random
variables (Ek(a), k ≥ 1, a ∈ A) are independent and independent of (S(a), a ∈ A).

In view of the decompositions (5) and (6) and the independence of the random
variables appearing in these sums, the result will be proved if we can show that each
summand r−1

n (1 + Gn
k (a)) converges in distribution to Ek(a), and if we can show that

the numbers of terms (S(a), a ∈ A) under Qn also converge to (S(a), a ∈ A) under Q.

Step 2. We prove that for each a ∈ A, r−1
n (1 + Gn

1(a)) converges in distribution
to E1(a). This is actually a direct consequence of Lemma 3.6 which implies that
rnqn(a) → q(a) (using the invariance in space of Lévy processes). The following
last step is devoted to proving the convergence of (S(a), a ∈ A) under Qn toward
(S(a), a ∈ A) under Q.

Step 3. To show that (S(a), a ∈ A) under Qn converges toward (S(a), a ∈ A) under
Q, it is sufficient to show that M under Qn converges toward M under Q. To prove
this, we note that both under Qn and Q, M is a Markov chain living in the finite state
space A0 and absorbed at 0. Thus to show that M under Qn converges to M under Q,
it is enough to show that the initial distributions and also the transition probabilities
converge.

Let us prove the convergence of the initial distributions. We have Qn(M1 = 0) =
Q(M1 = 0) = 0 and for a ∈ A,

Qn(M1 = a) = Qn (X (T (A0)) = a) = Qn (X (T (A)) = a) .

Similarly,

Q(M1 = a) = Q (X (T (A0)) = a) = Q (X (T (A)) = a) .



When Qn = P∗
n( · | T (a0) < T (0)) and Q = N ( · | T (a0) < T (0)), we have

Qn (X (T (A)) = a) = P∗
n (X (T (A)) = a | T (a0) < T (0))

= P0
n (X (T (A)) = a | T (A) < +∞)

and so Lemma 3.2 gives

lim
n→+∞ Qn (X (T (A)) = a) = P0 (X (T (A)) = a | T (A) < +∞) .

Since

P0 (X (T (A)) = a | T (A) < +∞) = N (X (T (A)) = a | T (a0) < T (0))

= Q (X (T (A)) = a)

this proves the convergence of the initial distributions in this case. The second case
Qn = Pn( · | T (a0) < T (0)) and Q = N ( · | T (a0) < T (0)) follows similarly by
considering the reflected process: We have then

Qn (X (T (A)) = a) = Pn (X (T (A)) = a | T (a0) < T (0)) = P0
n (X (T (A)) = a)

and so Lemma 3.2 gives

lim
n→+∞ Qn (X (T (A)) = a) = P0 (X (T (A)) = a) .

Since

P0 (X (T (A)) = a) = N (X (T (A)) = a | T (a0) < T (0)) = Q (X (T (A)) = a)

this proves the convergence of the initial distributions in this case as well.
It remains to show that transition probabilities also converge. Note that by definition,

in contrast with the initial distributions, transition probabilities of M under Qn and Q

do not depend on the case considered. Since 0 is an absorbing state for M under Qn

and Q, we only have to show that for any a ∈ A and b ∈ A0 with a �= b, we have
Qn (Mk+1 = b | Mk = a) → Q (Mk+1 = b | Mk = a). On the one hand,

Qn (Mk+1 = b | Mk = a) = Pa
n (X (T (A0\{a})) = b)

while on the other hand,

Q (Mk+1 = b | Mk = a) = Pa (X (T (A0\{a})) = b) .

Note that T (A0\{a}) is almost surely finite for a ∈ A both under Pa
n and Pa , so the

result follows from Lemma 3.2. ��



Corollary 4.2 For any a0 > 0, the two sequences of processes L0 under
P∗

n ( · | T (a0) < T (0)) and Pn ( · | T (a0) < T (0)) converge in the sense of finite-
dimensional distributions to L0 under N ( · | T (a0) < T (0)) and N ( · | T (a0) <

T (0)), respectively.

Proof Let I ≥ 1, 0 < a1 < · · · < aI and ui > 0 for i = 0, . . . , I : We prove the
result for the convergence under P∗

n , the result for Pn follows along the same lines,
replacing P∗

n by Pn and N by N . We show that

lim
n→+∞ P∗

n

(
L0(ai ) ≥ ui , i = 0, . . . , I | T (a0) < T (0)

)

= N
(

L0(ai ) ≥ ui , i = 0, . . . , I | T (a0) < T (0)
)
.

If a0 ≤ a1, then this follows directly from Proposition 4.1. If a0 > a1, we use
Bayes formula:

P∗
n

(
L0(ai ) ≥ ui , i = 0, . . . , I | T (a0) < T (0)

)

= P∗
n (T (a1) < T (0))

P∗
n (T (a0) < T (0))

P∗
n

(
L0(ai ) ≥ ui , i = 0, . . . , I | T (a1) < T (0)

)
.

Lemmas 2.1 and 3.6 (use Lemma 3.3 for Pn) give

lim
n→+∞

P∗
n (T (a1) < T (0))

P∗
n (T (a0) < T (0))

= N (T (a1) < T (0))

N (T (a0) < T (0))

and so Proposition 4.1 gives

lim
n→+∞ P∗

n

(
L0(ai ) ≥ ui , i = 0, . . . , I | T (a0) < T (0)

)

= N (T (a1) < T (0))

N (T (a0) < T (0))
N
(

L0(ai ) ≥ ui , i = 0, . . . , I | T (a1) < T (0)
)

which is equal to N (L0(ai ) ≥ ui , i = 0, . . . , I | T (a0) < T (0)). The result is
proved. ��
Corollary 4.3 Let ζ > 0 and (zn) be any integer sequence such that ζn = zn/rn → ζ ,
and recall that T L(ζ ) = inf {t ≥ 0 : L(0, t) ≥ ζ }. Then the sequence of processes
L( · , T L(ζn)) under P0

n( · | T L(ζn) < +∞) converges in the sense of finite-
dimensional distributions to L( · , T L(ζ )) under P0( · | T L(ζ ) < +∞).

Proof Since the marginals at 0 are deterministic and converge to ζ , we restrict our
attention to finite sets A ⊂ (0,∞) and we are interested in the weak convergence
of the sequence (L(a, T L(ζn)), a ∈ A) under P0

n( · | T L(ζn) < +∞). Let a0 =
min A > 0: Then, only those excursions reaching level a0 contribute and so for each



n ≥ 1, (L(a, T L(ζn)), a ∈ A) under P0
n( · | T L(ζn) < +∞) is equal in distribution to

( Kn∑
k=1

La0
n,k(a), a ∈ A

)

where (La0
n,k, k ≥ 1) are i.i.d. processes with distribution L0 under P∗

n( · | T (a0) <

T (0)), and Kn is an independent random variable distributed as a binomial random
variable with parameters zn and P0

n (T (a0) < T (0)). Since

lim
n→+∞ zn/rn = ζ and lim

n→+∞ rnP0
n(T (a0) < T (0)) = N (T (a0) < T (0)),

the second convergence being given by Lemma 3.6, the sequence (Kn) converges
weakly to a Poisson random variable K with parameter ζN (T (a0) < T (0)). On the
other hand, La0

n,1 converges in distribution to L0 under N ( · | T (a0) < T (0)) by

Proposition 4.1, so the sequence (L(a, T L(ζn)), a ∈ A) under P0
n( · | T L(ζn) < +∞)

converges weakly to

(
K∑

k=1

La0
k (a), a ∈ A

)

where (La0
k , k ≥ 1) are independent from K and are i.i.d. with common distribution

L0 under N ( · | T (a0) < T (0)). This proves the result. Indeed, under P0( · | T L(ζ ) <

+∞) also, only excursions reaching level a0 contribute to L( · , T L(ζ )) on A, and there
is a Poisson number, say K ′, with parameter ζN (T (a0) < T (0)), of such excursions.
These excursions are i.i.d. with common law N ( · | T (a0) < T (0)), and so their local
time processes are i.i.d. with common distribution L0 under N ( · | T (a0) < T (0)).
The local time being an additive functional, it is the sum of local times of these K ′
i.i.d. excursions. ��

5 Tightness Results

Tightness is a delicate issue. In the finite variance case and assuming that the limiting
Brownian motion (with drift) drifts to −∞, it follows quickly from a simple queueing
argument, see [29]. In the infinite variance case of the present paper, we prove tightness
under the tightness condition stated in Sect. 2. So, in the rest of this section, we assume
that the tightness condition holds, i.e., for each n ≥ 1 we have sn = n1/α and
n = 


where 
 has tail distribution P(
 ≥ s) = (1 + s)−α . The main technical result
concerning tightness is contained in the following proposition, “Appendix” is devoted
to its proof.

Proposition 5.1 For any a0 > 0, the sequence L0(a0+ · )under P∗
n( · | T (a0) < T (0))

converges weakly to the continuous process L0(a0 + · ) under N ( · | T (a0) < T (0)).



We now prove the tightness of the sequences considered in Theorems 2.3 and 2.4.
In the sequel, we say that a sequence (Zn) under Qn is C-tight if it is tight and any
accumulation point is continuous. It is known, see for instance Chapter VI in [18], that
this holds if and only if for any m, δ > 0,

lim
a→+∞ lim sup

n→+∞
Qn

(
sup

0≤t≤m
|Zn(t)| ≥ a

)
= 0 and lim

ε→0
lim sup
n→+∞

Qn (�m(Zn, ε) ≥ δ) = 0

(7)

where � is the following modulus of continuity:

�m( f, ε) = sup {| f (t)− f (s)| : 0 ≤ t, s ≤ m, |t − s| ≤ ε} .

Lemma 5.2 For each n ≥ 1, consider on the same probability space an integer valued
random variable Kn and a sequence of processes (Zn,k, k ≥ 1). Assume that for each
k ≥ 1 the sequence (Zn,k, n ≥ 1) is C-tight and that the sequence (Kn, n ≥ 1) is
tight. Then, the sequence (Zn,1 + · · · + Zn,Kn , n ≥ 1) is C-tight.

Proof Let Sn = Zn,1+· · ·+ Zn,Kn : We must show that it satisfies (7). We show how to
control the modulus of continuity, the supremum can be dealt with similar arguments.
For any 0 ≤ s, t ≤ m with |t − s| ≤ ε, we have

|Sn(t)− Sn(s)| ≤
Kn∑

k=1

∣∣Zn,k(t)− Zn,k(s)
∣∣ ≤

Kn∑
k=1

�m(Zn,k, ε)

and so we obtain the following bound, valid for any β > 0:

Qn (�m(Sn, ε) ≥ δ) ≤ Qn

⎛
⎝

β∑
k=1

�m(Zn,k, ε) ≥ δ

⎞
⎠+ Qn(Kn ≥ β)

≤
β∑

k=1

Qn
(
�m(Zn,k, ε) ≥ δ/β

)+ Qn(Kn ≥ β).

Since each sequence (Zn,k, n ≥ 1) is C-tight, this gives

lim
ε→0

lim sup
n→+∞

Qn (�m(Sn, ε) ≥ δ) ≤ lim sup
n→+∞

Qn(Kn ≥ β)

which goes to 0 as β goes to infinity since (Kn) is tight. The result is proved. ��
For n ≥ 1 and a > 0, we denote by Gn(a) a geometric random variable with

parameter 1 − Wn(0)/Wn(a) (remember that Wn(0) = 1/rn), so that according to
Lemma 3.4, the sequence (Wn(0)Gn(a)) converges in distribution to an exponential
random variable with parameter 1/W (a). The following proposition, combined with
Corollary 4.3, proves Theorem 2.4.



Proposition 5.3 Let ζ >0 and (zn) be any integer sequence such that ζn = zn/rn →ζ .
Then, the sequence of processes L( · , T L(ζn)) under P0

n( · | T L(ζn)<+∞) is C-tight.

Proof Fix any a0 > 0 and let τn be the time of the first visit to 0 after time T (a0, zn),
i.e., τn = inf{t ≥ T (a0, zn) : X (t) = 0}, and Kn be the number of excursions of
X away from 0 that reach level a0 before time τn . Unless otherwise stated, we work
implicitly under P0

n( · | T (a0, zn) < +∞) so that τn and Kn are well defined. Then,
the following decomposition holds (using Lemma 2.1):

L(a0 + a, τn) =
Kn∑

k=1

La0
n,k(a), a ≥ 0, (8)

where (La0
n,k, k ≥ 1) are independent processes, all equal in distribution to L0(a0 + · )

under P∗
n( · | T (a0) < T (0)). Note that by Proposition 5.1, (La0

n,1, n ≥ 1) is C-tight.
In an excursion that reaches level a0, the law of the number of visits of X to a0 is
1 + Gn(a0); thus, Kn is equal in distribution to

min

{
k ≥ 1 :

k∑
i=1

(
1 + Gn,i (a0)

) ≥ ζn

}

with (Gn,i (a0), i ≥ 1) i.i.d. random variables with common distribution Gn(a0).
Since (Gn(a0)/rn) converges in distribution to an exponential random variable with
parameter 1/W (a0) and zn/rn → ζ , the sequence (Kn) converges in distribution
to a Poisson random variable with parameter ζ/W (a0). In particular, the sequence
(Kn) is tight, and combining (8), Lemma 5.2, Proposition 5.1 and the C-tightness of
(La0

n,1, n ≥ 1), one sees that the sequence L(a0 + · , τn) is C-tight. We now prove the

desired C-tightness of the sequence L( · , T L(ζn)) under P0
n( · | T L(ζn) < +∞).

For a ≥ 0 define L1,a0(a) and L2,a0(a), the local time accumulated at level a0 + a
in the time interval [T (a0), T (a0, zn)], and [0, T (a0))∪ (T (a0, zn), τn], respectively.
Then, L(a0 + a, τn) = L1,a0(a)+ L2,a0(a) which we write as

L1,a0(a) = L(a0 + a, τn)− L2,a0(a), a ≥ 0.

We have just proved that the sequence L(a0+· , τn)was C-tight, so if we can prove that
the sequence L2,a0 is also C-tight, Lemma 5.2 will imply the C-tightness of L1,a0 . But
by invariance in space, L1,a0 under P0

n( · | T (a0, zn) < +∞) is equal in distribution
to L( · , T L(ζn)) under P0

n( · | T L(ζn) < +∞), so this will prove the desired result.
Hence, it remains to prove the C-tightness of L2,a0 .

Let g(a0) be the left endpoint of the first excursion of X away from 0 that reaches
a0 and define the excursion Y as follows:

Y (t) =
{

X (t + g(a0)) if 0 ≤ t ≤ T (a0)− g(a0),

X ((t + T (a0, zn)+ g(a0)− T (a0)) ∧ τn) if t ≥ T (a0)− g(a0).



Then, Y is distributed like X (· ∧ T (0)) under P∗
n( · | T (a0) < T (0)) and

L3,a0(a)
def.= L2,a0(a)+ 1

rn
1{a=a0},

so that L3,a0 is the local time process above level a0 of the process Y . The term 1{a=a0}
is here to compensate the fact that L2,a0(a) is the local time accumulated during the
time interval [0, T (a0)) ∪ (T (a0, zn), τn) instead of [0, T (a0)) ∪ [T (a0, zn), τn), so
L2,a0 is missing one visit of Y to a0. Thus, L3,a0 is equal in distribution to the process
L0(a0 + · ) under P∗

n( · |T (a0) < T (0)), and the sequence L3,a0 is therefore C-tight
by Proposition 5.1. Neglecting the factor r−1

n which vanishes in the limit, this implies
that L2,a0 is C-tight and concludes the proof. ��

The following proposition, combined with Corollary 4.3, proves Theorem 2.3.

Proposition 5.4 For any a0 > 0, the two sequences L0 under P∗
n( · | T (a0) < T (0))

and Pn( · | T (a0) < T (0)) are C-tight.

Proof In the rest of the proof fix some a0 > 0. We first show the C-tightness of L0 under
P∗

n( · | T (a0) < T (0)), from which the C-tightness under Pn( · | T (a0) < T (0)) is then
derived. Let zn = �rn� be the smallest integer larger than rn and ζn = zn/rn , so that
ζn → 1. Since T L(ζn) = T (0, zn), when T L(ζn) is finite X has at least zn excursions
away from 0, and so we can define Kn the number of excursions among these zn

first excursions that visit a0. Let Ln = L( · , T L(ζn)) and Qn = P0
n( · | T L(ζn) <

+∞, Kn ≥ 1): using Proposition 5.3, it is easy to show that Ln under Qn is C-tight.
Indeed, decomposing the path (X (t), 0 ≤ t ≤ T (0, zn)) into its zn excursions away
from 0, one gets

P0
n

(
Kn = 0 | T L(ζn) < +∞

)
=
{

P0
n (T (0) < T (a0) | T (0) < +∞)

}zn
.

By duality and (1),

P0
n (T (0) < T (a0) | T (0) < +∞) = P0

n (T (0) < T (−a0) | T (0) < +∞)

= 1 − 1
rn Wn(a0)

1 − 1
rn Wn(∞)

which gives P0
n

(
Kn = 0 | T L(ζn) < +∞) → e−1/W (a0)e1/W (∞) < 1. It follows in

particular that C = 1/
(
infn P0

n

(
Kn ≥ 1 | T L(ζn) < +∞)) is finite, and so for any

m, ε, δ > 0,

Qn (�m(Ln, ε) ≥ δ) = P0
n

(
�m(Ln, ε) ≥ δ, Kn ≥ 1 | T L(ζn) < +∞)

P0
n

(
Kn ≥ 1 | T L(ζn) < +∞)

≤ CP0
n

(
�m(Ln, ε) ≥ δ | T L(ζn) < +∞

)
.



Since Ln under P0
n

( · | T L(ζn) < +∞) is C-tight by Proposition 5.3, this implies
that the second condition in (7) holds. One can similarly control the supremum and
prove that the first condition in (7) also holds, which finally proves the C-tightness of
Ln under Qn .

We now prove the C-tightness of L0 under P∗
n( · | T (a0) < T (0)). Let g(a0) < d(a0)

be the endpoints of the first excursion of X away from 0 which reaches level a0. In
the event {T L(ζn) < +∞, Kn ≥ 1}, define L1 as the local time process in the
interval [0, g(a0)) ∪ (d(a0), T (0, zn)] and L2 the local time process in the interval
[g(a0), d(a0)]. Then under Qn , the three following properties hold:

(i) the process (L1(a)+ r−1
n 1{a=0}, a ≥ 0) is equal in distribution to L( · , T L(ζ ′

n))

under P0
n( · | T L(ζ ′

n) < +∞), where ζ ′
n = (zn − 1)/rn ;

(ii) L2 = Ln − L1;
(iii) L2 is equal in distribution to L0 under P∗

n( · | T (a0) < T (0)).

Proposition 5.3 and the first property entail that L1 under Qn is C-tight. Since Ln

under Qn has been proved to be C-tight, the second property together with Lemma 5.2
implies that L2 under Qn is C-tight. The last property finally proves the C-tightness
of L0 under P∗

n( · | T (a0) < T (0)).
We now prove that L0 under Pn( · | T (a0) < T (0)) is C-tight using the Radon–

Nikodym derivative. Let f (s) = P(
 ≥ s): then P(
∗ ∈ ds)/ds = f (s) and
P(
 ∈ ds)/ds = − f ′(s) so that 
 is absolutely continuous with respect to 
∗ with
Radon–Nikodym derivative − f ′/ f . In particular, for any measurable function g, it
holds that

E (g(
)) = E

(
− f ′(
∗)

f (
∗)
g(
∗)

)
.

Consequently, since − f ′(s)/ f (s) = α/(1 + s), we get for any m, ε and δ > 0

Pn

(
�m(L

0, ε) ≥ δ | T (a) < T (0)
)

= αE

(
g(
∗)
1 +
∗

)
≤ αP∗

n

(
�m(L

0, ε) ≥ δ | T (a) < T (0)
)

where g(x) = Px
n

(
�m(L0, ε) ≥ δ | T (a) < T (0)

)
. Since L0 under P∗

n( · | T (a0) <

T (0)) is C-tight by the first part of the proof, we deduce that the second condition
in (7) is satisfied. The supremum can be handled similarly, and therefore, the proof is
complete. ��

6 Implications for Branching Processes and Queueing Theory

6.1 Implications for Branching Processes

A Crump–Mode–Jagers (CMJ) process, or general branching process, is a stochastic
process with non-negative integer values counting the size of a population where
individuals give birth to independent copies of themselves; see for instance [16] for a
definition.



For n ≥ 1 and z ∈ N, let Z
z
n (resp. Z

z∗
n ) be the law of a binary, homogeneous

CMJ branching process with life length distribution 
n and offspring intensity κn

started with z individuals with i.i.d. life lengths with common distribution 
n (resp.

∗

n). Let Zz
n (resp. Zz∗

n ) be the law of X (snt)/rn under Z
z
n (resp. Z

z∗
n ). It follows

directly from results in [29] that Z1
n is the law of L0 under Pn and that Zz∗

n is the
law of L( · , T L(z/rn)) under P0

n( · | T L(z/rn) < +∞). In the sequel, for ζ > 0
introduce Zζ∗ the law of L( · , T L(ζ )) under P0( · | T L(ζ ) < +∞) and Z∗ (resp. Z)
the push-forward of N (resp. N ) by L0. In other words, Z∗ and Z are defined by

Z∗(A) = N (L0 ∈ A) and Z(A) = N (L0 ∈ A)

for any Borel set A ⊂ E . The two theorems below are therefore plain reformulations
of Theorem 2.3 and 2.4.

Theorem 6.1 For any ε > 0, the two sequences Z1∗
n ( · | T (0) > ε) and Z1

n( · | T (0) >
ε) converge in the sense of finite-dimensional distributions to Z∗( · | T (0) > ε) and
Z( · | T (0) > ε), respectively. If in addition, the tightness assumption holds, then both
convergences hold in the sense of weak convergence.

Theorem 6.2 Let ζ > 0 and (zn) be any integer sequence such that zn/rn → ζ .
Then, the sequence Zzn∗

n converges in the sense of finite-dimensional distributions to
Zζ∗. If in addition, the tightness assumption holds, then the convergence holds in the
sense of weak convergence.

Since there is a rich literature on the scaling limits of branching processes, it is
interesting to put this result in perspective. CMJ branching processes are (possibly
non-Markovian) generalizations of Galton–Watson (GW) branching processes in con-
tinuous time. Scaling limits of GW processes have been exhaustively studied since
the pioneering work of Lamperti [31], see [15]. Accumulation points of sequences
of renormalized GW processes are called CSBP, they consist of all the continuous
time, continuous state space, time-homogeneous Markov processes which satisfy the
branching property. Via the Lamperti transformation, they are in one-to-one corre-
spondence with spectrally positive Lévy processes killed upon reaching 0, see [30]
or [8].

On the other hand, little is known about scaling limits of CMJ branching processes,
except for the Markovian setting where individuals live for an exponential duration and
give birth, upon death, to a random number of offspring. Intuitively, in this case, the tree
representing the CMJ process should not differ significantly from the corresponding
genealogical GW tree because the life length distribution has a light tail. And indeed,
correctly renormalized, Markovian CMJ processes converge to CSBP, see [17]. The
same intuition explains results obtained by Sagitov [37,38], who proves the conver-
gence of the finite-dimensional distributions of some non-Markovian CMJ processes
toward CSBP. It also provides an explanation for the results obtained by Lambert et
al. [29], where it is proved that binary, homogeneous CMJ branching processes whose
life length distribution has a finite variance converge to Feller diffusion, the only CSBP
with continuous sample paths.



In the infinite variance case studied in the present paper, and with which Theo-
rems 6.1 and 6.2 are concerned, some individuals will intuitively live for a very long
time, causing the tree representing the CMJ to differ significantly from the correspond-
ing genealogical GW tree, a difference that should persist in the limit. Our results are
consistent with this intuition, since the CMJ studied here converge to non-Markovian
processes (see remark following Theorem 2.4). To the best of our knowledge, this is
the first time that a sequence of branching processes converging to a non-Markovian
limit has been studied.

6.2 Implications for Queueing Theory

The Processor-Sharing queue is the single-server queue in which the server splits its
service capacity equally among all the users present. For n ≥ 1 and z ∈ N, let Q

z
n

(resp. Q
z∗
n ) be the law of the queue length process of the Processor-Sharing queue with

Poisson arrivals at rate κn , service distribution 
 and started with z initial customers
with i.i.d. initial service requirements with common distribution
 (resp.
∗). Let Qz

n
(resp. Qz∗

n ) be the law of X (nt)/n1−1/α under Q
z
n (resp. Q

z∗
n ).

Let E+ ⊂ E be the set of positive excursions with finite length. Let L : E+ → E+
be the Lamperti transformation: by definition L (e) for e ∈ E+ is the only positive
excursion that satisfies L (e)(

∫ t
0 e) = e(t) for every t ≥ 0. In the rest of this section,

if μ is some positive measure on E+, write L (μ) for the push-forward of μ by L :
for any Borel set A,

L (μ)(A) = μ(L ∈ A).

Recall that X0 = X ( · ∧ T (0)): We have the following result, see for instance
Chapter 7.3 in [36] and references therein.

Lemma 6.3 For any integer z ≥ 0 and any n ≥ 1, X0 under Qz
n (resp. Qz∗

n ) is equal
in distribution to L (Zz

n) (resp. L (Zz∗
n )).

In view of Theorems 6.1, 6.2 and Lemma 6.3, it is natural to expect excursions of
the queue length process to converge, upon suitable conditioning. The conditioning
{T (0) > ε} of Z1

n as in Theorem 6.1 is however not convenient in combination with
the map L . Instead, it will be more convenient to consider Z1

n( · | T ◦ L > ε), where
from now on we sometimes write T = T (0), so that T ◦L (e) = TL (e)(0) for e ∈ E+.

From the definition of L , one can see that, for e ∈ E+, we have L (e)(t) = 0 if
and only if t ≥ ∫ Te(0)

0 e, i.e., T ◦ L (e) = ∫ Te(0)
0 e = ∫∞

0 e. In particular, when L0 is
well defined, we have

T ◦ L ◦ L0 =
∞∫

0

L0 =
∞∫

0

L(a, T )da = T . (9)

Lemma 6.4 For any ε > 0, we have Z1
n ( · | T ◦ L > ε) ⇒ Z ( · | T ◦ L > ε).



Proof Starting from Theorem 6.1 and using Lemma 4.7 in [28], one sees that it is
enough to show that for any ε > 0,

lim
n→+∞ κnsnZ1

n(T > ε)=Z(T > ε), lim
n→+∞ κnsnZ1

n(T ◦ L > ε) = Z(T ◦ L > ε)

(10)

and

(X, T ◦ L ) under Z1
n(· | T >ε) converges weakly to (X, T ◦ L ) under Z( · | T >ε).

(11)

Since Z1
n(T > ε) = Pn(T (ε) < T (0)) and Z(T > ε) = N (T (ε) < T (0)), the

first limit in (10) is given by Lemma 3.3. Similarly, (9) entails Z1
n(T ◦ L > ε) =

Pn(T > ε) and Z(T ◦ L > ε) = N (T > ε) and so the second limit in (10) follows
from Lemma 3.5. Thus, to complete the proof, it remains to prove (11).

Since T under Z1
n( · | T >ε) is equal in distribution to sup X0 under Pn( · | sup X0>

ε), one can show that it converges weakly to T under Z( · | T > ε). Using similar
arguments as in the proof of Lemma 3.2, one can strengthen this to get the joint
convergence of (X, T ). Since T (L (e)) = ∫ Te(0)

0 e and the map ( f, t) ∈ D×[0,∞) �→∫ t
0 f is continuous, the continuous mapping theorem implies that (X, T ◦ L ) under

Z1
n( · | T > ε) converges weakly to (X, T ◦ L ) under Z( · | T > ε). ��
We now state the two main queueing results of the paper. The first one (Theorem 6.5)

is a direct consequence of Lemma 6.4 together with continuity properties of the map
L , it gives results on excursions of the Processor-Sharing queue length process. The
second one (Theorem 6.6) leverages on results in [28] to give two simple conditions
under which not only excursions but the full processes converge.

Theorem 6.5 Let ε, ζ > 0 and (zn) be any integer sequence such that zn/rn → ζ .
Then, the two sequences of processes X0 under Qzn∗

n and Q1
n( · | T > ε) converge

weakly to L (Zζ∗) and L (Z)( · | T > ε), respectively.

Proof Lemma 6.3 shows that X0 under Qzn∗
n and Q1

n( · | T > ε) is equal in distribution
to L (Zzn∗

n ) and L (Z1
n( · | T ◦L > ε)), respectively. Then, note that since we consider

the Processor-Sharing queue with Poisson arrivals at rate κn and service distribution

, the tightness assumption holds. Thus, Z1

n( · | T ◦ L > ε) ⇒ Z( · | T ◦ L > ε) by
Lemma 6.4 and Zzn∗

n ⇒ Zζ∗ by Theorem 6.2. Hence, the result would be proved if
we could show that L was continuous along the two sequences Z1

n( · | T ◦ L > ε)

and Zzn∗
n (using that L (Z( · | T ◦ L > ε)) = L (Z)( · | T > ε)). Lemma 2.5 in [29]

shows that this holds if the two sequences T under Zzn∗
n and Z1

n( · | T ◦ L > ε) are
tight; actually, one can show as easily that they converge weakly.

Indeed, defining ζn = zn/rn , one sees that T under Zzn∗
n is equal in distribution to

sup[0,T L (ζn)] X under P0
n( · | T L(ζn) < +∞). One can show using standard arguments

that this converges to sup[0,T L (ζ )] X under P0( · | T L(ζ ) < +∞), which is equal in
distribution to T under Zζ∗ and thus shows the weak convergence of T under Zzn∗

n .



Similar arguments for T under Z1
n( · | T ◦L > ε) give the result, using also (9) in this

case. ��
Theorem 6.6 If one of the following two conditions is met:

• either the sequence Q0
n is tight;

• or for any η > 0,

lim
ε→0

lim sup
n→+∞

[
snQ1

n

(
sup X0 ≥ η, T ≤ ε

)]
= 0; (12)

then for any ζ ≥ 0 and any integer sequence (zn) such that zn/rn → ζ , the sequence
Qzn∗

n converges weakly to the unique regenerative process that starts at ζ and such
that its excursion measure is L (Z), its zero set has zero Lebesgue measure and, when
ζ > 0, its first excursion is equal in distribution to L (Zζ∗).

Proof We check that all the assumptions of Theorem 3 in [28] are satisfied. In order
to help the reader, we provide a translation of the notation used in [28]: the notation
N , ϕ, cn, Nn, bn, and v∞ appearing in the statement of [28, Theorem 3] correspond,
respectively, to (with the notation of the present paper) L (Z), T, snκn, Q1

n, nκn and
sup.

That L (Z)(T = +∞) = Q1
n(T = +∞) = 0 follows from the fact that X under

P0 does not drift to +∞. Let ε > 0: The assumption (H1) in [28] corresponds to
snκnQ1

n(T > ε) → L (Z)(T > ε). Since the workload process associated with X
under Q1

n and renormalized in space by sn is equal in distribution to X under Pn , we
have Q1

n(T > ε) = Pn(T > ε). Moreover, (9) gives L (Z)(T > ε) = N (T > ε)

and so snκnQ1
n(T > ε) → L (Z)(T > ε) is just a restatement of Lemma 3.5. It can

be shown similarly that the assumption (H2) in [28] holds (i.e., for any ε, λ > 0 we
have snκnQ1

n(1 − e−λT ; T ≤ ε) → L (Z)(1 − e−λT ; T ≤ ε)).
The convergence of X0 under Q1

n( · | T > ε) (which corresponds to eε(Xn) in
[28]) has been taken care of by Theorem 6.5. It is easily deduced that (X0, T ) under
Q1

n( · | T > ε) converges toward (X0, T ) under L (Z)( · | T > ε) (which corresponds
to (eε, ϕ ◦ eε)(Xn) ⇒ (eε, ϕ ◦ eε)(X) in [28]).

Finally, our assumption (12) corresponds exactly to the last condition (6) in [28],
which proves the result if (12) is assumed. If one assumes tightness of Q0

n instead
of (12), one can check that the proof of Theorem 3 in [28] goes through, since the
assumption (6) there is only used to show tightness of Q0

n . The proof is therefore
complete. ��

6.3 A Relation with the Height Process

Let Q be the regenerative process, started at 0, whose zero set has zero Lebesgue mea-
sure and with excursion measure L (Z). Duquesne and Le Gall [12] have introduced a
process H , which they call the height process, that codes the genealogy of a CSBP. It
is interesting to note that for every t ≥ 0, Q(t) and H(t) are equal in distribution, as
can be seen by combining results from Kella et al. [21] and Limic [32]. Indeed, the first
result shows that the one-dimensional distributions of a Processor-Sharing queue and



a Last-In-First-Out (LIFO) queue started empty are equal. As for the second result, it
shows that in the finite variance case a LIFO queue suitably renormalized converges
to H (which is then just a reflected Brownian motion), and the author argues in the
remark preceding Theorem 5 that this result can be extended to the α-stable setting
which we have also studied here.

It would be interesting to study whether Q and H share more similarities. In general,
however, these processes may be dramatically different. For instance, it follows from
Lemma 2.2 and Duquesne and Le Gall [12] that if � is such that

∞∫
dλ

�(λ)
√

log λ
< +∞ while

∞∫
dλ

�(λ)
= +∞

then H is very wild (not even càdlàg) while Q is continuous.

Acknowledgments F. Simatos would like to thank Bert Zwart for initiating this project and pointing out
the reference [21].

7 Appendix: Proof of Proposition 5.1

In the rest of this section, we fix some a0 > 0 and we assume that the tightness
assumption stated in Sect. 2 holds: In particular,
n = 
with P(
 ≥ s) = (1+ s)−α
for some 1 < α < 2, n = sαn and rn = sα−1

n . The goal of this section is to prove that
the sequence L0(a0 + · ) under P∗

n( · | T (a0) < T (0)) is tight.
Note that this will prove Proposition 5.1: indeed, by Proposition 4.1, L0(a0 + · )

under P∗
n( · | T (a0) < T (0)) converges in the sense of finite-dimensional distributions

to L0(a0 + · ) under N ( · | T (a0) < T (0)). Moreover, the jumps of L0( · + a0) are
of deterministic size 1/rn . Since 1/rn → 0, any limiting point must be continuous,
see for instance [4]. Note that this reasoning could therefore be proved to show that
L under P0 is continuous (in the space variable), a result that is difficult to prove in
general (see for instance [1]).

Under the tightness assumption, the scale function wn enjoys the following useful
properties. The convexity and smoothness properties constitute one of the main reasons
for making the tightness assumption.

Lemma 7.1 For each n ≥ 1, wn is twice continuously differentiable and concave, its
derivative w′

n is convex, wn(0) = 1 and w′
n(0) = κn. Moreover,

sup

{
wn(t)

(1 + t)α
: n ≥ 1, t > 0

}
< +∞

and finally, there exist n0 ≥ 1 and t0 > 0 such that wn(t0) ≥ 2 for all n ≥ n0.

Proof The smoothness of wn follows from Theorem 3 in [9] since f (s) = P(
 ≥ s)
is continuously differentiable with | f ′(0)| < +∞. The convexity properties follow
from Theorem 2.1 in [26] since f is log-convex and ψ ′

n(0) ≥ 0. The formulas for



wn(0) and w′
n(0) are well known, see for instance [25]. We now prove the two last

assertions.
First of all, note that

sup

{
wn(t)

(1 + t)α
: n ≥ 1, t > 0

}
≤ max

(
sup {wn(1) : n ≥ 1} , sup

{
wn(t)

tα−1 : n ≥ 1, t ≥ 1

})
.

Let ψ be the Lévy exponent given by ψ(λ) = λ − (α − 1)E(1 − e−λ
) with
corresponding scale function w. Since κn → α − 1, P

0
n converges in distribution to

the law of the Lévy process with Lévy exponent ψ , and so it can be shown similarly
as in the proof of Lemma 3.4 that wn(1) → w(1). The first term sup {wn(1) : n ≥ 1}
appearing in the above maximum is therefore finite. As for the second term, since for
any n ≥ 1 we have κnE(
) = κn/(α− 1) ≤ 1 by assumption, we get ψ ≤ ψn and by
monotonicity it follows that wn ≤ w. Moreover, it is known that there exists a finite
constant C > 0 such that w(t) ≤ C/(tψ(1/t)) for all t > 0, see Proposition III.1 or
the proof of Proposition VII.10 in [2]. In particular,

sup

{
wn(t)

tα−1 : n ≥ 1, t ≥ 1

}
≤ sup

{
w(t)

tα−1 : t ≥ 1

}
≤ C sup

{
tα

ψ(t)
: 0 < t ≤ 1

}
.

Since P(
 ≥ s) = (1 + s)−α one can check that there exists some constant β > 0
such that ψ(t) ∼ βtα as t → 0, which shows that the last upper bound is finite and
proves the desired result.

To prove the last assertion of the lemma, consider n0 large enough such that
κ = infn≥n0 κn > 1/2 (remember that κ → 1/(α − 1) > 1). Let ψ be the Lévy
exponent given by ψ(λ) = λ − κE(1 − e−λ
) and corresponding scale function
w. By monotonicity, we get wn ≥ w for any n ≥ n0, and one easily checks that
w(∞) = 1/(1 − κ/(α − 1)). Since by choice of κ this last limit is strictly larger than
2, there exists t0 > 0 such that w(t0) ≥ 2. This proves the result. ��

Since we are interested in limit theorems, we will assume in the sequel without
loss of generality that there exists t0 > 0 such that wn(t0) ≥ 2 for all n ≥ 1, and we
henceforth fix such a t0. We first give a short proof of Proposition 5.1 based on the
two following technical results, see Theorem 13.5 in [4].

Proposition 7.2 (Case (b − a) ∨ (c − b) ≤ t0/sn) For any A > a0, there exist finite
constants C, γ ≥ 0 such that for all n ≥ 1, λ > 0 and a0 ≤ a < b < c ≤ A with
(b − a) ∨ (c − b) ≤ t0/sn,

P∗
n

(∣∣∣L0(b)− L0(a)
∣∣∣ ∧
∣∣∣L0(c)− L0(b)

∣∣∣ ≥ λ | T (a) < T (0)
)

≤ C
(c − a)3/2

λγ
.

Proposition 7.3 (Case b − a ≥ t0/sn) For any A > a0, there exist finite constants
C, γ ≥ 0 such that for all n ≥ 1, λ > 0 and a0 ≤ a < b ≤ A with b − a ≥ t0/sn,

P∗
n

(∣∣∣L0(b)− L0(a)
∣∣∣ ≥ λ | T (a) < T (0)

)
≤ C

(b − a)3/2

λγ
.



Moreover, the constant γ can be taken equal to the constant γ of Proposition 7.2.

At this point, it must be said that the case (b − a) ∨ (c − b) ≤ t0/sn is much
harder than the case b − a ≥ t0/sn . The reason is that in the former case, the bound
(c − a)3/2 cannot be achieved without taking the minimum between |L0(b)− L0(a)|
and |L0(c) − L0(b)|. Considering only one of these two terms gives a bound which
can be shown to decay only linearly in c − a, which is not sufficient to establish
tightness. This technical problem reflects that, in the well-studied context of random
walks, tightness in the non-lattice case is harder than in the lattice one, where typically
small oscillations, i.e., precisely when (b − a) ∨ (c − b) ≤ t0/sn , are significantly
easier to control.

Proof of Proposition 5.1 based on Propositions 7.2 and 7.3 According to Theorem
13.5 in [4], it is enough to show that for each A > a0, there exist finite constants
C, γ ≥ 0 and β > 1 such that for all n ≥ 1, λ > 0 and a0 ≤ a < b < c ≤ A,

P∗
n

(∣∣∣L0(b)− L0(a)
∣∣∣ ∧
∣∣∣L0(c)− L0(b)

∣∣∣ ≥ λ | T (a0) < T (0)
)

≤ C
(c − a)β

λγ
.

(13)

Fix n ≥ 1, λ > 0 and a0 ≤ a < b < c and let E = {|L0(b)− L0(a)| ∧ |L0(c)−
L0(b)| ≥ λ}. Since X under P∗

n is spectrally positive, we have E ⊂ {L(a) > 0} and
so

P∗
n(E, T (a0) < T (0)) = P∗

n(E) = P∗
n(E, T (a) < T (0)).

Thus, Bayes formula entails

P∗
n (E | T (a0) < T (0)) = P∗

n (T (a) < T (0))

P∗
n (T (a0) < T (0))

P∗
n (E | T (a) < T (0))

and since P∗
n (T (a) < T (0)) ≤ P∗

n (T (a0) < T (0)), we get

P∗
n

(∣∣∣L0(b)− L0(a)
∣∣∣ ∧
∣∣∣L0(c)− L0(b)

∣∣∣ ≥ λ | T (a0) < T (0)
)

≤ P∗
n

(∣∣∣L0(b)− L0(a)
∣∣∣ ∧
∣∣∣L0(c)− L0(b)

∣∣∣ ≥ λ | T (a) < T (0)
)
.

Thus (13) follows from the previous inequality together with either Proposition 7.2
when (b − a) ∨ (c − b) ≤ t0/sn , or Proposition 7.3 when b − a ≥ t0/sn . In the last
remaining case where c − b ≥ t0/sn , we derive similarly the following upper bound:

P∗
n

(∣∣∣L0(b)− L0(a)
∣∣∣ ∧
∣∣∣L0(c)− L0(b)

∣∣∣ ≥ λ | T (a0) < T (0)
)

≤ P∗
n

(∣∣∣L0(c)− L0(b)
∣∣∣ ≥ λ | T (a0) < T (0)

)

≤ P∗
n

(∣∣∣L0(c)− L0(b)
∣∣∣ ≥ λ | T (b) < T (0)

)
.



Proposition 7.3 then concludes the proof. ��
The rest of this section is devoted to the proof of Propositions 7.2 and 7.3. Our

analysis relies on an explicit expression of the law of (L0(b)− L0(a), L0(c)− L0(b))
under Px0

n ( · | T (a) < T (0)). For 0 < a < b < c and x0 > 0, we define

px0
n (a) = Px0

n (T (a) < T (0)) , px0
n,ξ (a, b) = Px0

n (T (b) < T (a) | T (a) < T (0))

as well as

px0
n,θ (a, b, c) = Px0

n (T (c) < T (b) | T (b) < T (a) < T (0)) .

Remember that Gn(a) denotes a geometric random variable with parameter pa
n (a),

and from now on we adopt the convention
∑−1

1 =∑0
1 = 0.

Lemma 7.4 For any 0 < a < b < c and x0 > 0, the random variable

(
rn L0(b)− rn L0(a), rn L0(c)− rn L0(b)

)

under Px0
n ( · | T (a) < T (0)) is equal in distribution to

⎛
⎜⎝ξ x0

n +
Gn(a)∑
k=1

ξa
n,k, θ

x0
n 1{ξ x0

n ≥0} +
Nn,a∑
k=1

θa
n,k +

N
x0
n,b∑

k=1

θb
n,k

⎞
⎟⎠ (14)

where

Nn,a =
Gn(a)∑
k=1

1{ξa
n,k≥0} and N x0

n,b = (ξ x0
n )

+ +
Gn(a)∑
k=1

(ξa
n,k)

+.

All the random variables ξ x0
n , ξ

a
n,k, θ

x0
n , θ

a
n,k, θ

b
n,k and Gn(a) are independent. For

any u > 0 and k ≥ 1, θu
n,k is equal in distribution to ξu

n and θu
n,k to θu

n , where the laws
of ξu

n and θu
n are described as follows: for any function f ,

E
[

f (ξu
n )
] = (1 − pu

n,ξ (a, b)) f (−1)+ pu
n,ξ (a, b)E [ f (Gn(b − a))] (15)

and

E
[

f (θu
n )
] = (1 − pu

n,θ (a, b, c)) f (−1)+ pu
n,θ (a, b, c)E [ f (Gn(c − b))] . (16)

Proof In the rest of the proof, we work under Px0
n ( · | T (a) < T (0)). By definition,

rn L0(a) and rn L0(b) is the number of visits of X to a and b in [0, T (0)], respectively.



Thus, if β is the number of visits of X to b in [0, T (a)] and βa
k the number of visits of

X to b between the kth and (k + 1)st visit to a, we have

rn L0(b)− rn L0(a) = (β − 1)+
rn L0(a)−1∑

k=1

(βa
k − 1).

Decomposing the path of X between successive visits to a and using the strong
Markov property, one easily checks that all the random variables of the right-hand side
are independent and that rn L0(a), βa

k and β are, respectively, equal in distribution to
1+Gn(a), ξa

n +1 and ξ x0
n +1. This shows that the random variable rn L0(b)−rn L0(a)

is equal in distribution to ξ x0
n +∑Gn(a)

k=1 ξa
n,k .

To describe the law of (rn L0(b)− rn L0(a), rn L0(c)− rn L0(b)), one also needs to
count the number of visits of X to c: if X visits b before a, it X may visit c before
the first visit to b; it may also visit c each time it goes from a to b; finally, it may also
visit c between two successive visits to b. These three different ways of visiting c are,
respectively, taken into account by the terms θ x0

n , θ
a
n,k and θb

n,k . ��
The previous result readily gives the law of (rn L0(b)−rn L0(a), rn L0(c)−rn L0(b))

under P∗
n( · | T (a) < T (0)): This law can be written as

⎛
⎜⎝ξ̃a

n +
Gn(a)∑
k=1

ξa
n,k, θ̃

a
n 1{̃ξa

n ≥0} +
Nn,a∑
k=1

θa
n,k +

Ñ a
n,b∑

k=1

θb
n,k

⎞
⎟⎠ (17)

where Ñ a
n,b = (̃ξa

n )
++∑Gn(a)

k=1 (ξa
n,k)

+ and the random variables ξa
n,k , θ

a
n,k, θ

b
n,k, Gn(a)

and Nn,a are as described in Lemma 7.4. Moreover, these random variables are also
independent from the pair (̃ξa

n , θ̃
a
n ) whose distribution is given by

E
[

f (̃ξa
n , θ̃

a
n )
] =

∫
E
[

f (ξ x0
n , θ

x0
n )
]
P(χa

n ∈ dx0) (18)

where from now on χa
n denotes a random variable equal in distribution to X (0) under

P∗
n( · | T (a) < T (0)). For convenience, we will sometimes consider that χa

n lives on
the same probability space and is independent from all the other random variables. This
will for instance allow us to say that the random vector (17) conditional on {χa

n = x0}
is equal in distribution to the random vector (14).

In order to exploit (17) and prove Propositions 7.2 and 7.3, we will use a method
based on controlling the moments, following similar lines as [5,6]. As Propositions 7.2
and 7.3 suggest, we need to distinguish the two cases (b − a) ∨ (c − b) ≤ t0/sn and
b − a ≥ t0/sn (remember that t0 is a fixed number such that wn(t0) ≥ 2 for each
n ≥ 1, see the discussion after Lemma 7.1).

In the sequel, we need to derive numerous upper bounds. The letter C then denotes
constants which may change from line to line (and even within one line) but never
depend on n, a, b, c, x0 or λ. They may however depend on other variables, such as
typically a0, A or t0.



Before starting, let us gather a few relations and properties that will be used repeat-
edly (and sometimes without comments) in the sequel. First, it stems from (1) that

Px0
n (T (a) < T (0)) = Wn(a)− Wn(a − x0)

Wn(a)
=
∫ x0

0 W ′
n(a − u)du

Wn(a)
, 0 < x0 ≤ a.

Moreover, (1) κn ≤ 1; (2) W ′
n(0) = κnsn/rn = κns2−α

n , Wn ≥ 0 is increasing,
W ′

n ≥ 0 is decreasing and −W ′′
n ≥ 0 is decreasing (as a consequence of Lemma 7.1

together with the identity Wn(a) = wn(asn)/rn); (3) for every a > 0, the sequences
(Wn(a), n ≥ 1) and (W ′

n(a), n ≥ 1) are bounded away from 0 and infinity (by
Lemma 3.4).

7.1 Case (b − a) ∨ (c − b) ≤ t0/sn

The goal of this subsection is to prove Proposition 7.2 through a series of lemmas.

Lemma 7.5 For any A > a0, there exists a finite constant C such that for any n ≥ 1,
any a0 ≤ a ≤ A and any 0 ≤ x0 ≤ y ≤ a,

jn,a(x0, y) ≤
⎧⎨
⎩

Cx0(a − y)s2−α
n if x0 ≥ a/4,

Cx0(a − y) if x0 ≤ a/4 and a/2 ≤ y,
Cx0W ′

n(y − x0) if x0 ≤ a/4 and y ≤ a/2,
(19)

where jn,a(x0, y) = Wn(a − x0)Wn(y)− Wn(y − x0)Wn(a).

Proof The derivation of these three bounds is based on the following identity:

jn,a(x0, y) =
a−y∫

0

W ′
n(u + y)du

x0∫

0

W ′
n(u + y − x0)du

+Wn(y)

x0∫

0

a−y∫

0

(−W ′′
n )(u + v + y − x0)dudv.

The term Wn(y) appearing in the second term of the right-hand side is upper
bounded by the finite constant supn≥1 Wn(A) and so does not play a role as far as (19)
is concerned. Assume that x0 ≥ a/4: then y ≥ a0/4 and so

a−y∫

0

W ′
n(u + y)du

x0∫

0

W ′
n(u + y − x0)du ≤ (a − y)W ′

n(a0/4)x0W ′
n(0)

≤ C(a − y)x0s2−α
n .



On the other hand,

x0∫

0

a−y∫

0

(−W ′′
n )(u + v + y − x0)dudv ≤ (a − y)

x0∫

0

(−W ′′
n ) ≤ (a − y)W ′

n(0).

This gives the desired upper bound of the form Cx0s2−α
n , since W ′

n(0) ≤ s2−α
n

and 1 ≤ Cx0 when x0 ≥ a/4 (writing 1 = x0/x0 ≤ 4x0/a0). This proves (19) in
the case x0 ≥ a/4. Assume now that x0 ≤ a/4 ≤ a/2 ≤ y, so that y ≥ a0/2 and
y − x0 ≥ a0/4. Then

a−y∫

0

W ′
n(u + y)du

x0∫

0

W ′
n(u + y − x0)du ≤ (a − y)W ′

n(a0/2)x0W ′
n(a0/4)

≤ Cx0(a − y)

and

x0∫

0

a−y∫

0

(−W ′′
n )(u + v + y − x0)dudv ≤

x0∫

0

a−y∫

0

(−W ′′
n )(u + v + a0/4)dudv.

Since −W ′′
n is decreasing, so is the function ϕ(u) = ∫ a−y

0 (−W ′′
n )(u +v+a0/4)dv.

Differentiating, this immediately shows that the function z �→ z−1
∫ z

0 ϕ is decreasing
and since x0 ≥ a0, this gives

x0∫

0

a−y∫

0

(−W ′′
n )(u + v + a0/4)dudv ≤ x0a−1

0

a−y∫

0

a0∫

0

(−W ′′
n )(u + v + a0/4)dudv.

Further, exploiting that −W ′′
n is decreasing, we obtain

x0∫

0

a−y∫

0

(−W ′′
n )(u + v + a0/4)dudv ≤ x0a−1

0 (a − y)

a0∫

0

(−W ′′
n )(u + a0/4)du

≤ Cx0(a − y).

This proves (19) in the case x0 ≤ a/4 ≤ a/2 ≤ y. Assume now that x0 ≤ a/4 and
that y ≤ a/2: then

a−y∫

0

W ′
n(u + y)du

x0∫

0

W ′
n(u + y − x0)du ≤ Cx0W ′

n(y − x0)



and

x0∫

0

a−y∫

0

(−W ′′
n )(u + v + y − x0)dudv ≤ x0

a−y∫

0

(−W ′′
n )(u + y − x0)du

≤ x0W ′
n(y − x0).

This concludes the proof of (19), ��

Lemma 7.6 For any A > a0, there exists a finite constant C such that for any n ≥ 1,
any a0 ≤ a < b ≤ A and any x0 ≤ a,

1 − px0
n,ξ (a, b) ≤ C(b − a)sn (20)

and for any n ≥ 1, any a0 ≤ a < b < c ≤ A with b − a ≤ t0/sn and any x0 ≤ b,

1 − px0
n,θ (a, b, c) ≤ C(c − b)sn . (21)

Proof Let us first prove (20), so assume until further notice x0 ≤ a. Let in the rest of
the proof τa = inf{t ≥ 0 : X (t) /∈ (0, a)}: then the inclusion

{T (a) < T (b), T (a) < T (0)} ⊂ {a ≤ X (τa) < b}

holds Px0
n -almost surely and leads to

1 − px0
n,ξ (a, b) = Px0

n (T (a) < T (b), T (a) < T (0))

Px0
n (T (a) < T (0))

≤ Px0
n (a ≤ X (τa) < b)

Wn(a)
x0∫
0

W ′
n(a − u)du

≤ Cx−1
0 Px0

n (a ≤ X (τa) < b) .

Thus (20) will be proved if we can show that Px0
n (a ≤ X (τa) < b) ≤ Cx0(b−a)sn .

Let hn(z) = ακnsα+1
n (1 + zsn)

−α−1 be the density of the measure�n with respect to
Lebesgue measure; note that it is decreasing and that the sequence (hn(z)) is bounded
for any z > 0. Corollary 2 in [3] gives

Px0
n (X (τa−) ∈ dy,�X (τa) ∈ dz) = un,a(x0, y)hn(z)dzdy, y ≤ a ≤ y + z,

(22)

where �X (t) = X (t)− X (t−) for any t ≥ 0 and

un,a(x0, y) = Wn(a − x0)Wn(y)

Wn(a)
− Wn(y − x0)1{y≥x0},



so it follows that

Px0
n (a ≤ X (τa) < b) =

∫
1{y<a,a−y≤z<b−y}un,a(x0, y)hn(z)dzdy

≤ (b − a)

a∫

0

un,a(x0, y)hn(a − y)dy.

Hence (20) will be proved if we can show that
∫ a

0 un,a(x0, y)hn(a− y)dy ≤ Cx0sn .
We have by definition of un,a

a∫

0

un,a(x0, y)hn(a − y)dy = Wn(a − x0)

Wn(a)

x0∫

0

Wn(y)hn(a − y)dy

+
a∫

x0

(
Wn(a − x0)Wn(y)

Wn(a)
− Wn(y − x0)

)
hn(a−y)dy

which readily implies

a∫

0

un,a(x0, y)hn(a − y)dy ≤ CWn(a − x0)

x0∫

0

hn(a − y)dy

+C

a∫

x0

jn,a(x0, y)hn(a − y)dy

(23)

with jn,a(x0, y) = Wn(a − x0)Wn(y)− Wn(y − x0)Wn(a) as in Lemma 7.5. We will
show that each term of the above right-hand side is upper bounded by a term of the
form Cx0sn . Let us focus on the first term, so we want to show that

Wn(a − x0)

x0∫

0

hn(a − y)dy ≤ Cx0sn .

Assume first that x0 ≤ a/2, then a − y ≥ a − x0 ≥ a/2 ≥ a0/2 for any y ≤ x0 which
gives

Wn(a − x0)

x0∫

0

hn(a − y)dy ≤ Wn(A)x0hn(a0/2) ≤ Cx0 ≤ Cx0sn .



Assume now x0 ≥ a/2: Since hn is the density of �n , we have

Wn(a − x0)

x0∫

0

hn(a − y)dy ≤ Wn(a − x0)�n((a − x0,∞)) = κnsn
wn((a − x0)sn)

(1 + (a − x0)sn)α
.

Since 1 ≤ Cx0 (because x0 ≥ a0/2), the desired upper bound of the form Cx0sn

follows from Lemma 7.1. We now control the second term of the right-hand side
in (23), i.e., we have to show that

a∫

x0

jn,a(x0, y)hn(a − y)dy ≤ Cx0sn .

In the case x0 ≥ a/4, the first bound in (19) gives

a∫

x0

jn,a(x0, y)hn(a − y)dy ≤ Cx0s2−α
n

a∫

x0

(a − y)sα+1
n

(1 + (a − y)sn)α+1 dy

= Cx0sn

(a−x0)sn∫

0

y

(1 + y)α+1 dy ≤ Cx0sn .

Assume from now on that x0 ≤ a/4 and decompose the interval [x0, a] into the
union [x0, a/2] ∪ [a/2, a]. For [a/2, a], (19) gives

a∫

a/2

jn,a(x0, y)hn(a − y)dy ≤ Cx0

a∫

a/2

(a − y)sα+1
n

(1 + (a − y)sn)α+1 dy ≤ Cx0sα−1
n ≤ Cx0sn

since α − 1 < 1. For [x0, a/2], (19) gives, using a − y ≥ a0/2 when y ≤ a/2,

a/2∫

x0

jn,a(x0, y)hn(a − y)dy ≤ Cx0hn(a0/2)

a∫

x0

W ′
n(y − x0)dy ≤ Cx0 ≤ Cx0sn .

This finally concludes the proof of (20), which we use to derive (21). Assume from
now on that x0 ≤ b, we have by definition

1 − px0
n,θ (a, b, c) = Px0

n (T (b) < T (c), T (b) < T (a) < T (0))

Px0
n (T (b) < T (a) < T (0))

≤ Px0
n (T (b) < T (c), T (b) < T (0))

Px0
n (T (b) < T (a) < T (0))

= Px0
n (T (b) < T (0))

Px0
n (T (b) < T (a) < T (0))

(
1 − px0

n,ξ (b, c)
)
.



Since Pz
n(T (b) < T (0)) = ∫ z

0 ϕ where ϕ(u) = W ′
n(b − u)/Wn(b) is increasing,

it is readily shown by differentiating that z ∈ [0, b] �→ z−1Pz
n(T (b) < T (0)) is also

increasing. Thus, for x0 ≤ b, we obtain

Px0
n (T (b) < T (0)) ≤ x0b−1Pb

n (T (b) < T (0)) ≤ Cx0.

In combination with (20) and the fact that Px0
n (X (τa) ≥ b) ≤ Px0

n (T (b) < T (a) <
T (0)), this entails

1 − px0
n,θ (a, b, c) ≤ C(c − b)sn

x0

Px0
n (X (τa) ≥ b)

.

Hence (21) will be proved if we show that x0 ≤ CPx0
n (X (τa) ≥ b). If follows from (22)

that

Px0
n (X (τa) ≥ b) =

a∫

0

un,a(x0, y)κnsαn P(
 ≥ (b − y)sn)dy

and because P(
 ≥ u) = (1 + s)−α , it can be checked that P(
 ≥ u + v) ≥ P(
 ≥
u)P(
 ≥ v) for any u, v > 0, so that

Px0
n (X (τa) ≥ b) ≥ P(
 ≥ (b − a)sn)

a∫

0

un,a(x0, y)κnsαn P(
 ≥ (a − y)sn)dy.

In view of (22), this last integral is equal to Px0
n (X (τa) ≥ a) = Px0

n (T (a) < T (0))
so finally, using (b − a)sn ≤ t0 we get

x0

Px0
n (X (τa) ≥ b)

≤ x0Wn(a)

P(
 ≥ t0)(Wn(a)− Wn(a − x0))
≤ C

which proves (21). ��
Lemma 7.7 There exists a finite constant C such that for all a0 ≤ a < b and all
n ≥ 1,

∣∣E (ξa
n

)∣∣ ≤ C(b − a)sn
/
(rnWn(a)).

Proof Starting from a, X (under Pa
n ) makes 1 + Gn(a) visits to a. Decomposing the

path (X (t), 0 ≤ t ≤ T (0)) between successive visits to a, one gets

Pa
n (T (b) > T (0)) = E

[{
Pa

n(T (a) < T (b) | T (a) < T (0))
}Gn(a)

]

= E

[
(1 − pa

n,ξ (a, b))Gn(a)
]
.



By definition, the left-hand side is equal to 1 − pa
n (b), so integrating on Gn(a) gives

E

[
(1 − pa

n,ξ (a, b))Gn(a)
]

= 1 − pa
n (a)

1 − (1 − pa
n,ξ (a, b))pa

n (a)
= 1 − pa

n (b)

which gives

1 − pa
n,ξ (a, b) = Wn(b − a)Wn(a)− Wn(b)Wn(0)

Wn(b − a)(Wn(a)− Wn(0))
. (24)

Let pn = pb−a
n (b − a) and pn,ξ = pa

n,ξ (a, b): We have

E
(
ξa

n

) = pn,ξ − 1 + pn,ξE(Gn(b − a)) = pn,ξ − 1 + pn,ξ
pn

1 − pn
= pn,ξ

1 − pn
− 1.

Plugging in (1) and (24) gives after some computation

E
(
ξa

n

) = Wn(b)− Wn(a)− (Wn(b − a)− Wn(0))

Wn(a)− Wn(0)
=
∫ a

0

∫ b−a
0 W ′′

n (u + v)dudv∫ a
0 W ′

n
.

Since W ′
n ≥ 0 and W ′′

n ≤ 0, this gives

∣∣E (ξa
n

)∣∣ =
∫ a

0

∫ b−a
0 (−W ′′

n )(u + v)dudv∫ a
0 W ′

n
(25)

and since W ′
n is convex, we get

∣∣E (ξa
n

)∣∣ ≤ (b − a)

∫ a
0 (−W ′′

n )∫ a
0 W ′

n
= (b − a)W ′

n(0)

Wn(a)

Wn(a)(W ′
n(0)− W ′

n(a))

W ′
n(0)(Wn(a)− Wn(0))

.

Since W ′
n(0) ≤ sn/rn and

Wn(a)(W ′
n(0)− W ′

n(a))

W ′
n(0)(Wn(a)− Wn(0))

≤ Wn(a0)

Wn(a0)− Wn(0)
≤ C,

the proof is complete. ��
To control the higher moments of ξa

n and also the moments of the θ ’s, we introduce
the following constants:

Ci = sup

{
E
(
(Gn(δ))

i
)

δsn
: n ≥ 1, 0 ≤ δ ≤ t0/sn

}
, i ≥ 1. (26)

Lemma 7.8 For any integer i ≥ 1, the constant Ci is finite.



Proof Using the concavity of wn , one gets wn(δsn) ≤ wn(0)+ δsnw
′
n(0) ≤ 1 + δsn

since wn(0) = 1 and w′
n(0) = κn ≤ 1 by Lemma 7.1. Hence

pδn(δ) = wn(δsn)− wn(0)

wn(δsn)
≤ δsn

1 + δsn
≤ min

(
δsn,

t0
1 + t0

)

where the last inequality holds for δsn ≤ t0. In particular, for any i ≥ 1, we have

E
(
(Gn(δ))

i
)

δsn
= E

(
(Gn(δ))

i
)

pδn(δ)

pδn(δ)

δsn
≤ sup

0≤p≤ε

(
p−1

E

(
Gi

p

))

where ε = t0/(1 + t0) < 1 and G p is a geometric random variable with parameter p.
It is well known that

E(Gi
p) = pPi−1(p)

(1 − p)i

where Pi is the polynomial Pi (p) =∑i
k=0 Tk,i pi with Tk,i ≥ 1 the Eulerian numbers.

Since Pi satisfies Pi (0) = 1, one easily sees that for any ε < 1,

sup
0≤p≤ε

(
p−1

E

(
Gi

p

))
< +∞

which achieves the proof. ��
Lemma 7.9 For any A > a0 and i ≥ 1, there exists a finite constant C such that for
all n ≥ 1 and all a0 ≤ a < b < c ≤ A with (b − a) ∨ (c − b) ≤ t0/sn

max
(
E

(
|ξa

n |i
)
, E

(
|θa

n |i
)
,E
(
|θb

n |i
))

≤ C(c − a)sn . (27)

Proof The results for ξa
n and θa

n are direct consequences of (20) and (21) and the
finiteness of Ci : Indeed, using these two results, we have for instance for ξa

n

E

(
|ξa

n |i
)
=1 − pa

n,ξ (a, b)+ pa
n,ξ (a, b)E

(
(Gn(b−a))i

)
≤ C(b − a)sn +Ci (b−a)sn

and similarly for θa
n . The result for θb

n is also straightforward because

pb
n,θ (a, b, c) = Pb

n (T (c) < T (b) | T (b) < T (a) < T (0))

= Pb
n (T (c) < T (b) | T (b) < T (a))

= pb−a
n,ξ (c − a, b − a).

and so the result follows similarly as for ξa
n . ��

Recall the random variables ξ̃a
n and θ̃a

n defined in (18).



Lemma 7.10 For any A > a0, there exists a finite constant C such that for all n ≥ 1
and all a0 ≤ a < b < c ≤ A with (b − a) ∨ (c − b) ≤ t0/sn,

E

(∣∣̃ξa
n

∣∣i) ≤ C(b − a)sn and E

(∣∣θ̃a
n

∣∣i) ≤ C(c − a)sn . (28)

Proof Combining the two definitions (15) and (18), we obtain

E

(∣∣̃ξa
n

∣∣i) =
∞∫

0

(
1 − px0

n,ξ (a, b)+ px0
n,ξ (a, b)E

(
(Gn(b − a))i

))
P(χa

n ∈ dx0)

≤ C(b − a)sn + P(a ≤ χa
n ≤ b)+ Ci (b − a)sn

using (20) to obtain the inequality. We obtain similarly for θ̃a
n , using (21) instead

of (20),

E

(∣∣θ̃a
n

∣∣i) ≤ C(c − b)sn + P(b ≤ χa
n ≤ c)+ Ci (c − b)sn .

Thus, the result will be proved if we can show that P(a ≤ χa
n ≤ c) ≤ C(c − a)sn ;

remember that χa
n is by definition equal in distribution to X (0) under P∗

n( · | T (a) <
T (0)). Because X is spectrally positive and a ≤ A, it holds that

P∗
n (a < X (0) ≤ c | T (a) < T (0)) = P∗

n (a < X (0) ≤ c)

P∗
n (T (a) < T (0))

≤ P∗
n (a < X (0) ≤ c)

P∗
n (T (A) < T (0))

.

Since P∗
n (T (A) < T (0)) = P0

n (T (A) < T (0)) by Lemma 2.1, Lemma 3.6 implies
that

inf
n≥1

(
rnP∗

n (T (A) < T (0))
)
> 0

which leads to P∗
n (a < X (0) ≤ c | T (a) < T (0)) ≤ CrnP∗

n (a < X (0) ≤ c). We have
by definition

rnP∗
n (a < X (0) ≤ c) = (α − 1)rn

csn∫

asn

du

(1 + u)α
≤ C(c − a) ≤ C(c − a)sn

which achieves the proof. ��

To control the sum of i.i.d. random variables, we will repeatedly use the following
simple combinatorial lemma. In the sequel for I ∈ N and β ∈ N

I note |β| = ∑
βi

and ‖β‖ =∑ iβi .



Lemma 7.11 Let (Yk) be i.i.d. random variables with common distribution Y . Then
for any even integer I ≥ 0 and any K ≥ 0,

E

⎡
⎣
(

K∑
k=1

Yi

)I⎤
⎦ ≤ I I

∑
β∈NI :‖β‖=I

K |β|
I∏

i=1

∣∣∣E
(

Y i
)∣∣∣βi

.

Proof We have E
[
(Y1 + · · · + YK )

I ] = ∑
1≤k1,...,kI ≤K E(Yk1 . . . YkI ). Since the

(Yk)’s are i.i.d., we have E
(
Yk1 . . . YkI

) = mβ1
1 . . .mβI

I with mi = E(Y i ) and βi

the number of i-tuples of k, i.e., β1 is the number of singletons, β2 the number of
pairs, etc … Since I is even, this leads to

E

[
(Y1 + · · · + YK )

I
]

≤
∑

0≤β1,...,βI ≤K :‖β‖=I

AI,K (β) |m1|β1 . . . |m I |βI

with AI,K (β) the number of I -tuples k ∈ {1, . . . , K }I with exactly βi i-tuples for each
i = 1, . . . , I . There are K (K −1) . . . (K −(|β|−1)) different ways of choosing the |β|
different values taken by k, thus AI,K (β) = K (K −1) . . . (K − (|β|−1))× B(I, |β|)
with B(i, a) the number of ways of assigning i objects into a different boxes in such a
way that no box is empty, so that AI,K (β) ≤ K |β| I |β| ≤ K |β| I I since |β| ≤ ‖β‖ = I .

��
In the sequel, we will use the inequality

E

(
(Gn(a))

i
)

≤ i !(rnWn(a))
i , i ≥ 1, a > 0,

which comes from the fact that Gn(a) is stochastically dominated by an exponential
random variable with parameter 1 − pa

n (a) = 1/(rnWn(a)). We now use the previous
bounds on the moments to control the probability

P

⎛
⎝
∣∣∣∣∣∣ξ̃

a
n +

Gn(a)∑
k=1

ξa
n,k

∣∣∣∣∣∣ ≥ λrn

⎞
⎠ .

We will see that it achieves a linear bound (in b − a) which justifies the need of the
min later on.

Lemma 7.12 For any A > a0 and any even integer I ≥ 2, there exists a finite constant
C such that for all n ≥ 1, all λ > 0 and all a0 ≤ a < b ≤ A with b − a ≤ t0/sn,

P

⎛
⎝
∣∣∣∣∣∣Y +

Gn(a)∑
k=1

ξa
n,k

∣∣∣∣∣∣ ≥ λrn

⎞
⎠ ≤ C

b − a

λI
snr−I/2

n

where Y is any random variable equal in distribution either to ξ̃a
n or to Gn(b − a).



Proof Using first the triangular inequality and then Markov inequality gives

P

⎛
⎝
∣∣∣∣∣∣Y +

Gn(a)∑
k=1

ξa
n,k

∣∣∣∣∣∣ ≥ λrn

⎞
⎠ ≤ (2/λrn)

I

⎛
⎜⎝E

(
Y I
)

+ E

⎡
⎢⎣
⎛
⎝Gn(a)∑

k=1

ξa
n,k

⎞
⎠

I
⎤
⎥⎦
⎞
⎟⎠ .

Using the independence between Gn(a) and (ξa
n,k, k ≥ 1) together with Lemma 7.11

gives

E

⎡
⎢⎣
⎛
⎝Gn(a)∑

k=1

ξa
n,k

⎞
⎠

I
⎤
⎥⎦ ≤ C

∑
β∈NI :‖β‖=I

E

(
(Gn(a))

|β|) I∏
i=1

∣∣∣E
(
(ξa

n )
i
)∣∣∣βi

≤ C
∑

β∈NI :‖β‖=I

(rnWn(a))
|β|

I∏
i=1

∣∣∣E
(
(ξa

n )
i
)∣∣∣βi

.

Lemma 7.7 gives the bound

I∏
i=1

∣∣∣E
(
(ξa

n )
i
)∣∣∣βi ≤ C ((b − a)sn/(rnWn(a)))

β1

I∏
i=2

((b − a)sn)
βi

= C((b − a)sn)
|β| (rnWn(a))

−β1 ≤ C(b − a)sn (rnWn(a))
−β1

where ((b − a)sn)
|β| ≤ C(b − a)sn follows from the fact that (b − a)sn ≤ t0 while

|β| ≥ 1. Using (28) for the case Y = ξ̃a
n and the finiteness of CI for the case Y =

Gn(b − a), one can write E(Y I ) ≤ C(b − a)sn , which gives

P

⎛
⎝
∣∣∣∣∣∣Y +

Gn(a)∑
k=1

ξa
n,k

∣∣∣∣∣∣ ≥ λrn

⎞
⎠ ≤ C(λrn)

−I (b − a)sn

⎛
⎝1 +

∑
β∈NI :‖β‖=I

(rn Wn(a))
|β|−β1

⎞
⎠ .

But

|β| − β1 =
I∑

i=2

βi ≤
I∑

i=2

(i/2)βi = 1

2
(‖β‖ − β1) ≤ I/2 (29)

and rnWn(a) ≥ 1 so (rnWn(a))|β|−β1 ≤ (rnWn(a))I/2, which proves the result. ��
Lemma 7.13 For any i ≥ 1 and A > 0, it holds that

sup
{

r−i
n E

(
(Nn,a)

i
)

: n ≥ 1, 0 < a < b ≤ A
}
< +∞

and

sup
{

r−i
n E

(
(Ñ a

n,b)
i
)

: n ≥ 1, 0 < a < b < c ≤ A, b − a ≤ t0/sn

}
< +∞.



Proof The result on Nn,a comes from the following inequality E((Nn,a)
i ) ≤

E((Gn(a))i ). For Ñ a
n,b, we use the fact that |̃ξa

n | is stochastically dominated by
1 + Gn(b − a) (since for any x0 > 0, |ξ x0

n | is), thus

E

(
(Ñ a

n,b)
i
)

≤ E

⎛
⎜⎝
⎛
⎝Gn(a)+1∑

k=1

(1 + Gn,k(b − a))

⎞
⎠

i
⎞
⎟⎠

with (Gn,k(b − a), k ≥ 1) i.i.d. with common distribution Gn(b − a), independent of
Gn(a). Thus, Lemma 7.11 gives

E

(
(Ñ a

n,b)
i
)

≤ C
∑

β∈Ni :‖β‖=i

E

(
(1 + Gn(a))

|β|) i∏
k=1

[
E

(
(1 + Gn(b − a))k

)]βk
.

Since Gn(a) is stochastically dominated by an exponential random variable with
parameter 1 − pa

n (a) = 1/(rnWn(a)) and Gn(b − a) is integer valued, so that
(1 + Gn(b − a))k ≤ (1 + Gn(b − a))i for any 1 ≤ k ≤ i , we get, using that
|β| ≤ i and that all quantities are greater than 1,

E

(
(Ñ a

n,b)
i
)

≤ C E
(
(1 + ErnWn(a))

i
) [

E

(
(1 + Gn(b − a))i

)]i

where E is a mean-1 exponential random variable. Using that for each 1 ≤ k ≤ i

E

(
(Gn(b − a))k

)
≤ E

(
(Gn(b − a))i

)
≤ Ci (b − a)sn ≤ Ci t0,

one gets

sup

{[
E

(
(1 + Gn(b − a))i

)]i : n ≥ 1, b − a ≤ t0/sn

}
< +∞.

Together with the inequality

E

(
(1 + ErnWn(a))

i
)

≤ E

(
(1 + ErnWn(A))

i
)

≤ Cri
n

this concludes the proof. ��
We can now prove Proposition 7.2. Remember that we must find constants C and

γ > 0 such that

P∗
n

(∣∣∣L0(c)− L0(b)
∣∣∣ ∧
∣∣∣L0(b)− L0(a)

∣∣∣ ≥ λ | T (a) < T (0)
)

≤ C
(c − a)3/2

λγ

uniformly in n ≥ 1, λ > 0 and a0 ≤ a < b < c ≤ A with (b − a)∨ (c − b) ≤ t0/sn .



Proof of Proposition 7.2 Fix four even integers I1, I2, I3, I4. By (17),

P∗
n

(∣∣∣L0(c)− L0(b)
∣∣∣ ∧
∣∣∣L0(b)− L0(a)

∣∣∣ ≥ λ | T (a) < T (0)
)

= P

⎛
⎜⎝
∣∣∣∣∣∣ξ̃

a
n +

Gn(a)∑
k=1

ξa
n,k

∣∣∣∣∣∣ ∧
∣∣∣∣∣∣∣
θ̃a

n 1{̃ξa
n ≥0} +

Nn,a∑
k=1

θa
n,k +

Ñ a
n,b∑

k=1

θb
n,k

∣∣∣∣∣∣∣
≥ λn

⎞
⎟⎠

with λn =λrn . Let F be the σ -algebra generated by χa
n , Gn(a), ξ̃a

n and the (ξa
n,k, k ≥

1). Then, the above probability is equal to

E

⎧⎨
⎩π ;

∣∣∣∣∣∣ξ̃
a
n +

Gn(a)∑
k=1

ξa
n,k

∣∣∣∣∣∣ ≥ λn

⎫⎬
⎭

with π the random variable

π = P

⎛
⎜⎝
∣∣∣∣∣∣∣
θ̃a

n 1{̃ξa
n ≥0} +

Nn,a∑
k=1

θa
n,k +

Ñ a
n,b∑

k=1

θb
n,k

∣∣∣∣∣∣∣
≥ λn

∣∣∣F
⎞
⎟⎠ ≤ π̃ + πa + πb

where

π̃ = P

(∣∣∣θ̃a
n 1{̃ξa

n ≥0}
∣∣∣ ≥ λn/3

∣∣∣F
)

= 1{̃ξa
n ≥0}P

(∣∣θ̃a
n

∣∣ ≥ λn/3
∣∣∣χa

n

)
,

πa = P

⎛
⎝
∣∣∣∣∣∣
Nn,a∑
k=1

θa
n,k

∣∣∣∣∣∣ ≥ λn/3
∣∣∣ Nn,a

⎞
⎠ and πb = P

⎛
⎜⎝
∣∣∣∣∣∣∣
Ñ a

n,b∑
k=1

θb
n,k

∣∣∣∣∣∣∣
≥ λn/3

∣∣∣ Ñ a
n,b

⎞
⎟⎠ .

The two terms πa and πb can be dealt with very similarly. Fix u = a or b, and
denote by Nu the random variable Nn,a if u = a or Ñ a

n,b if u = b. With this notation,
(θu

n,k, k ≥ 1) are i.i.d. and independent from Nu , so that Markov inequality and
Lemma 7.11 give

πu ≤ (3I1/λn)
I1

∑
β∈NI1 :‖β‖=I1

N |β|
u

I1∏
i=1

∣∣∣E
((
θu

n

)i)∣∣∣βi
.

By (27),

I1∏
i=1

∣∣∣E
((
θu

n

)i)∣∣∣βi ≤ C((c − a)sn)
|β| ≤ C(c − a)sn



since 1 ≤ |β| ≤ I1 and (c − a)sn ≤ t0. Since Nu is integer valued, it holds that
N |β|

u ≤ N I1
u and finally this gives

πu ≤ Cλ−I1(Nu/rn)
I1(c − a)sn .

Applying Cauchy–Schwarz inequality yields

E

⎧⎨
⎩πu ;

∣∣∣∣∣∣ξ̃
a
n +

Gn (a)∑
k=1

ξa
n,k

∣∣∣∣∣∣ ≥ λn

⎫⎬
⎭ ≤ Cλ−I1 (c − a)sn

√√√√√E
(
(Nu/rn)2I1

)
P

⎛
⎝
∣∣∣∣∣∣ξ̃

a
n +

Gn (a)∑
k=1

ξa
n,k

∣∣∣∣∣∣ ≥ λn

⎞
⎠

and finally, Lemma 7.12 with Y = ξ̃a
n gives, together with Lemma 7.13,

E

⎧⎨
⎩πu ;

∣∣∣∣∣∣ξ̃
a
n +

Gn(a)∑
k=1

ξa
n,k

∣∣∣∣∣∣ ≥ λn

⎫⎬
⎭ ≤ C

(c − a)3/2

λI1+I2/2
s3/2

n r−I2/4
n .

It remains to control the term π̃ : in {̃ξa
n ≥ 0}, ξ̃a

n is equal in distribution to Gn(b − a)
and is independent of everything else; thus, we have

E

⎧⎨
⎩π̃ ;

∣∣∣∣∣∣ξ̃
a
n +

Gn (a)∑
k=1

ξa
n,k

∣∣∣∣∣∣ ≥ λn

⎫⎬
⎭ = E

⎧⎨
⎩P
(∣∣θ̃a

n

∣∣ ≥ λn/3
∣∣χa

n

) ;
∣∣∣∣∣∣ξ̃

a
n +

Gn (a)∑
k=1

ξa
n,k

∣∣∣∣∣∣ ≥ λn, ξ̃
a
n ≥ 0

⎫⎬
⎭

≤ Cλ−I3
n E

⎧⎨
⎩E

(∣∣θ̃a
n

∣∣I3
∣∣χa

n

)
;
∣∣∣∣∣∣Gn(b − a)+

Gn (a)∑
k=1

ξa
n,k

∣∣∣∣∣∣ ≥ λn

⎫⎬
⎭ .

Since E(|θ̃a
n |I3 |χa

n ) is independent of Gn(b − a)+∑Gn(a)
k=1 ξa

n,k , we get

E

⎧⎨
⎩π̃ ;

∣∣∣∣∣∣ξ̃
a
n +

Gn(a)∑
k=1

ξa
n,k

∣∣∣∣∣∣ ≥ λn

⎫⎬
⎭ ≤ Cλ−I3

n E

(∣∣θ̃a
n
∣∣I3
)

P

⎛
⎝
∣∣∣∣∣∣Gn(b − a)+

Gn(a)∑
k=1

ξa
n,k

∣∣∣∣∣∣ ≥ λn

⎞
⎠

≤ Cλ−I3−I4
n (c − a)2s2

nr−I4/2
n

where the second inequality follows using (28) and Lemma 7.12 with Y = Gn(b−a).
Since (c − a)sn ≤ t0, we have ((c − a)sn)

2 ≤ C((c − a)sn)
3/2 and finally, gathering

the previous inequalities, one sees that we have derived the bound

P∗
n

(∣∣∣L0(c)− L0(b)
∣∣∣ ∧
∣∣∣L0(b)− L0(a)

∣∣∣ ≥ λ | T (a) < T (0)
)

≤ C(c − a)3/2s3/2
n

(
λ−I1−I2/2r−I2/4

n + λ−I3−I4r−I4/2
n

)
.

Now choose I2 and I4 large enough such that both sequences (s3/2
n r−I2/4

n ) and
(s3/2

n r−I4/2
n ) are bounded: This is possible since for any β ∈ R, snr−β

n = s1−β(α−1)
n .

Moreover, choose I2 not only even but a multiple of 4. Then, once I2 and I4 are fixed,
choosing I1 and I3 in such a way that I1 + I2/2 = I3 + I4 concludes the proof. ��



7.2 Case b − a ≥ t0/sn

We now consider the simpler case b − a ≥ t0/sn and prove Proposition 7.3.

Lemma 7.14 For any i ≥ 1, there exists a finite constant C such that for all n ≥ 1
and all 0 < a < b such that b − a ≥ t0/sn,

E

(
|̃ξa

n |i
)

≤ C(rnWn(b − a))i .

Proof In view of (18), it is enough to show that E
(|ξ x0

n |i ) ≤ C(rnWn(b − a))i for
every x0 > 0. Since b − a ≥ t0/sn , exploiting the monotonicity of wn gives

pb−a
n (b − a) = 1 − wn(0)

wn((b − a)sn)
≥ 1 − 1

wn(t0)
≥ 1

2

since t0 has been chosen such thatwn(t0) ≥ 2. Since Gn(b−a) is a geometric random
variable with parameter pb−a

n (b − a), we have

E

(
(Gn(b − a))i

)
≥ E(Gn(b − a)) = pb−a

n (b − a)

1 − pb−a
n (b − a)

≥ 1,

using pb−a
n (b − a) ≥ 1/2. Thus for any x0 > 0,

E

(
|ξ x0

n |i
)

= 1 − px0
n,ξ (a, b)+ px0

n,ξ (a, b)E
(
(Gn(b − a))i

)

≤ (1 − px0
n,ξ (a, b))E

(
(Gn(b − a))i

)
+ px0

n,ξ (a, b)E
(
(Gn(b − a))i

)
.

This last quantity is equal to E
(
(Gn(b−a))i

)
and so the inequality E

(
(Gn(b − a))i

)
≤ i !(rnWn(b − a))i achieves the proof. ��

Lemma 7.15 For any i ≥ 1, there exists a finite constant C such that for all n ≥ 1
and all 0 < a < b with b − a ≥ t0/sn,

E

(∣∣ξa
n

∣∣i) ≤ C(rnWn(b − a))i−1.

Moreover, for any n ≥ 1 and 0 < a < b,

∣∣E(ξa
n )
∣∣ ≤ Wn(b − a)

Wn(a)− Wn(0)



Proof By definition (15) of ξn , we have E

(∣∣ξa
n

∣∣i) = 1 − pa
n,ξ (a, b) + pa

n,ξ (a, b)E(
(Gn(b − a))i

)
and so plugging in (24) gives

E

(∣∣ξa
n

∣∣i) ≤ 1 + i !
(

Wn(b − a)

Wn(0)

)i Wn(0)(Wn(b)− Wn(b − a))

Wn(b − a)(Wn(a)− Wn(0))

≤ 2i !(rnWn(b − a))i−1

using Wn(b)−Wn(b−a) ≤ Wn(a)−Wn(0) and 1 ≤ i !(rnWn(b−a))i−1. The second
inequality is a direct consequence of (25) which can be expanded to

∣∣E (ξa
n

)∣∣ = Wn(b − a)− Wn(0)− (Wn(b)− Wn(a))

Wn(a)− Wn(0)
.

The result is proved. ��
Proof of Proposition 7.3 By (17), we have

P∗
n

(∣∣∣L0(b)− L0(a)
∣∣∣ ≥ λ | T (a) < T (0)

)
= P

⎛
⎝
∣∣∣∣∣∣ξ̃

a
n +

Gn(a)∑
k=1

ξa
n,k

∣∣∣∣∣∣ ≥ λrn

⎞
⎠ .

We have

P

⎛
⎝
∣∣∣∣∣∣ξ̃

a
n +

Gn(a)∑
k=1

ξa
n,k

∣∣∣∣∣∣ ≥ λrn

⎞
⎠

≤ C(λrn)
−I

⎛
⎝E

(
|̃ξa

n |I
)

+
∑

β∈NI :‖β‖=I

E

(
(Gn(a))

|β|) I∏
i=1

∣∣∣E
(
(ξa

n )
i
)∣∣∣βi

⎞
⎠

≤ Cλ−I

⎛
⎝(Wn(b − a))I +

∑
β∈NI :‖β‖=I

r |β|−I
n (Wn(a))

|β|
I∏

i=1

∣∣∣E
(
(ξa

n )
i
)∣∣∣βi

⎞
⎠

where the first inequality comes from the triangular inequality, Markov inequality
and Lemma 7.11, and the second inequality is a consequence of Lemma 7.14 and the
fact that Gn(a) is stochastically dominated by an exponential random variable with
parameter 1 − pa

n (a). Using Lemma 7.15 and the identity
∑I

i=2(i − 1)βi = I − |β|
gives

r |β|−I
n (Wn(a))

|β|
I∏

i=1

∣∣∣E
(
(ξa

n )
i
)∣∣∣βi

≤ Cr |β|−I
n (Wn(a))

|β|
(

Wn(b − a)

Wn(a)− Wn(0)

)β1

(rnWn(b − a))I−|β|

≤ C(Wn(b − a))I+β1−|β|.



Thus

P

⎛
⎝
∣∣∣∣∣∣ξ̃

a
n +

Gn(a)∑
k=1

ξa
n,k

∣∣∣∣∣∣ ≥ λrn

⎞
⎠ ≤ Cλ−I

⎛
⎝(Wn(b − a))I +

∑
β∈NI :‖β‖=I

(Wn(b − a))I−|β|+β1

⎞
⎠ .

Since Wn(t) = wn(tsn)/sα−1
n , it holds that

sup

{
Wn(t)

tα−1 : n ≥ 1, t ≥ t0/sn

}
= sup

{
wn(t)

tα−1 : n ≥ 1, t ≥ t0

}

which has been shown to be finite in the proof of Lemma 7.1. Hence, the last upper
bound yields

P

⎛
⎝
∣∣∣∣∣∣ξ̃

a
n +

Gn(a)∑
k=1

ξa
n,k

∣∣∣∣∣∣ ≥ λrn

⎞
⎠ ≤ Cλ−I

⎛
⎝(b − a)I (α−1) +

∑
β∈NI :‖β‖=I

(b − a)(I−|β|+β1)(α−1)

⎞
⎠ .

By (29), I − |β| + β1 ≥ I/2 and since we consider b − a ≤ A, this gives

(b − a)(I−|β|+β1)(α−1) ≤ C(b − a)(α−1)I/2

and we finally get the desired bound for I large enough, i.e., such that I (α − 1) ≥ 3.
Inspecting the proof of Proposition 7.2 one can check that one can choose the two
constants γ to be equal. ��
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