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Consider compound Poisson processes with negative drift and no negative jumps, which converge to some spectrally positive Lévy process with nonzero Lévy measure. In this paper, we study the asymptotic behavior of the local time process, in the spatial variable, of these processes killed at two different random times: either at the time of the first visit of the Lévy process to 0, in which case we prove results at the excursion level under suitable conditionings; or at the time when the local time at 0 exceeds some fixed level. We prove that finite-dimensional distributions converge under general assumptions, even if the limiting process is not càdlàg. Making an assumption on the distribution of the jumps of the compound Poisson processes, we strengthen this to get weak convergence. Our assumption allows for the limiting process to be a stable Lévy process with drift. These results have implications on branching processes and in queueing theory, namely, on the scaling limit of binary, homogeneous Crump-Mode-Jagers processes and on the scaling limit of the Processor-Sharing queue length process.

Introduction

Let X n be a sequence of spectrally positive compound Poisson processes with drift which converges weakly to X , then necessarily a spectrally positive Lévy process. The limiting process has continuous paths as soon as E(X n (1) 2 ) → β for some finite β, a case henceforth referred to as the finite variance case. In this paper, we focus on the infinite variance case, when the limiting Lévy process has nonzero Lévy measure. Let L n and L be the local time processes associated with X n and X , respectively, defined by the occupation density formula

t 0 f (X n (s))ds = +∞ -∞ f (x)L n (x, t)dx and t 0 f (X (s))ds = +∞ -∞ f (x)L(x, t)dx.
Since X n converges to X , it is natural to also expect L n to converge to L. Note however that the map that to a function associates its local time process is not continuous, and so such a result does not automatically follow from the continuous mapping theorem. In the finite variance case, i.e., when X is Brownian motion, this question has been looked at in [START_REF] Lambert | Scaling limits via excursion theory: interplay between Crump-Mode-Jagers branching processes and processor-sharing queues[END_REF] under the assumption that both X n and X drift to -∞. Previously, Khoshnevisan [START_REF] Khoshnevisan | An embedding of compensated compound Poisson processes with applications to local times[END_REF] investigated this question under different assumptions on X n and X but with a different goal, namely to derive convergence rates. The goal of the present paper is to investigate the asymptotic behavior of L n in the infinite variance case, i.e., when the Lévy measure of X is nonzero.

Except for the two aforementioned papers, it seems that this question has not received much attention. In sharp contrast, there is a rich literature in the closely related case where X , still a Lévy process, is approximated by a sequence X n of random walks. There are results looking at, e.g., strong and weak invariance principles, convergence rates, and laws of the iterated logarithm. Nonetheless, the compound Poisson case in which we will be interested is of practical interest since it finds applications in the theory of branching processes and in queueing theory (see discussion below and Sect. 6); besides, the setup that we consider offers specific technical difficulties that do not seem to have been addressed in the random walk case. An overview of existing results in the random walk case can give insight into the specific technical difficulties that arise in our framework.

The Random Walk Case

The most studied case in the random walk case is when X n is of the form X n (t) = S(nt)/n 1/2 with S a lattice random walk with finite variance, say with step size distribution ξ , so that X is of the form σ 2 B with B a standard Brownian motion. One of the earliest works is in this area was done by Knight [START_REF] Knight | Random walks and a sojourn density process of Brownian motion[END_REF], see also [START_REF] Borodin | The asymptotic behavior of local times of recurrent random walks with finite variance[END_REF][START_REF] Csáki | Strong invariance for local times[END_REF][START_REF] Kesten | An iterated logarithm law for local time[END_REF][START_REF] Perkins | Weak invariance principles for local time[END_REF][START_REF] Révész | Local time and invariance[END_REF][START_REF] Révész | A strong invariance principle of the local time of RVs with continuous distribution[END_REF][START_REF] Stone | Limit theorems for random walks, birth and death processes, and diffusion processes[END_REF] for weak convergence results, laws of the iterated logarithm, strong invariance principles, and explicit convergence rates. The introduction of Csörgő and Révész [START_REF] Csörgő | On strong invariance for local time of partial sums[END_REF] presents a good overview of the literature.

When one drops the finite variance assumption on S (but keeps the lattice assumption), X n is of the form X n (t) = S(nt)/s n for some normalizing sequence (s n ) and X is a stable Lévy process. In this case, significantly fewer results seem available: Borodin [START_REF] Borodin | Asymptotic behavior of local times of recurrent random walks with infinite variance[END_REF] has established weak convergence results, Jain and Pruitt [START_REF] Jain | An invariance principle for the local time of a recurrent random walk[END_REF] a functional law of the iterated logarithm and Kang and Wee [START_REF] Kang | A note on the weak invariance principle for local times[END_REF] L 2 -convergence results.

Focusing specifically on weak convergence results, the best results have been obtained by Borodin [START_REF] Borodin | The asymptotic behavior of local times of recurrent random walks with finite variance[END_REF][START_REF] Borodin | Asymptotic behavior of local times of recurrent random walks with infinite variance[END_REF], who proved that L n converges weakly to L if E(ξ 2 ) < +∞ (finite variance case) or if ξ is in the domain of attraction of a stable law with index 1 < α < 2 (infinite variance case).

On the other hand, the picture is far to be as complete in the non-lattice case, even when one only focuses on weak convergence results. First of all, in this case, the very definition of the local time process is subject to discussion, since in contrast with the lattice case, it cannot be defined by keeping track of the number of visits to different points in space. In [START_REF] Csörgő | On strong invariance for local time of partial sums[END_REF] for instance, five different definitions are discussed. In the finite variance case, Perkins [START_REF] Perkins | Weak invariance principles for local time[END_REF] has proved that L n converges to L, in the sense of finite-dimensional distributions if E(ξ 2 ) < +∞, and weakly if E(ξ 4 ) < +∞ and lim sup |t|→∞ |E(e itξ )| < 1; see also [START_REF] Borodin | On the character of convergence to Brownian local time. I[END_REF][START_REF] Csörgő | On strong invariance for local time of partial sums[END_REF]. In view of the sharp results obtained by Borodin [START_REF] Borodin | The asymptotic behavior of local times of recurrent random walks with finite variance[END_REF] in the lattice case, it is not clear that the conditions derived by Perkins [START_REF] Perkins | Weak invariance principles for local time[END_REF] to get weak convergence are optimal. Also, note that this discrepancy, in terms of existing results, between the lattice and non-lattice case, reflects the fact that tightness is significantly more difficult in the non-lattice case. In the non-lattice case, the most involved part of the proof concerns the control of small oscillations of the local time, a difficulty that does not appear in the lattice case, as soon as the amplitude of oscillations is smaller than the lattice mesh (see the discussion after Proposition 7.3).

We finally stress that to our knowledge, the present work is the first study of the asymptotic behavior of L n in the non-lattice and infinite variance case.

Main Results

In the present paper, we will be interested in X n of the form X n (t) = Y n (nt)/s n with (s n ) some normalizing sequence, Y n (t) = P n (t)t and P n a compound Poisson process whose jump distribution ξ n ≥ 0 has infinite second moment. We assume that X n does not drift to +∞ and that it converges weakly to a spectrally positive Lévy process X . We will focus on the variations in space of the local time processes and consider the asymptotic behavior of the processes L n ( • , τ n ) for some specific choices of τ n . Since L n (a, t) is increasing in t, this contains the most challenging part of the analysis of local time processes; moreover, this allows for results at the excursion level (see Theorem 2.3). This setup presents two main differences with previous works on random walks.

First, the sequence X n stems from a sequence of compound Poisson processes, when all the aforementioned works in the random walk case consider one random walk S that is scaled. Besides being of practical interest for branching processes and queueing theory, since this allows X to have a drift and, more generally, not to be stable, this variation triggers one important technical difference. Indeed, most of the works on random walks heavily exploit embedding techniques, typically embedding S into X . It is therefore not clear whether such techniques could be adapted to a triangular scheme such as the one considered here.

Second, the image set {X n (t), t ≥ 0} is not lattice and X n has infinite variance; thus, the corresponding random walk counterpart would be the case of non-lattice random walk with infinite variance which, as mentioned previously, has not been treated. Similarly as Perkins [START_REF] Perkins | Weak invariance principles for local time[END_REF] in the case of non-lattice random walk with finite variance, we will show that finite-dimensional distributions converge under minimal assumptions and that tightness holds under more stringent ones. However, in contrast with Perkins [START_REF] Perkins | Weak invariance principles for local time[END_REF], our assumptions to get tightness will not be in terms of finiteness of some moments but in terms of the specific distribution of ξ n . In particular, under our assumptions, the limiting process X can be any process of the form X (t) = Y (t)dt with Y a spectrally positive stable Lévy process with index 1 < α < 2 and d ≥ 0.

Implications

As alluded to above, our results have implications for branching processes and in queueing theory, see Sect. 6 for more details. In short, the process (L n (a, τ n ), a ≥ 0) for the random times τ n that will be considered has been shown in [START_REF] Lambert | The contour of splitting trees is a Lévy process[END_REF] to be equal in distribution to a (rescaled) binary, homogeneous Crump-Mode-Jagers (CMJ) branching process. Although the scaling limits of Galton-Watson processes and of Markovian CMJ have been exhaustively studied, see [START_REF] Grimvall | On the convergence of sequences of branching processes[END_REF][START_REF] Helland | Continuity of a class of random time transformations[END_REF][START_REF] Lamperti | The limit of a sequence of branching processes[END_REF], except for Lambert et al. [START_REF] Lambert | Scaling limits via excursion theory: interplay between Crump-Mode-Jagers branching processes and processor-sharing queues[END_REF] and Sagitov [START_REF] Sagitov | General branching processes: convergence to Irzhina processes[END_REF][START_REF] Sagitov | A key limit theorem for critical branching processes[END_REF], little seems to be known for more general CMJ processes.

In particular, we study here for the first time, a sequence of CMJ processes that converges toward a non-Markovian limit process.

Also, CMJ processes are in one-to-one relation with busy cycles of the Processor-Sharing queue via a random time change sometimes called Lamperti transformation in the branching literature. Thus, our results also show that busy cycles of the Processor-Sharing queue converge weakly to excursions that can be explicitly characterized. Leveraging on general results by Lambert and Simatos [START_REF] Lambert | The weak convergence of regenerative processes using some excursion path decompositions[END_REF], this implies uniqueness (but not existence) of possible accumulation points of the sequence of queue length processes. This constitutes therefore a major step toward determining the scaling limit (called heavy traffic limit in the queueing literature) of the Processor-Sharing queue in the infinite variance case, which has been a long-standing open question.

Organization of the Paper

Section 2 sets up the framework of the paper, introduces notation, states assumptions enforced throughout the paper and the two main results. Section 3 is devoted to some preliminary results on Lévy processes. In Sect. 4, we prove that under general assumptions, finite-dimensional distributions converge while tightness is taken care of under specific technical assumptions in Sect. 5. The (long and tedious) "Appendix" is the most technical part of the paper: It proves the tightness of an auxiliary sequence of processes, which is exploited in Sect. 5 to prove tightness of the processes of interest.

Notation and Main Results

Space D

Let D be the set of functions f : [0, ∞) → R which are right-continuous and have a left limit denoted by f (t-) for any

t > 0. If f is increasing, we write f (∞) = lim x→+∞ f (x) ∈ [0, ∞].
For f ∈ D, we define f ∈ D the function f reflected above its past infimum through the following formula:

f (t) = f (t) -min 0, inf 0≤s≤t f (s) .
For f n , f ∈ D, we note f n → f for convergence in the Skorohod J 1 topology (see for instance [START_REF] Billingsley | Convergence of Probability Measures[END_REF] or Chapter VI in [START_REF] Jacod | Limit theorems for Stochastic Processes[END_REF]). For any function f ∈ D, we introduce the family of mappings

(T f (A, k), A ⊂ R, k ≥ 0) defined recursively for any subset A ⊂ R by T f (A, 0) = 0 and for k ≥ 1, T f (A, k) = inf t > T f (A, k -1) : f (t) ∈ A or f (t-) ∈ A .
We will write for simplicity T f (A) = T f (A, 1) and when A = {a} is a singleton, we will write T f (a, k) and T f (a) in place of T f (A, k) and T f (A), respectively. A function f ∈ D is called an excursion if T f (0) = +∞, or if T f (0) ∈ (0, +∞) and f (t) = 0 for all t ≥ T f (0). By E ⊂ D, we will denote the set of excursions.

We use the canonical notation for càdlàg stochastic processes. Let = D and X = (X (t), t ≥ 0) be the coordinate process, defined by X (t) = X ω (t) = ω(t). We will systematically omit the argument of functional operators when they are applied at X ; T (A, k) for instance stands for the random variable T X (A, k). Finally, let X 0 = X ( • ∧ T (0)) be the process X stopped upon its first visit to 0, with X 0 = X when T (0) = +∞.

Sequence of Lévy Processes

For n ≥ 1, fix κ n ∈ (0, +∞), and n some positive random variable. For x ∈ R, let P x n be the law of a Lévy process started at x with Laplace exponent ψ n given by

ψ n (λ) = λ -κ n E 1 -e -λ n , λ ≥ 0.
Noting π n (da) = κ n P( n ∈ da), one sees that X under P 0 n is of the form P n (t)t with P n a compound Poisson process with Lévy measure π n . If we denote by η n the largest root of the convex mapping ψ n , then ψ n is increasing in [η n , +∞) and its inverse is denoted by φ n . In particular, φ n (0) = η n , which equals zero as soon as ψ n (0+) ≥ 0.

Let * n be the forward recurrence time of n , also called size-biased distribution, which is the random variable with density P( n ≥ x)/E( n ) with respect to Lebesgue measure. Let P n and P * n be the measures defined by P n ( • ) = P x n ( • )P( n ∈ dx) and P * n ( • ) = P x n ( • )P( * n ∈ dx). We will use repeatedly the following result, which characterizes the law of the overshoot of X under P 0 n when X under P 0 n does not drift to +∞ (an assumption that will be enforced throughout the paper).

Lemma 2.1 (Theorem VII.17 in [START_REF] Bertoin | Lévy Processes[END_REF]) If X under P 0 n does not drift to +∞, then X T ((0, ∞)

) under P 0 n ( • | T ((0, ∞)) < +∞) is equal in distribution to * n .
Let w n be the scale function of X under P 0 n , which is the only absolutely continuous increasing function with Laplace transform

∞ 0 e -λx w n (x)dx = 1 ψ n (λ) , λ > φ n (0).
It is well known and can be easily computed that w n (0) = lim λ→+∞ (λ/ψ n (λ)) = 1. Scale functions play a central role with regard to exit problems, see forthcoming formula [START_REF] Barlow | Necessary and sufficient conditions for the continuity of local time of Lévy processes[END_REF]. We now define the sequence of rescaled processes that will be the main focus of the paper.

Fix from now on some sequence (s n ) of strictly positive real numbers, which increases to infinity, and for n ≥ 1 define r n = n/s n . Let P x n , P n and P * n be the laws of X (nt)/s n under P xs n n , P n and P * n , respectively, and let P 0 n be the law of X under P 0 n . Then, P a n is the law of a Lévy process started at a, with Lévy exponent n (λ) = nψ n (λ/s n ), Lévy measure n (da) = nκ n P( n /s n ∈ da) and scale function W n (a) = w n (as n )/r n . Set also n (λ) = s n φ n (λ/n) so that n (0) is the largest root of n and n is the inverse of n on [ n (0), +∞). Throughout the paper, we use ⇒ to denote weak convergence.

Convergence of Lévy Process

In the rest of the paper, we consider P 0 the law of a spectrally positive Lévy process with infinite variation and nonzero Lévy measure started at 0. It is assumed throughout that (1) for each n ≥ 1, X under P 0 n does not drift to +∞ and (2) P 0 n ⇒ P 0 .

We also define the Lévy exponent and W the scale function associated with P 0 , as well as P 0 the law of X under P 0 . The previous assumptions have two immediate consequences: (1) X under P 0 does not drift to +∞; in particular, is increasing and letting be its inverse, it is not hard to show that n → and (2) κ n E( n ) ≤ 1 and κ n E( n ) → 1; in particular, P 0 n is close to the law of a critical Lévy process. As alluded to above, scale functions play a central role with regard to exit problems. This comes from the following relation, that holds for any 0 ≤ a < b ≤ ∞, see for instance Theorem VII.8 in [START_REF] Bertoin | Lévy Processes[END_REF]:

P 0 n (T (-(b -a)) < T (a)) = W n (a) W n (b) and P 0 (T (-(b -a)) < T (a)) = W (a) W (b) .
(1)

Local Times and Excursion Measures

For a given function f ∈ D, let μ t, f for any t ≥ 0 be its occupation measure defined via

R ϕ(a)μ t, f (da) = t 0 ϕ( f (s))ds
for every measurable function ϕ ≥ 0. When μ t, f is absolutely continuous with respect to Lebesgue measure, we denote by L f ( • , t) its Radon-Nikodym derivative restricted to [0, ∞), satisfying the so-called occupation density formula

t 0 ϕ( f (s))ds = ∞ 0 ϕ(a)L f (a, t)da
for any t ≥ 0 and any measurable function ϕ ≥ 0 with ϕ(a) = 0 for a < 0. The functional L f ( • , • ) is known as the local time process of f and is uniquely determined up to sets of zero Lebesgue measure (in the space variable). Let T L f (ζ ) for ζ ≥ 0 be the first time the amount of local time accumulated at level 0 exceeds ζ :

T L f (ζ ) = inf t ≥ 0 : L f (0, t) ≥ ζ .
In the sequel, we will be interested in the local time process L = L X under various measures. Under P 0 n , L is simply given by

L(a, t) = 1 r n 0≤s≤t 1 {X (s)=a} , t, a ≥ 0, P 0 n -almost surely.
Further, it is known that L under P 0 is almost surely well defined, see for instance [START_REF] Bertoin | Lévy Processes[END_REF]. We will consider N the excursion measure of X under P 0 associated with the local time (L(0, t), t ≥ 0), and N the excursion measure of X under P 0 normalized by considering the local time at 0 of X equal to (min(0, inf [0,t] X ), t ≥ 0). Under N and N , we will consider the process L 0 defined as follows:

L 0 = L(a, T (0)), a ≥ 0 .
This process indeed is well defined on (0, ∞) (its value at 0 is zero) under N and N , since N and N both have the same semigroup in (0, ∞) as the Lévy process under (P a , a > 0) killed upon reaching zero. Similarly, the process L X is well defined under P 0 , because on [ε, ∞), it can be expressed as a finite sum of the local time processes of independent excursions distributed as N ( • | sup X > ε). Recall from the beginning of the paragraph that the normalization at 0 of L X is slightly different, so that the occupation formula for this local time only holds on (0, ∞).

Additional Assumption for Tightness

It will be shown that the mere assumption P 0 n ⇒ P 0 implies that the finite-dimensional distributions of L under P 0 n converge toward those of L under P 0 (see forthcoming Theorems 2.3 and 2.4 for precise statements). However, it is known that the local time process of a Lévy process is either jointly continuous or has a very wild behavior, see [START_REF] Barlow | Necessary and sufficient conditions for the continuity of local time of Lévy processes[END_REF] for a general criterion. In the latter case, for every t, ε > 0 the set {L(a, t), a ∈ Q ∩ (-ε, ε)} is almost surely dense in [0, ∞). When focusing on spectrally positive Lévy processes with infinite variation, Barlow's criterion, which is in general difficult to determine, takes the following simple form.

Lemma 2.2

The local time process of X under P 0 is jointly continuous if and only if

∞ dλ (λ) √ log λ < +∞. (2) 
Proof It will be proved in Lemma 3.6 that E 0 (L(0, T (-a)) = W (a) for any a > 0. Then, Lemma V.11 and Theorem V.15 in [START_REF] Bertoin | Lévy Processes[END_REF] ensure that L under P 0 is jointly continuous if and only if 0 log(1/W -1 (x))dx < +∞.

Using the change of variables y = W -1 (x) and integrating by parts, it can be shown that

W (1) 0 log(1/W -1 (x))dx = 1 2 1 0 W (u) u log(1/u) du.
Since there exist two finite constants 0 < c ≤ C such that c/(u (1/u)) ≤ W (u) ≤ C/(u (1/u)) for every u ≥ 0 (see Proposition III.1 or the proof of Proposition VII.10 in [START_REF] Bertoin | Lévy Processes[END_REF]), we obtain

0 log(1/W -1 (x))dx < +∞ ⇐⇒ 0 du u 2 (1/u) log(1/u) < +∞
and the change of variables λ = 1/u in the last integral therefore gives the result.

In particular, when (2) fails, L under P 0 is not even càdlàg (in the spatial variable) and so cannot be the weak limit of any sequence, when using Skorohod's topology. It is tempting to think that (2) is enough for L under P 0 n to converge weakly toward L under P 0 , and we leave this question open for future research. In the present paper, we will prove tightness (and hence weak convergence) under the following assumption.

Tightness Assumption

In the rest of the paper, we fix some 1 < α < 2 and denote by the random variable with tail distribution function P( ≥ s) = (1 + s) -α . We will say that the tightness assumption holds if for n ≥ 1 we have s n = n 1/α and n = .

Note that under this assumption, P 0 is the law of a Lévy process of the form Y (t)dt with Y a stable Lévy process with index α and d ≥ 0. It is then not difficult to check that (2) is satisfied and so our limiting processes will be continuous. However, we will show weak convergence without the a priori knowledge given to us by Lemma 2.2 that the limiting process is continuous. But since our pre-limit processes make deterministic jumps of size 1/r n → 0, it follows from our approach that (L(a, T ), a ≥ 0) is continuous for some specific random times T , thus proving directly (without resorting to Barlow's more general and complete result) that the local time process of X is continuous.

Main Results

The following two theorems are the main results of the paper.

Theorem 2.3

For any a 0 > 0, the two sequences of processes L 0 under P * n ( • | T (a 0 ) < T (0)) and P n ( • | T (a 0 ) < T (0)) converge in the sense of finite-dimensional distributions to L 0 under N ( • | T (a 0 ) < T (0)) and N ( • | T (a 0 ) < T (0)), respectively. If in addition, the tightness assumption holds, then both convergences hold in the sense of weak convergence.

When reading the following theorem, it is useful to have in mind that r n → +∞, since r n = 1/W n (0) and it will be proved in Lemma 3.4 that W n (0) → W (0) = 0. Theorem 2.4 Let ζ > 0 and (z n ) be any integer sequence such that

ζ n = z n /r n → ζ . Then, the sequence of processes L( • , T L (ζ n )) under P 0 n ( • | T L (ζ n ) < +∞) converges in the sense of finite-dimensional distributions to L( • , T L (ζ )) under P 0 ( • | T L (ζ ) < +∞)
. If in addition, the tightness assumption holds, then the convergence holds in the sense of weak convergence.

Note that since X under P 0 is assumed to have discontinuous paths, Theorem 1.1 in [START_REF] Eisenbaum | A necessary and sufficient condition for the Markov property of the local time process[END_REF] guarantees that the limiting process in Theorem 2.4 is not Markovian. Decomposing the path of X into its excursions away from 0, it could be also be shown that L 0 under N and N does not satisfy the Markov property.

As a last remark, we stress that it is possible to extend the proof of Theorem 2.4 to get convergence of the processes (L(a, T L (ζ n )), a ∈ R) instead of (L(a, T L (ζ n )), a ≥ 0). Both the proofs of convergence of the finite-dimensional distributions and of tightness can be adapted to this case with no major changes, though at the expense of more computations. We prove in this section preliminary results that will be used several times in the paper. We first need results concerning the continuity of hitting times, cf. [START_REF] Jacod | Limit theorems for Stochastic Processes[END_REF]Proposition VI.2.11] for closely related results. Lemma 3.1 Let f n , f ∈ D such that f n → f and A be any finite subset of R. Assume that f n for each n ≥ 1 has no negative jumps and that:

(i) f (0) / ∈ A; (ii) T f (A) is finite; (iii) f has no negative jumps; (iv) for any a ∈ A and ε > 0, sup [T f (a),T f (a)+ε] f > a and inf [T f (a),T f (a)+ε] f < a; Then, T f n (A) → T f (A).
In particular, if in addition to (i)-(iv) above f also satisfies the following condition:

(v) f is continuous at T f (a) for each a ∈ A; then f n (T f n (A)) → f (T f (A)), with f n (T f n (A)) being well defined for n large enough. Proof In the rest of the proof, let A = {a k , 1 ≤ k ≤ K }, T = T f (A) and T n = T f n (A).
Assume that the result holds for K = 1: Then, for each a ∈ A, one has T f n (a) → T f (a). Since T = min a∈A T f (a) and T n = min a∈A T f n (a), one deduces that T n → T . Thus, the result only needs to be proved for K = 1, which we assume from now on. We then write for simplicity a = a 1 .

We first prove that lim inf n T n ≥ T . Let ε > 0 and t ∈ (T -ε, T ) be such that f is continuous at t:

then lim n→+∞ inf [0,t] | f n -a| = inf [0,t] | f -a|.
Since f (0) = a and t < T , we get inf [0,t] | f -a| > 0 and so inf [0,t] | f n -a| > 0 for n large enough. For those n, we therefore have T n ≥ t and so lim inf n T n ≥ t. Since t ≥ T -ε and ε is arbitrary, letting ε → 0 gives lim inf n T n ≥ T .

We now prove that lim sup n T n ≤ T . Fix ε > 0 and let t 2 ∈ (T, T +ε) be a continuity point of f such that f (t 2 ) < a and t 1 ∈ (T, t 2 ) another continuity point of f such that f (t 1 ) > a. Since t 1 and t 2 are continuity points for f , we have

f n (t i ) → f (t i ) for i = 1, 2. Since f (t 1 ) > a > f (t 2 ), there exists n 0 ≥ 0 such that f n (t 1 ) > a > f n (t 2 )
for all n ≥ n 0 . Since f n has no negative jumps, for those n, there necessarily exists t 3 ∈ (t 1 , t 2 ) such that f n (t 3 ) = a which implies T n ≤ t 3 . Since t 3 ≤ t 2 ≤ T + ε, we obtain T n ≤ T + ε for all n ≥ n 0 and in particular lim sup n T n ≤ T + ε. Letting ε → 0 achieves the proof.

Lemma 3.2 For any finite subset A ⊂ R \ {0}, (T (A), X (T (A))) under P 0 n ( • | T (A) < +∞) converges weakly to (T (A), X (T (A))) under P 0 ( • | T (A) < +∞).

If in addition min A > 0, then (T (A), X (T (A))) under P 0 n converges weakly to (T (A), X (T (A))) under P 0 . Proof In the rest of the proof, let H A ⊂ D be the set of functions f ∈ D satisfying the five conditions (i)-(v) of Lemma 3.1. Let us first assume that min A > 0 and show the convergence under P 0 n . By assumption, we have P 0 n ⇒ P 0 and so the continuous mapping theorem implies that P 0 n ⇒ P 0 . Moreover, since X under P 0 has by assumption infinite variation, one can easily check that P 0 (H A ) = 1 and so the continuous mapping theorem together with Lemma 3.1 gives the result for P 0 .

Let us now show the result under P 0 n ( • | T (A) < +∞), so we do not assume anymore min A > 0. Since P 0 (H A ) = 1, using the same arguments as under P 0 n , one sees that it is enough to prove that P 0 n ( • | T (A) < +∞) ⇒ P 0 ( • | T (A) < +∞). If min A ≤ 0 or if all the Lévy processes are critical, then P 0 n (T (A) < +∞) = P 0 (T (A) < +∞) = 1 and so this last convergence is the same as P 0 n ⇒ P 0 . Otherwise, since {T (A) < +∞} = {sup X ≥ min A}, it is sufficient to check that P 0 (sup X = a) = 0 for all a and to prove that (X, sup X ) under P 0 n converges to (X, sup X ) under P 0 , which we do now.

Taking b = ∞ in (1) shows that

P 0 n (sup X < a) = W n (a) W n (∞) and P 0 (sup X < a) = W (a) W (∞) ,
so that indeed P 0 (sup X = a) = 0 (W is continuous), and the laws of sup X converge (by Lemma 3.4). As a consequence, the laws of (X, sup X ) are tight. Let (Y, M) be any accumulation point of this sequence. Then, Y must be equal in distribution to X under P 0 and M must be equal in distribution to sup X under P 0 . As a consequence, M and sup Y have the same distribution, but (Y, M) does not necessarily have the same law as (X, sup X ).

To prove this, it is sufficient to show that M = sup Y . By Skorokhod embedding theorem, we can find a sequence (Y n , M n ) defined on the same probability space as (Y, M) and converging almost surely to (Y, M), such that for each n, (Y n , M n ) has the law of (X, sup X ) under P 0 n . Then, for any continuity point t of Y, sup [0,t] Y n converges to sup [0,t] Y . This shows that M ≥ sup [0,t] Y , and since continuity points are dense, M ≥ sup Y . Now since M and sup Y have the same distribution, the almost sure inequality M ≥ sup Y actually is an almost sure equality, hence the result.

Lemma 3.3 For any a

> 0, lim n→+∞ κ n s n P n (T (a) < T (0)) = N (T (a) < T (0)).
Proof Let a > 0 and S = sup [0,T (-1)] X : The exponential formula for the Poisson point process of excursions gives

P 0 n (S < a) = exp -κ n s n P n (T (a) < T (0)) and P 0 (S < a) = exp -N (T (a) < T (0)) .
On the other hand, using Lemma 3.1 and continuity properties of the sup operator, it is not hard to see that S under P 0 n converges weakly to S under P 0 . Since the distribution of S under P 0 has not atom, we get P 0 n (S < a) → P 0 (S < a) which, in view of the last display, concludes the proof.

It is well known that scale functions are everywhere differentiable, which justifies the following statement.

Lemma 3.4 For every a ≥ 0, it holds that W n (a) → W (a) and W n (a) → W (a). Moreover, W n (∞) → W (∞).
Proof First observe that the pointwise convergence of 1/ n to 1/ , which are the respective Laplace transforms of W n and W , along with Theorem XIII.1.2 in [START_REF] Feller | An Introduction to Probability Theory and Its Applications[END_REF] and the continuity of W ensures that W n (a) → W (a) for any a ≥ 0.

On the other hand, it is elementary to show that

P n (T (a) < T (0)) = W n (a) κ n s n W n (a)
, 

and
, for any 0 < a < b,

W (a) W (b) = P 0 (T (-(b -a)) < T (a)) = exp ⎛ ⎝ - b-a 0 N (T (a + x) < T (0)) dx ⎞ ⎠ = exp ⎛ ⎝ - b a h(u) du ⎞ ⎠ .
This entails h(a) = W (a)/W (a), for example, by differentiating the last equality.

The last convergence comes from the relations

W n (∞) = 1/ n (0+) and W (∞) = 1/ (0+). Lemma 3.5 For any ε > 0, lim n→+∞ κ n s n P n (T (0) > ε) = N (T (0) > ε).
Proof We abbreviate T (0) into T . According to Chapter VII in [START_REF] Bertoin | Lévy Processes[END_REF], under P 0 (resp. P 0 n ), the first passage time process of X in the negative half line is a subordinator with Laplace exponent (resp. n ). This has two consequences.

The first one, obtained by considering X under P 0 , is that (λ) = dλ + N (1e -λT ), where d ≥ 0 is a drift coefficient. Actually, d = 0, since the Lévy process X under P 0 has infinite variation, so that lim λ→∞ λ/ (λ) = 0 = lim λ→∞ (λ)/λ = d. We thus have (λ) = N (1e -λT ). The second one, obtained by considering X under P 0 n , is that E n e -λT = E e -n (λ) n /s n , so that

E n 1 -e -λT = (n/s n ) n (λ) -n ( n (λ)) nκ n = n (λ) κ n s n - λ nκ n .
Multiplying each side with κ n s n , letting n → +∞ and using that n (λ) → (λ), this shows that

κ n s n E n (1 -e -λT ) converges to N (1 -e -λT ), i.e., lim n→∞ ∞ 0 dx e -λx κ n s n P n (T > x) = ∞ 0 dx e -λx N (T > x).
Then, Theorem XIII.1.2 in [START_REF] Feller | An Introduction to Probability Theory and Its Applications[END_REF] implies that

κ n s n P n (T > x) → N (T > x) for any x > 0 such that N (T = x) = 0, that is, for any x > 0. Lemma 3.6 Recall that r n = n/s n . If A is a finite subset of R such that 0 / ∈ A, then lim n→+∞ r n P 0 n (T (A) < T (0)) = N (T (A) < T (0)).
Proof Since X under P 0 n is spectrally positive, the following simplifications occur:

• if min A > 0 then P 0 n (T (A) < T (0)) = P 0 n (T (min A) < T (0)); • if max A < 0 then P 0 n (T (A) < T (0)) = P 0 n (T (max A) < T (0)); • if min A < 0 < max A then P 0 n (T (A) < T (0)) = P 0 n (T (min A) ∧ T (max A) < T (0)).
Thus, to prove the result, there are only three cases to consider: A = {a} with a > 0, A = {a} with a < 0 or A = {a, b} with a < 0 < b.

First case: A = {a} with a < 0. For any x > 0, L(x, T (a)) under P 0 is 0 if T (a) < T (x) and otherwise it is exponentially distributed with parameter N (T (a -x) < T (0)), so we get v a (x) := E 0 (L(x), T (a)) = P 0 (T (x) < T (a))/N (T (a -x) < T (0)
). Now, since P 0 only charges Lévy processes with infinite variation, the map x → T (x) is P 0 -a.s. and N -a.e. continuous, so by monotone convergence, v a is right-continuous and v a (0) = 1/N (T (a) < T (0)). Now, we refer the reader to, e.g., the second display on page 207 of [START_REF] Bertoin | Exponential decay and ergodicity of completely asymmetric Lévy processes in a finite interval[END_REF], to check that the Lévy process with law P 0 and killed upon hitting a has a continuous potential density, say u a , whose value at 0 is equal to W (-a). In addition, by the occupation density formula and Fubini-Tonelli theorem, for any non-negative function ϕ vanishing on the negative half line,

E 0 T (a) 0 ϕ(X (s))ds = ∞ 0 ϕ(x)v a (x)dx,
which, by definition of u a , also equals ∞ 0 ϕ(x)u a (x)dx. Since u a is continuous and v a is right-continuous, u a and v a are equal, and in particular v a (0

) = 1/N (T (a) < T (0)) = u a (0) = W (-a).
On the other hand, using the invariance in space of a Lévy process, (1) and recalling that r n = 1/W n (0), we get (-a) .

P 0 n (T (a) < T (0)) = P -a n (T (0) < T (-a)) = 1 r n W n
The result therefore follows from Lemma 3.4.

Second case: A = {a, b} with a < 0 < b. Under P 0 n , the event {T (a) < T (b)} is equal to the event that all excursions away from 0 before the first one that hits a (which exists since X does not drift to +∞) do not hit b. Hence

P 0 n (T (a) < T (b)) = k≥0 P 0 n (T (a) < T (0)) P 0 n (T (0) < T (a) ∧ T (b)) k = P 0 n (T (a) < T (0)) P 0 n (T (a) ∧ T (b) < T (0)) so that P 0 n (T (a) ∧ T (b) < T (0)) = P 0 n (T (a) < T (0)) P 0 n (T (a) < T (b)) = W n (0)/W n (-a) W n (b)/W n (b -a) (3) 
using ( 1) for the last equality. Using the same reasoning, we derive a similar formula for N (T (a) ∧ T (b) < T (0)) as follows. Let η be the time of the first atom of the Poisson point process of excursions (e t , t ≥ 0) of X away from 0 such that inf e t < a. Then, η is distributed like an exponential random variable with parameter N (inf X < a), and the Poisson point process (e t , t < η) is independent of η and has intensity measure N ( • ; inf X > a). Thus, by a similar path decomposition as previously, a) which was proved in the first case. In view of ( 3) and ( 4), we get

P 0 (T (a) < T (b)) = E {exp (-ηN (sup X > b, inf X > a))} = N (inf X < a) N (inf X < a) + N (sup X > b, inf X > a) = N (inf X < a) N (T (a) ∧ T (b) < T (0)) from which it follows that N (T (a) ∧ T (b) < T (0)) = N (inf X < a) P 0 (T (a) < T (b)) = 1/W (-a) W (b)/W (b -a) (4) using N (inf X < a) = 1/W (-
lim n→+∞ r n P 0 n (T (a) ∧ T (b) < T (0)) = N (T (a) ∧ T (b) < T (0)) .
This gives the result.

Third case: A = {a} with a > 0. Remember that X 0 = X ( • ∧ T (0)), with X 0 = X in the event {T (0) = +∞}. Consider now c < 0: on the one hand, we have by definition

P 0 n (T (c) ∧ T (a) < T (0)) = P 0 n inf X 0 < c or sup X 0 > a .
On the other hand, (3) for the first equality and ( 1) for the second one give

P 0 n (T (c) ∧ T (a) < T (0)) = W n (0)/W n (-c) W n (a)/W n (a -c) = P a n (T (0) < T (a -c)) r n W n (a) .
Because X under P a n does not drift to +∞, P a n (T (0) < T (a-c)) → 1 as c → -∞. Thus, letting c → -∞, we obtain

P 0 n inf X 0 = -∞ or sup X 0 > a = 1 r n W n (a)
.

Since under P 0 n , sup X 0 > 0 implies inf X 0 > -∞, we have P 0 n inf X 0 = -∞ or sup X 0 > a = P 0 n (T (0) = +∞) + P 0 n (T (a) < T (0)) .
Finally, one obtains

P 0 n (T (0) = +∞) = 1/(r n W n (∞)
) by taking a = 0 and letting b = +∞ in (1), and in particular

P 0 n (T (a) < T (0)) = 1 r n W n (a) - 1 r n W n (∞) .
Similar arguments also imply

N (T (a) < T (0)) = 1 W (a) - 1 W (∞)
and so the result follows from Lemma 3.4. 

Convergence of the Finite-Dimensional Distributions

( • + a 0 ) under P * n ( • | T (a 0 ) < T (0)) and P n ( • | T (a 0 ) < T (0)) converge in the sense of finite-dimensional distributions to L 0 ( • + a 0 ) under N ( • | T (a 0 ) < T (0)) and N ( • | T (a 0 ) < T (0)), respectively. Proof Let A be a finite subset of [a 0 , ∞) with a 0 = min A, A 0 = A ∪ {0} and let (Q n , Q) be a pair of probability distributions either equal to P * n ( • | T (a 0 ) < T (0)), N ( • | T (a 0 ) < T (0))
or equal to

P n ( • | T (a 0 ) < T (0)), N ( • | T (a 0 ) < T (0)) .
We show that (L 0 (a), a ∈ A) under Q n converges weakly to (L 0 (a), a ∈ A) under Q, which will prove the result.

Step 1. We begin by expressing the laws of (L 0 (a), a ∈ A) under Q n and of (L 0 (a), a ∈ A) under Q in a convenient form, cf. ( 5) and ( 6) below. Let M = (M k , k ≥ 1) be the sequence with values in A 0 which keeps track of the successively distinct elements of A visited by X before the first visit to 0. More specifically, let σ 1 = T (A) and for k ≥ 1 define recursively

σ k+1 = inf t > σ k : X (t) ∈ A 0 \{X (σ k )} if X (σ k ) ∈ A, σ k else.
Note that for every k ≥ 1, σ k under both Q n and Q is almost surely finite, so the above definition makes sense (in this proof we will only work under

Q n or Q). Let M k = X (σ k ) and for a ∈ A define S(a) = ∞ k=1 1 {M k =a} .
For each a ∈ A, this sum is finite, since M under Q n and Q only makes a finite number of visits to A before visiting 0. When M k ∈ A, X accumulates some local time at M k between times σ k and σ k+1 before visiting M k+1 ∈ A 0 \ {M k }. The amount of local time accumulated depends on whether we are working under Q n or Q.

Under Q n and conditionally on M k ∈ A, X reaches M k ∈ A at time σ k and then returns to this point a geometric number of times before visiting

M k+1 ∈ A 0 \ {M k }.
Identifying the parameter of the geometric random variables involved, one sees that (L 0 (a), a ∈ A) under Q n can be written as follows (with the convention 0 1 = 0):

(L 0 (a), a ∈ A) = ⎛ ⎝ 1 r n S(a) k=1 1 + G n k (a) , a ∈ A ⎞ ⎠ (5) 
where G n k (a) is a geometric random variable with success probability q n (a) given by

q n (a) = P a n (T (A 0 \{a}) < T (a))
and the random variables (G n k (a), k ≥ 1, a ∈ A) are independent and independent of the vector (S(a), a ∈ A).

Similarly, under Q and conditionally on M k = a ∈ A, it is well known by excursion theory that X accumulates an amount of local time at level a between times σ k and σ k+1 which is exponentially distributed with parameter q(a) given by

q(a) = N a (T (A 0 \{a}) < T (a)),
where N a is the excursion measure of X away from a. Iterating this decomposition, one sees that L 0 (a), a ∈ A under Q can be written as follows:

(L 0 (a), a ∈ A) = ⎛ ⎝ S(a) k=1 E k (a), a ∈ A ⎞ ⎠ (6) 
where E k (a) is an exponential random variable with parameter q(a) and the random variables (E k (a), k ≥ 1, a ∈ A) are independent and independent of (S(a), a ∈ A).

In view of the decompositions ( 5) and ( 6) and the independence of the random variables appearing in these sums, the result will be proved if we can show that each summand r -1 n (1

+ G n k (a)) converges in distribution to E k (a)
, and if we can show that the numbers of terms (S(a), a ∈ A) under Q n also converge to (S(a), a ∈ A) under Q.

Step 2. We prove that for each a ∈ A, r -1 n (1 + G n 1 (a)) converges in distribution to E 1 (a). This is actually a direct consequence of Lemma 3.6 which implies that r n q n (a) → q(a) (using the invariance in space of Lévy processes). The following last step is devoted to proving the convergence of (S(a), a ∈ A) under Q n toward (S(a), a ∈ A) under Q.

Step 3. To show that (S(a), a ∈ A) under Q n converges toward (S(a), a ∈ A) under Q, it is sufficient to show that M under Q n converges toward M under Q. To prove this, we note that both under Q n and Q, M is a Markov chain living in the finite state space A 0 and absorbed at 0. Thus to show that M under Q n converges to M under Q, it is enough to show that the initial distributions and also the transition probabilities converge.

Let us prove the convergence of the initial distributions. We have

Q n (M 1 = 0) = Q(M 1 = 0) = 0 and for a ∈ A, Q n (M 1 = a) = Q n (X (T (A 0 )) = a) = Q n (X (T (A)) = a) .
Similarly,

Q(M 1 = a) = Q (X (T (A 0 )) = a) = Q (X (T (A)) = a) . When Q n = P * n ( • | T (a 0 ) < T (0)) and Q = N ( • | T (a 0 ) < T (0)), we have Q n (X (T (A)) = a) = P * n (X (T (A)) = a | T (a 0 ) < T (0)) = P 0 n (X (T (A)) = a | T (A) < +∞)
and so Lemma 3.2 gives

lim n→+∞ Q n (X (T (A)) = a) = P 0 (X (T (A)) = a | T (A) < +∞) . Since P 0 (X (T (A)) = a | T (A) < +∞) = N (X (T (A)) = a | T (a 0 ) < T (0)) = Q (X (T (A)) = a)
this proves the convergence of the initial distributions in this case. The second case

Q n = P n ( • | T (a 0 ) < T (0)) and Q = N ( • | T (a 0 ) < T (0)
) follows similarly by considering the reflected process: We have then

Q n (X (T (A)) = a) = P n (X (T (A)) = a | T (a 0 ) < T (0)) = P 0 n (X (T (A)) = a)
and so Lemma 3.2 gives

lim n→+∞ Q n (X (T (A)) = a) = P 0 (X (T (A)) = a) . Since P 0 (X (T (A)) = a) = N (X (T (A)) = a | T (a 0 ) < T (0)) = Q (X (T (A)) = a)
this proves the convergence of the initial distributions in this case as well.

It remains to show that transition probabilities also converge. Note that by definition, in contrast with the initial distributions, transition probabilities of M under Q n and Q do not depend on the case considered. Since 0 is an absorbing state for M under Q n and Q, we only have to show that for any a ∈ A and b ∈ A 0 with a = b, we have

Q n (M k+1 = b | M k = a) → Q (M k+1 = b | M k = a). On the one hand, Q n (M k+1 = b | M k = a) = P a n (X (T (A 0 \{a})) = b)
while on the other hand,

Q (M k+1 = b | M k = a) = P a (X (T (A 0 \{a})) = b) .
Note that T (A 0 \{a}) is almost surely finite for a ∈ A both under P a n and P a , so the result follows from Lemma 3.2.

Corollary 4.2

For any a 0 > 0, the two sequences of processes L 0 under

P * n ( • | T (a 0 ) < T (0)) and P n ( • | T (a 0 ) < T (0)) converge in the sense of finite- dimensional distributions to L 0 under N ( • | T (a 0 ) < T (0)) and N ( • | T (a 0 ) < T (0)), respectively. Proof Let I ≥ 1, 0 < a 1 < • • • < a I
and u i > 0 for i = 0, . . . , I : We prove the result for the convergence under P * n , the result for P n follows along the same lines, replacing P * n by P n and N by N . We show that

lim n→+∞ P * n L 0 (a i ) ≥ u i , i = 0, . . . , I | T (a 0 ) < T (0) = N L 0 (a i ) ≥ u i , i = 0, . . . , I | T (a 0 ) < T (0) .
If a 0 ≤ a 1 , then this follows directly from Proposition 4.1. If a 0 > a 1 , we use Bayes formula: 

P * n L 0 (a i ) ≥ u i , i = 0, . . . , I | T (a 0 ) < T (0) = P * n (T (a 1 ) < T (0)) P * n (T (a 0 ) < T (0)) P * n L 0 (a i ) ≥ u i , i = 0, . . . , I | T (a 1 ) < T (0) .
P * n (T (a 0 ) < T (0)) = N (T (a 1 ) < T (0)) N (T (a 0 ) < T (0))
and so Proposition 4.1 gives 

lim n→+∞ P * n L 0 (a i ) ≥ u i , i = 0, . . . , I | T (a 0 ) < T (0) = N (T (a 1 ) < T (0)) N (T (a 0 ) < T (0)) N L 0 (a i ) ≥ u i , i = 0, . . . , I | T (a 1 ) < T (0) which is equal to N (L 0 (a i ) ≥ u i , i = 0, . . . , I | T (a 0 ) < T (0)).
(ζ ) = inf {t ≥ 0 : L(0, t) ≥ ζ }. Then the sequence of processes L( • , T L (ζ n )) under P 0 n ( • | T L (ζ n ) < +∞) converges in the sense of finite- dimensional distributions to L( • , T L (ζ )) under P 0 ( • | T L (ζ ) < +∞).
Proof Since the marginals at 0 are deterministic and converge to ζ , we restrict our attention to finite sets A ⊂ (0, ∞) and we are interested in the weak convergence of the sequence (L(a,

T L (ζ n )), a ∈ A) under P 0 n ( • | T L (ζ n ) < +∞).
Let a 0 = min A > 0: Then, only those excursions reaching level a 0 contribute and so for each

n ≥ 1, (L(a, T L (ζ n )), a ∈ A) under P 0 n ( • | T L (ζ n ) < +∞) is equal in distribution to K n k=1 L a 0 n,k (a), a ∈ A
where (L a 0 n,k , k ≥ 1) are i.i.d. processes with distribution L 0 under P * n ( • | T (a 0 ) < T (0)), and K n is an independent random variable distributed as a binomial random variable with parameters z n and P 0 n (T (a 0 ) < T (0)). Since

lim n→+∞ z n /r n = ζ and lim n→+∞ r n P 0 n (T (a 0 ) < T (0)) = N (T (a 0 ) < T (0)),
the second convergence being given by Lemma 3.6, the sequence (K n ) converges weakly to a Poisson random variable K with parameter ζ N (T (a 0 ) < T (0)). On the other hand,

L a 0 n,1 converges in distribution to L 0 under N ( • | T (a 0 ) < T (0)) by Proposition 4.1, so the sequence (L(a, T L (ζ n )), a ∈ A) under P 0 n ( • | T L (ζ n ) < +∞) converges weakly to K k=1 L a 0 k (a), a ∈ A
where (L a 0 k , k ≥ 1) are independent from K and are i.i.d. with common distribution L 0 under N ( • | T (a 0 ) < T (0)). This proves the result. Indeed, under P 0 ( • | T L (ζ ) < +∞) also, only excursions reaching level a 0 contribute to L( • , T L (ζ )) on A, and there is a Poisson number, say K , with parameter ζ N (T (a 0 ) < T (0)), of such excursions. These excursions are i.i.d. with common law N ( • | T (a 0 ) < T (0)), and so their local time processes are i.i.d. with common distribution L 0 under N ( • | T (a 0 ) < T (0)). The local time being an additive functional, it is the sum of local times of these K i.i.d. excursions.

Tightness Results

Tightness is a delicate issue. In the finite variance case and assuming that the limiting Brownian motion (with drift) drifts to -∞, it follows quickly from a simple queueing argument, see [START_REF] Lambert | Scaling limits via excursion theory: interplay between Crump-Mode-Jagers branching processes and processor-sharing queues[END_REF]. In the infinite variance case of the present paper, we prove tightness under the tightness condition stated in Sect. 2. So, in the rest of this section, we assume that the tightness condition holds, i.e., for each n ≥ 1 we have s n = n 1/α and n = where has tail distribution P( ≥ s) = (1 + s) -α . The main technical result concerning tightness is contained in the following proposition, "Appendix" is devoted to its proof. We now prove the tightness of the sequences considered in Theorems 2.3 and 2.4. In the sequel, we say that a sequence (Z n ) under Q n is C-tight if it is tight and any accumulation point is continuous. It is known, see for instance Chapter VI in [START_REF] Jacod | Limit theorems for Stochastic Processes[END_REF], that this holds if and only if for any m, δ > 0,

lim a→+∞ lim sup n→+∞ Q n sup 0≤t≤m |Z n (t)| ≥ a = 0 and lim ε→0 lim sup n→+∞ Q n ( m (Z n , ε) ≥ δ) = 0 (7)
where is the following modulus of continuity:

m ( f, ε) = sup {| f (t) -f (s)| : 0 ≤ t, s ≤ m, |t -s| ≤ ε} .
Lemma 5.2 For each n ≥ 1, consider on the same probability space an integer valued random variable K n and a sequence of processes (Z n,k , k ≥ 1). Assume that for each k ≥ 1 the sequence (Z n,k , n ≥ 1) is C-tight and that the sequence

(K n , n ≥ 1) is tight. Then, the sequence (Z n,1 + • • • + Z n,K n , n ≥ 1) is C-tight. Proof Let S n = Z n,1 +• • •+ Z n,K n :
We must show that it satisfies [START_REF] Borodin | On the character of convergence to Brownian local time. I[END_REF]. We show how to control the modulus of continuity, the supremum can be dealt with similar arguments. For any 0 ≤ s, t ≤ m with |t -s| ≤ ε, we have

|S n (t) -S n (s)| ≤ K n k=1 Z n,k (t) -Z n,k (s) ≤ K n k=1 m (Z n,k , ε)
and so we obtain the following bound, valid for any β > 0:

Q n ( m (S n , ε) ≥ δ) ≤ Q n ⎛ ⎝ β k=1 m (Z n,k , ε) ≥ δ ⎞ ⎠ + Q n (K n ≥ β) ≤ β k=1 Q n m (Z n,k , ε) ≥ δ/β + Q n (K n ≥ β). Since each sequence (Z n,k , n ≥ 1) is C-tight, this gives lim ε→0 lim sup n→+∞ Q n ( m (S n , ε) ≥ δ) ≤ lim sup n→+∞ Q n (K n ≥ β)
which goes to 0 as β goes to infinity since (K n ) is tight. The result is proved.

For n ≥ 1 and a > 0, we denote by G n (a) a geometric random variable with parameter 1 -W n (0)/W n (a) (remember that W n (0) = 1/r n ), so that according to Lemma 3.4, the sequence (W n (0)G n (a)) converges in distribution to an exponential random variable with parameter 1/W (a). The following proposition, combined with Corollary 4.3, proves Theorem 2.4.

Proposition 5.3 Let ζ >0 and (z n ) be any integer sequence such that ζ

n = z n /r n → ζ . Then, the sequence of processes L( • , T L (ζ n )) under P 0 n ( • | T L (ζ n ) < +∞) is C-tight.
Proof Fix any a 0 > 0 and let τ n be the time of the first visit to 0 after time T (a 0 , z n ), i.e., τ n = inf{t ≥ T (a 0 , z n ) : X (t) = 0}, and K n be the number of excursions of X away from 0 that reach level a 0 before time τ n . Unless otherwise stated, we work implicitly under P 0 n ( • | T (a 0 , z n ) < +∞) so that τ n and K n are well defined. Then, the following decomposition holds (using Lemma 2.1):

L(a 0 + a, τ n ) = K n k=1 L a 0 n,k (a), a ≥ 0, (8) 
where (L a 0 n,k , k ≥ 1) are independent processes, all equal in distribution to L 0 (a 0 + • ) under P * n ( • | T (a 0 ) < T (0)). Note that by Proposition 5.1, (L a 0 n,1 , n ≥ 1) is C-tight. In an excursion that reaches level a 0 , the law of the number of visits of X to a 0 is 1

+ G n (a 0 ); thus, K n is equal in distribution to min k ≥ 1 : k i=1 1 + G n,i (a 0 ) ≥ ζ n with (G n,i (a 0 ), i ≥ 1) i.i.d. random variables with common distribution G n (a 0 ).
Since (G n (a 0 )/r n ) converges in distribution to an exponential random variable with parameter 1/W (a 0 ) and z n /r n → ζ , the sequence (K n ) converges in distribution to a Poisson random variable with parameter ζ /W (a 0 ). In particular, the sequence (K n ) is tight, and combining (8), Lemma 5.2, Proposition 5.1 and the C-tightness of (L a 0 n,1 , n ≥ 1), one sees that the sequence L(a 0 + • , τ n ) is C-tight. We now prove the desired C-tightness of the sequence L(

• , T L (ζ n )) under P 0 n ( • | T L (ζ n ) < +∞).
For a ≥ 0 define L 1,a 0 (a) and L 2,a 0 (a), the local time accumulated at level a 0 + a in the time interval [T (a 0 ), T (a 0 , z n )], and [0, T (a 0 )) ∪ (T (a 0 , z n ), τ n ], respectively. Then, L(a 0 + a, τ n ) = L 1,a 0 (a) + L 2,a 0 (a) which we write as

L 1,a 0 (a) = L(a 0 + a, τ n ) -L 2,a 0 (a), a ≥ 0.
We have just proved that the sequence L(a 0 +• , τ n ) was C-tight, so if we can prove that the sequence L 2,a 0 is also C-tight, Lemma 5.2 will imply the C-tightness of L 1,a 0 . But by invariance in space, L 1,a 0 under P

0 n ( • | T (a 0 , z n ) < +∞) is equal in distribution to L( • , T L (ζ n )) under P 0 n ( • | T L (ζ n ) < +∞)
, so this will prove the desired result. Hence, it remains to prove the C-tightness of L 2,a 0 .

Let g(a 0 ) be the left endpoint of the first excursion of X away from 0 that reaches a 0 and define the excursion Y as follows:

Y (t) = X (t + g(a 0 )) if 0 ≤ t ≤ T (a 0 ) -g(a 0 ), X ((t + T (a 0 , z n ) + g(a 0 ) -T (a 0 )) ∧ τ n ) if t ≥ T (a 0 ) -g(a 0 ). Then, Y is distributed like X (• ∧ T (0)) under P * n ( • | T (a 0 ) < T (0)) and L 3,a 0 (a)
def.

= L 2,a 0 (a) + 1 r n 1 {a=a 0 } , so that L 3,a 0 is the local time process above level a 0 of the process Y . The term 1 {a=a 0 } is here to compensate the fact that L 2,a 0 (a) is the local time accumulated during the time interval [0,

T (a 0 )) ∪ (T (a 0 , z n ), τ n ) instead of [0, T (a 0 )) ∪ [T (a 0 , z n ), τ n ), so L 2,
a 0 is missing one visit of Y to a 0 . Thus, L 3,a 0 is equal in distribution to the process L 0 (a 0 + • ) under P * n ( • |T (a 0 ) < T (0)), and the sequence L 3,a 0 is therefore C-tight by Proposition 5.1. Neglecting the factor r -1 n which vanishes in the limit, this implies that L 2,a 0 is C-tight and concludes the proof.

The following proposition, combined with Corollary 4.3, proves Theorem 2.3.

Proposition 5.4

For any a 0 > 0, the two sequences L 0 under P

* n ( • | T (a 0 ) < T (0)) and P n ( • | T (a 0 ) < T (0)) are C-tight.
Proof In the rest of the proof fix some a 0 > 0. We first show the C-tightness of L 0 under

P * n ( • | T (a 0 ) < T (0)), from which the C-tightness under P n ( • | T (a 0 ) < T (0)
) is then derived. Let z n = r n be the smallest integer larger than r n and

ζ n = z n /r n , so that ζ n → 1. Since T L (ζ n ) = T (0, z n ), when T L (ζ n )
is finite X has at least z n excursions away from 0, and so we can define K n the number of excursions among these z n first excursions that visit a 0 . Let

L n = L( • , T L (ζ n )) and Q n = P 0 n ( • | T L (ζ n ) < +∞, K n ≥ 1): using Proposition 5.3, it is easy to show that L n under Q n is C-tight.
Indeed, decomposing the path (X (t), 0 ≤ t ≤ T (0, z n )) into its z n excursions away from 0, one gets

P 0 n K n = 0 | T L (ζ n ) < +∞ = P 0 n (T (0) < T (a 0 ) | T (0) < +∞) z n .
By duality and (1),

P 0 n (T (0) < T (a 0 ) | T (0) < +∞) = P 0 n (T (0) < T (-a 0 ) | T (0) < +∞) = 1 - 1 r n W n (a 0 ) 1 - 1 r n W n (∞) which gives P 0 n K n = 0 | T L (ζ n ) < +∞ → e -1/W (a 0 ) e 1/W (∞) < 1. It follows in particular that C = 1/ inf n P 0 n K n ≥ 1 | T L (ζ n ) <
+∞ is finite, and so for any m, ε, δ > 0,

Q n ( m (L n , ε) ≥ δ) = P 0 n m (L n , ε) ≥ δ, K n ≥ 1 | T L (ζ n ) < +∞ P 0 n K n ≥ 1 | T L (ζ n ) < +∞ ≤ CP 0 n m (L n , ε) ≥ δ | T L (ζ n ) < +∞ . Since L n under P 0 n • | T L (ζ n ) < +∞ is C-tight by Proposition 5.
3, this implies that the second condition in (7) holds. One can similarly control the supremum and prove that the first condition in (7) also holds, which finally proves the C-tightness of L n under Q n .

We now prove the C-tightness of L 0 under P * n ( • | T (a 0 ) < T (0)). Let g(a 0 ) < d(a 0 ) be the endpoints of the first excursion of X away from 0 which reaches level a 0 . In the event {T L (ζ n ) < +∞, K n ≥ 1}, define L 1 as the local time process in the interval [0, g(a 0 )) ∪ (d(a 0 ), T (0, z n )] and L 2 the local time process in the interval [g(a 0 ), d(a 0 )]. Then under Q n , the three following properties hold:

(i) the process (L 1 (a) + r -1 n 1 {a=0} , a ≥ 0) is equal in distribution to L( • , T L (ζ n )) under P 0 n ( • | T L (ζ n ) < +∞), where ζ n = (z n -1)/r n ; (ii) L 2 = L n -L 1 ; (iii) L 2 is equal in distribution to L 0 under P * n ( • | T (a 0 ) < T (0)
). Proposition 5.3 and the first property entail that L 1 under Q n is C-tight. Since L n under Q n has been proved to be C-tight, the second property together with Lemma 5.2 implies that L 2 under Q n is C-tight. The last property finally proves the C-tightness of L 0 under P * n ( • | T (a 0 ) < T (0)). We now prove that L 0 under P n ( • | T (a 0 ) < T (0)) is C-tight using the Radon-Nikodym derivative. Let f (s) = P( ≥ s): then P( * ∈ ds)/ds = f (s) and P( ∈ ds)/ds =f (s) so that is absolutely continuous with respect to * with Radon-Nikodym derivativef / f . In particular, for any measurable function g, it holds that

E (g( )) = E - f ( * ) f ( * ) g( * ) .
Consequently, sincef (s)/ f (s) = α/(1 + s), we get for any m, ε and δ > 0

P n m (L 0 , ε) ≥ δ | T (a) < T (0) = αE g( * ) 1 + * ≤ αP * n m (L 0 , ε) ≥ δ | T (a) < T (0)
where g(x

) = P x n m (L 0 , ε) ≥ δ | T (a) < T (0) . Since L 0 under P * n ( • | T (a 0 ) < T (0)) is C-tight
by the first part of the proof, we deduce that the second condition in ( 7) is satisfied. The supremum can be handled similarly, and therefore, the proof is complete.

6 Implications for Branching Processes and Queueing Theory

Implications for Branching Processes

A Crump-Mode-Jagers (CMJ) process, or general branching process, is a stochastic process with non-negative integer values counting the size of a population where individuals give birth to independent copies of themselves; see for instance [START_REF] Haccou | Branching Processes: Variation, Growth, and Extinction of Populations[END_REF] for a definition.

For n ≥ 1 and z ∈ N, let Z z n (resp. Z z * n ) be the law of a binary, homogeneous CMJ branching process with life length distribution n and offspring intensity κ n started with z individuals with i.i.d. life lengths with common distribution n (resp. * n ). Let Z z n (resp. Z z * n ) be the law of X (s n t)/r n under Z z n (resp. Z z * n ). It follows directly from results in [START_REF] Lambert | Scaling limits via excursion theory: interplay between Crump-Mode-Jagers branching processes and processor-sharing queues[END_REF] that Z 1 n is the law of L 0 under P n and that Z z * n is the law of L( Since there is a rich literature on the scaling limits of branching processes, it is interesting to put this result in perspective. CMJ branching processes are (possibly non-Markovian) generalizations of Galton-Watson (GW) branching processes in continuous time. Scaling limits of GW processes have been exhaustively studied since the pioneering work of Lamperti [START_REF] Lamperti | The limit of a sequence of branching processes[END_REF], see [START_REF] Grimvall | On the convergence of sequences of branching processes[END_REF]. Accumulation points of sequences of renormalized GW processes are called CSBP, they consist of all the continuous time, continuous state space, time-homogeneous Markov processes which satisfy the branching property. Via the Lamperti transformation, they are in one-to-one correspondence with spectrally positive Lévy processes killed upon reaching 0, see [START_REF] Lamperti | Continuous-state branching processes[END_REF] or [START_REF] Caballero | Proof(s) of the Lamperti representation of continuousstate branching processes[END_REF].

• , T L (z/r n )) under P 0 n ( • | T L (z/r n ) < +∞).
On the other hand, little is known about scaling limits of CMJ branching processes, except for the Markovian setting where individuals live for an exponential duration and give birth, upon death, to a random number of offspring. Intuitively, in this case, the tree representing the CMJ process should not differ significantly from the corresponding genealogical GW tree because the life length distribution has a light tail. And indeed, correctly renormalized, Markovian CMJ processes converge to CSBP, see [START_REF] Helland | Continuity of a class of random time transformations[END_REF]. The same intuition explains results obtained by Sagitov [START_REF] Sagitov | General branching processes: convergence to Irzhina processes[END_REF][START_REF] Sagitov | A key limit theorem for critical branching processes[END_REF], who proves the convergence of the finite-dimensional distributions of some non-Markovian CMJ processes toward CSBP. It also provides an explanation for the results obtained by Lambert et al. [START_REF] Lambert | Scaling limits via excursion theory: interplay between Crump-Mode-Jagers branching processes and processor-sharing queues[END_REF], where it is proved that binary, homogeneous CMJ branching processes whose life length distribution has a finite variance converge to Feller diffusion, the only CSBP with continuous sample paths.

In the infinite variance case studied in the present paper, and with which Theorems 6.1 and 6.2 are concerned, some individuals will intuitively live for a very long time, causing the tree representing the CMJ to differ significantly from the corresponding genealogical GW tree, a difference that should persist in the limit. Our results are consistent with this intuition, since the CMJ studied here converge to non-Markovian processes (see remark following Theorem 2.4). To the best of our knowledge, this is the first time that a sequence of branching processes converging to a non-Markovian limit has been studied.

Implications for Queueing Theory

The Processor-Sharing queue is the single-server queue in which the server splits its service capacity equally among all the users present. For n ≥ 1 and z ∈ N, let Q z n (resp. Q z * n ) be the law of the queue length process of the Processor-Sharing queue with Poisson arrivals at rate κ n , service distribution and started with z initial customers with i.i.d. initial service requirements with common distribution (resp. * ). Let

Q z n (resp. Q z * n ) be the law of X (nt)/n 1-1/α under Q z n (resp. Q z * n )
. Let E + ⊂ E be the set of positive excursions with finite length. Let L : E + → E + be the Lamperti transformation: by definition L (e) for e ∈ E + is the only positive excursion that satisfies L (e)( t 0 e) = e(t) for every t ≥ 0. In the rest of this section, if μ is some positive measure on E + , write L (μ) for the push-forward of μ by L : for any Borel set A,

L (μ)(A) = μ(L ∈ A).

Recall that X 0 = X ( • ∧ T (0)): We have the following result, see for instance Chapter 7.3 in [START_REF] Robert | Stochastic Networks and Queues[END_REF] and references therein.

Lemma 6.3 For any integer z ≥ 0 and any

n ≥ 1, X 0 under Q z n (resp. Q z * n ) is equal in distribution to L (Z z n ) (resp. L (Z z * n )).
In view of Theorems 6.1, 6.2 and Lemma 6.3, it is natural to expect excursions of the queue length process to converge, upon suitable conditioning. The conditioning {T (0) > ε} of Z 1 n as in Theorem 6.1 is however not convenient in combination with the map L . Instead, it will be more convenient to consider

Z 1 n ( • | T • L > ε)
, where from now on we sometimes write T = T (0), so that T • L (e) = T L (e) (0) for e ∈ E + .

From the definition of L , one can see that, for e ∈ E + , we have L (e)(t) = 0 if and only if t ≥ T e (0) 0 e, i.e., T • L (e) = T e (0) 0 e = ∞ 0 e. In particular, when L 0 is well defined, we have

T • L • L 0 = ∞ 0 L 0 = ∞ 0 L(a, T )da = T. ( 9 
)
Lemma 6. [START_REF] Billingsley | Convergence of Probability Measures[END_REF] For any ε > 0, we have

Z 1 n ( • | T • L > ε) ⇒ Z ( • | T • L > ε).
Proof Starting from Theorem 6.1 and using Lemma 4.7 in [START_REF] Lambert | The weak convergence of regenerative processes using some excursion path decompositions[END_REF], one sees that it is enough to show that for any ε > 0,

lim n→+∞ κ n s n Z 1 n (T > ε)= Z(T > ε), lim n→+∞ κ n s n Z 1 n (T • L > ε) = Z(T • L > ε) (10)
and

(X, T • L ) under Z 1 n (• | T >ε) converges weakly to (X, T • L ) under Z( • | T >ε). ( 11 
)
Since

Z 1 n (T > ε) = P n (T (ε) < T (0)) and Z(T > ε) = N (T (ε) < T (0)
), the first limit in ( 10) is given by Lemma 3.3. Similarly, (9

) entails Z 1 n (T • L > ε) = P n (T > ε) and Z(T • L > ε) = N (T >
ε) and so the second limit in [START_REF] Csáki | Strong invariance for local times[END_REF] follows from Lemma 3.5. Thus, to complete the proof, it remains to prove [START_REF] Csörgő | On strong invariance for local time of partial sums[END_REF].

Since

T under Z 1 n ( • | T >ε) is equal in distribution to sup X 0 under P n ( • | sup X 0 > ε)
, one can show that it converges weakly to T under Z( • | T > ε). Using similar arguments as in the proof of Lemma 3.2, one can strengthen this to get the joint convergence of (X, T ). Since T (L (e)) = T e (0) 0 e and the map (

f, t) ∈ D ×[0, ∞) → t 0 f is continuous, the continuous mapping theorem implies that (X, T • L ) under Z 1 n ( • | T > ε) converges weakly to (X, T • L ) under Z( • | T > ε).
We now state the two main queueing results of the paper. The first one (Theorem 6.5) is a direct consequence of Lemma 6.4 together with continuity properties of the map L , it gives results on excursions of the Processor-Sharing queue length process. The second one (Theorem 6.6) leverages on results in [START_REF] Lambert | The weak convergence of regenerative processes using some excursion path decompositions[END_REF] to give two simple conditions under which not only excursions but the full processes converge. Theorem 6.5 Let ε, ζ > 0 and (z n ) be any integer sequence such that z n /r n → ζ . Then, the two sequences of processes X 0 under Q z n * n and

Q 1 n ( • | T > ε) converge weakly to L (Z ζ * ) and L (Z)( • | T > ε), respectively. Proof Lemma 6.3 shows that X 0 under Q z n * n and Q 1 n ( • | T > ε) is equal in distribution to L (Z z n * n ) and L (Z 1 n ( • | T •L > ε))
, respectively. Then, note that since we consider the Processor-Sharing queue with Poisson arrivals at rate κ n and service distribution , the tightness assumption holds. Thus,

Z 1 n ( • | T • L > ε) ⇒ Z( • | T • L > ε) by Lemma 6.4 and Z z n * n ⇒ Z ζ * by Theorem 6.2.
Hence, the result would be proved if we could show that L was continuous along the two sequences

Z 1 n ( • | T • L > ε) and Z z n * n (using that L (Z( • | T • L > ε)) = L (Z)( • | T > ε)
). Lemma 2.5 in [START_REF] Lambert | Scaling limits via excursion theory: interplay between Crump-Mode-Jagers branching processes and processor-sharing queues[END_REF] shows that this holds if the two sequences T under Z z n * n and Z 1 n ( • | T • L > ε) are tight; actually, one can show as easily that they converge weakly.

Indeed, defining

ζ n = z n /r n , one sees that T under Z z n * n is equal in distribution to sup [0,T L (ζ n )] X under P 0 n ( • | T L (ζ n ) < +∞).
One can show using standard arguments that this converges to sup [0,T L (ζ )] X under P 0 ( • | T L (ζ ) < +∞), which is equal in distribution to T under Z ζ * and thus shows the weak convergence of T under Z z n * n .

Similar arguments for T under

Z 1 n ( • | T • L > ε)
give the result, using also [START_REF] Chan | Smoothness of scale functions for spectrally negative Lévy processes[END_REF] in this case.

Theorem 6.6 If one of the following two conditions is met:

• either the sequence Q 0 n is tight;

• or for any η > 0, lim ε→0 lim sup n→+∞ s n Q 1 n sup X 0 ≥ η, T ≤ ε = 0; ( 12 
)
then for any ζ ≥ 0 and any integer sequence (z n ) such that z n /r n → ζ , the sequence Q z n * n converges weakly to the unique regenerative process that starts at ζ and such that its excursion measure is L (Z), its zero set has zero Lebesgue measure and, when ζ > 0, its first excursion is equal in distribution to L (Z ζ * ).

Proof We check that all the assumptions of Theorem 3 in [START_REF] Lambert | The weak convergence of regenerative processes using some excursion path decompositions[END_REF] are satisfied. In order to help the reader, we provide a translation of the notation used in [START_REF] Lambert | The weak convergence of regenerative processes using some excursion path decompositions[END_REF]: the notation N , ϕ, c n , N n , b n , and v ∞ appearing in the statement of [START_REF] Lambert | The weak convergence of regenerative processes using some excursion path decompositions[END_REF]Theorem 3] correspond, respectively, to (with the notation of the present paper) L (Z), T, s n κ n , Q 1 n , nκ n and sup.

That L (Z)(T = +∞) = Q 1 n (T = +∞) = 0 follows from the fact that X under P 0 does not drift to +∞. Let ε > 0: The assumption (H1) in [START_REF] Lambert | The weak convergence of regenerative processes using some excursion path decompositions[END_REF] corresponds to

s n κ n Q 1 n (T > ε) → L (Z)(T > ε).
Since the workload process associated with X under Q 1 n and renormalized in space by s n is equal in distribution to X under P n , we have Q 1 n (T > ε) = P n (T > ε). Moreover, [START_REF] Chan | Smoothness of scale functions for spectrally negative Lévy processes[END_REF] gives

L (Z)(T > ε) = N (T > ε) and so s n κ n Q 1 n (T > ε) → L (Z)(T > ε)
is just a restatement of Lemma 3.5. It can be shown similarly that the assumption (H2) in [START_REF] Lambert | The weak convergence of regenerative processes using some excursion path decompositions[END_REF] holds (i.e., for any ε, λ > 0 we have [START_REF] Lambert | The weak convergence of regenerative processes using some excursion path decompositions[END_REF]) has been taken care of by Theorem 6.5. It is easily deduced that (X 0 , T ) under [START_REF] Lambert | The weak convergence of regenerative processes using some excursion path decompositions[END_REF]).

s n κ n Q 1 n (1 -e -λT ; T ≤ ε) → L (Z)(1 -e -λT ; T ≤ ε)). The convergence of X 0 under Q 1 n ( • | T > ε) (which corresponds to e ε (X n ) in
Q 1 n ( • | T > ε) converges toward (X 0 , T ) under L (Z)( • | T > ε) (which corresponds to (e ε , ϕ • e ε )(X n ) ⇒ (e ε , ϕ • e ε )(X ) in
Finally, our assumption (12) corresponds exactly to the last condition ( 6) in [START_REF] Lambert | The weak convergence of regenerative processes using some excursion path decompositions[END_REF], which proves the result if [START_REF] Duquesne | Random trees, Lévy processes and spatial branching processes[END_REF] is assumed. If one assumes tightness of Q 0 n instead of [START_REF] Duquesne | Random trees, Lévy processes and spatial branching processes[END_REF], one can check that the proof of Theorem 3 in [START_REF] Lambert | The weak convergence of regenerative processes using some excursion path decompositions[END_REF] goes through, since the assumption ( 6) there is only used to show tightness of Q 0 n . The proof is therefore complete.

A Relation with the Height Process

Let Q be the regenerative process, started at 0, whose zero set has zero Lebesgue measure and with excursion measure L (Z). Duquesne and Le Gall [START_REF] Duquesne | Random trees, Lévy processes and spatial branching processes[END_REF] have introduced a process H , which they call the height process, that codes the genealogy of a CSBP. It is interesting to note that for every t ≥ 0, Q(t) and H (t) are equal in distribution, as can be seen by combining results from Kella et al. [START_REF] Kella | Some time-dependent properties of symmetric M/G/1 queues[END_REF] and Limic [START_REF] Limic | A LIFO queue in heavy traffic[END_REF]. Indeed, the first result shows that the one-dimensional distributions of a Processor-Sharing queue and a Last-In-First-Out (LIFO) queue started empty are equal. As for the second result, it shows that in the finite variance case a LIFO queue suitably renormalized converges to H (which is then just a reflected Brownian motion), and the author argues in the remark preceding Theorem 5 that this result can be extended to the α-stable setting which we have also studied here.

It would be interesting to study whether Q and H share more similarities. In general, however, these processes may be dramatically different. For instance, it follows from Lemma 2.2 and Duquesne and Le Gall [START_REF] Duquesne | Random trees, Lévy processes and spatial branching processes[END_REF] that if is such that

∞ dλ (λ) √ log λ < +∞ while ∞ dλ (λ) = +∞
then H is very wild (not even càdlàg) while Q is continuous.

Acknowledgments F. Simatos would like to thank Bert Zwart for initiating this project and pointing out the reference [START_REF] Kella | Some time-dependent properties of symmetric M/G/1 queues[END_REF].

7 Appendix: Proof of Proposition 5.1

In the rest of this section, we fix some a 0 > 0 and we assume that the tightness assumption stated in Sect. 2 holds: In particular, n = with P( ≥ s)

= (1 + s) -α for some 1 < α < 2, n = s α n and r n = s α-1 n
. The goal of this section is to prove that the sequence L 0 (a 0 + • ) under P * n ( • | T (a 0 ) < T (0)) is tight. Note that this will prove Proposition 5.1: indeed, by Proposition 4.1, L 0 (a 0 + • ) under P * n ( • | T (a 0 ) < T (0)) converges in the sense of finite-dimensional distributions to L 0 (a 0 + • ) under N ( • | T (a 0 ) < T (0)). Moreover, the jumps of L 0 ( • + a 0 ) are of deterministic size 1/r n . Since 1/r n → 0, any limiting point must be continuous, see for instance [START_REF] Billingsley | Convergence of Probability Measures[END_REF]. Note that this reasoning could therefore be proved to show that L under P 0 is continuous (in the space variable), a result that is difficult to prove in general (see for instance [START_REF] Barlow | Necessary and sufficient conditions for the continuity of local time of Lévy processes[END_REF]).

Under the tightness assumption, the scale function w n enjoys the following useful properties. The convexity and smoothness properties constitute one of the main reasons for making the tightness assumption.

Lemma 7.1 For each n ≥ 1, w n is twice continuously differentiable and concave, its derivative w

n is convex, w n (0) = 1 and w n (0) = κ n . Moreover, sup w n (t) (1 + t) α : n ≥ 1, t > 0 < +∞
and finally, there exist n 0 ≥ 1 and t 0 > 0 such that w n (t 0 ) ≥ 2 for all n ≥ n 0 .

Proof The smoothness of w n follows from Theorem 3 in [START_REF] Chan | Smoothness of scale functions for spectrally negative Lévy processes[END_REF] since f (s) = P( ≥ s) is continuously differentiable with | f (0)| < +∞. The convexity properties follow from Theorem 2.1 in [START_REF] Kyprianou | Convexity and smoothness of scale functions and de Finetti's control problem[END_REF] since f is log-convex and ψ n (0) ≥ 0. The formulas for w n (0) and w n (0) are well known, see for instance [START_REF] Kuznetsov | The theory of scale functions for spectrally negative Lévy processes[END_REF]. We now prove the two last assertions.

First of all, note that sup

w n (t) (1 + t) α : n ≥ 1, t > 0 ≤ max sup {w n (1) : n ≥ 1} , sup w n (t) t α-1 : n ≥ 1, t ≥ 1 .
Let ψ be the Lévy exponent given by ψ(λ) = λ -(α -1)E(1e -λ ) with corresponding scale function w. Since κ n → α -1, P 0 n converges in distribution to the law of the Lévy process with Lévy exponent ψ, and so it can be shown similarly as in the proof of Lemma 3.4 that w n (1) → w [START_REF] Barlow | Necessary and sufficient conditions for the continuity of local time of Lévy processes[END_REF]. The first term sup {w n (1) : n ≥ 1} appearing in the above maximum is therefore finite. As for the second term, since for any n ≥ 1 we have κ n E( ) = κ n /(α -1) ≤ 1 by assumption, we get ψ ≤ ψ n and by monotonicity it follows that w n ≤ w. Moreover, it is known that there exists a finite constant C > 0 such that w(t) ≤ C/(tψ(1/t)) for all t > 0, see Proposition III.1 or the proof of Proposition VII.10 in [START_REF] Bertoin | Lévy Processes[END_REF]. In particular,

sup w n (t) t α-1 : n ≥ 1, t ≥ 1 ≤ sup w(t) t α-1 : t ≥ 1 ≤ C sup t α ψ(t) : 0 < t ≤ 1 .
Since P( ≥ s) = (1 + s) -α one can check that there exists some constant β > 0 such that ψ(t) ∼ βt α as t → 0, which shows that the last upper bound is finite and proves the desired result.

To prove the last assertion of the lemma, consider n 0 large enough such that κ = inf n≥n 0 κ n > 1/2 (remember that κ → 1/(α -1) > 1). Let ψ be the Lévy exponent given by ψ(λ) = λ -κE(1e -λ ) and corresponding scale function w. By monotonicity, we get w n ≥ w for any n ≥ n 0 , and one easily checks that w(∞) = 1/(1 -κ/(α -1)). Since by choice of κ this last limit is strictly larger than 2, there exists t 0 > 0 such that w(t 0 ) ≥ 2. This proves the result. Since we are interested in limit theorems, we will assume in the sequel without loss of generality that there exists t 0 > 0 such that w n (t 0 ) ≥ 2 for all n ≥ 1, and we henceforth fix such a t 0 . We first give a short proof of Proposition 5.1 based on the two following technical results, see Theorem 13.5 in [START_REF] Billingsley | Convergence of Probability Measures[END_REF].

Proposition 7.2 (Case (b -a) ∨ (c -b) ≤ t 0 /s n ) For any A > a 0 , there exist finite constants C, γ ≥ 0 such that for all n ≥ 1, λ > 0 and a 0 ≤ a < b < c ≤ A with (b -a) ∨ (c -b) ≤ t 0 /s n , P * n L 0 (b) -L 0 (a) ∧ L 0 (c) -L 0 (b) ≥ λ | T (a) < T (0) ≤ C (c -a) 3/2 λ γ . Proposition 7.3 (Case b -a ≥ t 0 /s n ) For any A > a 0 , there exist finite constants C, γ ≥ 0 such that for all n ≥ 1, λ > 0 and a 0 ≤ a < b ≤ A with b -a ≥ t 0 /s n , P * n L 0 (b) -L 0 (a) ≥ λ | T (a) < T (0) ≤ C (b -a) 3/2 λ γ .
Moreover, the constant γ can be taken equal to the constant γ of Proposition 7.2.

At this point, it must be said that the case (ba) ∨ (cb) ≤ t 0 /s n is much harder than the case ba ≥ t 0 /s n . The reason is that in the former case, the bound (ca) 3/2 cannot be achieved without taking the minimum between |L 0 (b) -L 0 (a)| and |L 0 (c) -L 0 (b)|. Considering only one of these two terms gives a bound which can be shown to decay only linearly in ca, which is not sufficient to establish tightness. This technical problem reflects that, in the well-studied context of random walks, tightness in the non-lattice case is harder than in the lattice one, where typically small oscillations, i.e., precisely when (ba) ∨ (cb) ≤ t 0 /s n , are significantly easier to control.

Proof of Proposition 5.1 based on Propositions 7.2 and 7.3 According to Theorem 13.5 in [START_REF] Billingsley | Convergence of Probability Measures[END_REF], it is enough to show that for each A > a 0 , there exist finite constants C, γ ≥ 0 and β > 1 such that for all n ≥ 1, λ > 0 and a 0 ≤ a < b < c ≤ A,

P * n L 0 (b) -L 0 (a) ∧ L 0 (c) -L 0 (b) ≥ λ | T (a 0 ) < T (0) ≤ C (c -a) β λ γ . ( 13 
) Fix n ≥ 1, λ > 0 and a 0 ≤ a < b < c and let E = {|L 0 (b) -L 0 (a)| ∧ |L 0 (c) - L 0 (b)| ≥ λ}. Since X under P *
n is spectrally positive, we have E ⊂ {L(a) > 0} and so

P * n (E, T (a 0 ) < T (0)) = P * n (E) = P * n (E, T (a) < T (0)).
Thus, Bayes formula entails

P * n (E | T (a 0 ) < T (0)) = P * n (T (a) < T (0)) P * n (T (a 0 ) < T (0)) P * n (E | T (a) < T (0))
and since P * n (T (a) < T (0)) ≤ P * n (T (a 0 ) < T (0)), we get

P * n L 0 (b) -L 0 (a) ∧ L 0 (c) -L 0 (b) ≥ λ | T (a 0 ) < T (0) ≤ P * n L 0 (b) -L 0 (a) ∧ L 0 (c) -L 0 (b) ≥ λ | T (a) < T (0) .
Thus [START_REF] Eisenbaum | A necessary and sufficient condition for the Markov property of the local time process[END_REF] follows from the previous inequality together with either Proposition 7.2 when (ba) ∨ (cb) ≤ t 0 /s n , or Proposition 7.3 when ba ≥ t 0 /s n . In the last remaining case where cb ≥ t 0 /s n , we derive similarly the following upper bound: The rest of this section is devoted to the proof of Propositions 7.2 and 7.3. Our analysis relies on an explicit expression of the law of (L 0 (b) -L 0 (a), L 0 (c) -L 0 (b)) under P x 0 n ( • | T (a) < T (0)). For 0 < a < b < c and x 0 > 0, we define

P * n L 0 (b) -L 0 (a) ∧ L 0 (c) -L 0 (b) ≥ λ | T (a 0 ) < T (0) ≤ P * n L 0 (c) -L 0 (b) ≥ λ | T (a 0 ) < T (0) ≤ P * n L 0 (c) -L 0 (b) ≥ λ | T (b) < T (0) .
p x 0 n (a) = P x 0 n (T (a) < T (0)) , p x 0 n,ξ (a, b) = P x 0 n (T (b) < T (a) | T (a) < T (0))
as well as

p x 0 n,θ (a, b, c) = P x 0 n (T (c) < T (b) | T (b) < T (a) < T (0)) .
Remember that G n (a) denotes a geometric random variable with parameter p a n (a), and from now on we adopt the convention -1 1 = 0 1 = 0.

Lemma 7.4 For any 0 < a < b < c and x 0 > 0, the random variable

r n L 0 (b) -r n L 0 (a), r n L 0 (c) -r n L 0 (b) under P x 0 n ( • | T (a) < T (0)) is equal in distribution to ⎛ ⎜ ⎝ξ x 0 n + G n (a) k=1 ξ a n,k , θ x 0 n 1 {ξ x 0 n ≥0} + N n,a k=1 θ a n,k + N x 0 n,b k=1 θ b n,k ⎞ ⎟ ⎠ ( 14 
)
where

N n,a = G n (a) k=1 1 {ξ a n,k ≥0} and N x 0 n,b = (ξ x 0 n ) + + G n (a) k=1 (ξ a n,k ) + .
All the random variables

ξ x 0 n , ξ a n,k , θ x 0 n , θ a n,k , θ b n,k and G n (a) are independent. For any u > 0 and k ≥ 1, θ u n,k is equal in distribution to ξ u n and θ u n,k to θ u n ,
where the laws of ξ u n and θ u n are described as follows: for any function f ,

E f (ξ u n ) = (1 -p u n,ξ (a, b)) f (-1) + p u n,ξ (a, b)E [ f (G n (b -a))] ( 15 
)
and

E f (θ u n ) = (1 -p u n,θ (a, b, c)) f (-1) + p u n,θ (a, b, c)E [ f (G n (c -b))] . ( 16 
)
Proof In the rest of the proof, we work under P x 0 n ( • | T (a) < T (0)). By definition, r n L 0 (a) and r n L 0 (b) is the number of visits of X to a and b in [0, T (0)], respectively. Thus, if β is the number of visits of X to b in [0, T (a)] and β a k the number of visits of X to b between the kth and (k + 1)st visit to a, we have

r n L 0 (b) -r n L 0 (a) = (β -1) + r n L 0 (a)-1 k=1 (β a k -1).
Decomposing the path of X between successive visits to a and using the strong Markov property, one easily checks that all the random variables of the right-hand side are independent and that r n L 0 (a), β a k and β are, respectively, equal in distribution to 1+G n (a), ξ a n +1 and ξ x 0 n +1. This shows that the random variable

r n L 0 (b)-r n L 0 (a) is equal in distribution to ξ x 0 n + G n (a) k=1 ξ a n,k . To describe the law of (r n L 0 (b) -r n L 0 (a), r n L 0 (c) -r n L 0 (b))
, one also needs to count the number of visits of X to c: if X visits b before a, it X may visit c before the first visit to b; it may also visit c each time it goes from a to b; finally, it may also visit c between two successive visits to b. These three different ways of visiting c are, respectively, taken into account by the terms θ x 0 n , θ a n,k and θ b n,k . The previous result readily gives the law of (

r n L 0 (b)-r n L 0 (a), r n L 0 (c)-r n L 0 (b)) under P * n ( • | T (a) < T (0)): This law can be written as ⎛ ⎜ ⎝ ξ a n + G n (a) k=1 ξ a n,k , θ a n 1 { ξ a n ≥0} + N n,a k=1 θ a n,k + N a n,b k=1 θ b n,k ⎞ ⎟ ⎠ (17) 
where

N a n,b = ( ξ a n ) + + G n (a)
k=1 (ξ a n,k ) + and the random variables ξ a n,k , θ a n,k , θ b n,k , G n (a) and N n,a are as described in Lemma 7.4. Moreover, these random variables are also independent from the pair ( ξ a n , θ a n ) whose distribution is given by

E f ( ξ a n , θ a n ) = E f (ξ x 0 n , θ x 0 n ) P(χ a n ∈ dx 0 ) (18) 
where from now on χ a n denotes a random variable equal in distribution to X (0) under

P * n ( • | T (a) < T (0)).
For convenience, we will sometimes consider that χ a n lives on the same probability space and is independent from all the other random variables. This will for instance allow us to say that the random vector (17) conditional on {χ a n = x 0 } is equal in distribution to the random vector [START_REF] Feller | An Introduction to Probability Theory and Its Applications[END_REF].

In order to exploit [START_REF] Helland | Continuity of a class of random time transformations[END_REF] and prove Propositions 7.2 and 7.3, we will use a method based on controlling the moments, following similar lines as [START_REF] Borodin | The asymptotic behavior of local times of recurrent random walks with finite variance[END_REF][START_REF] Borodin | Asymptotic behavior of local times of recurrent random walks with infinite variance[END_REF]. As Propositions 7.2 and 7.3 suggest, we need to distinguish the two cases (ba) ∨ (cb) ≤ t 0 /s n and ba ≥ t 0 /s n (remember that t 0 is a fixed number such that w n (t 0 ) ≥ 2 for each n ≥ 1, see the discussion after Lemma 7.1).

In the sequel, we need to derive numerous upper bounds. The letter C then denotes constants which may change from line to line (and even within one line) but never depend on n, a, b, c, x 0 or λ. They may however depend on other variables, such as typically a 0 , A or t 0 .

Before starting, let us gather a few relations and properties that will be used repeatedly (and sometimes without comments) in the sequel. First, it stems from (1) that

P x 0 n (T (a) < T (0)) = W n (a) -W n (a -x 0 ) W n (a) = x 0 0 W n (a -u)du W n (a) , 0 < x 0 ≤ a.
Moreover, (1)

κ n ≤ 1; (2) W n (0) = κ n s n /r n = κ n s 2-α n
, W n ≥ 0 is increasing, W n ≥ 0 is decreasing and -W n ≥ 0 is decreasing (as a consequence of Lemma 7.1 together with the identity W n (a) = w n (as n )/r n ); (3) for every a > 0, the sequences (W n (a), n ≥ 1) and (W n (a), n ≥ 1) are bounded away from 0 and infinity (by Lemma 3.4).

Case

(b -a) ∨ (c -b) ≤ t 0 /s n
The goal of this subsection is to prove Proposition 7.2 through a series of lemmas.

Lemma 7.5

For any A > a 0 , there exists a finite constant C such that for any n ≥ 1, any a 0 ≤ a ≤ A and any 0

≤ x 0 ≤ y ≤ a, j n,a (x 0 , y) ≤ ⎧ ⎨ ⎩ C x 0 (a -y)s 2-α n if x 0 ≥ a/4, C x 0 (a -y) if x 0 ≤ a/4 and a/2 ≤ y, C x 0 W n (y -x 0 ) if x 0 ≤ a/4 and y ≤ a/2, ( 19 
)
where j n,a (x 0 , y) = W n (ax 0 )W n (y) -W n (yx 0 )W n (a).

Proof The derivation of these three bounds is based on the following identity:

j n,a (x 0 , y) = a-y 0 W n (u + y)du x 0 0 W n (u + y -x 0 )du +W n (y) x 0 0 a-y 0 (-W n )(u + v + y -x 0 )dudv.
The term W n (y) appearing in the second term of the right-hand side is upper bounded by the finite constant sup n≥1 W n (A) and so does not play a role as far as [START_REF] Jain | An invariance principle for the local time of a recurrent random walk[END_REF] is concerned. Assume that x 0 ≥ a/4: then y ≥ a 0 /4 and so

a-y 0 W n (u + y)du x 0 0 W n (u + y -x 0 )du ≤ (a -y)W n (a 0 /4)x 0 W n (0) ≤ C(a -y)x 0 s 2-α n .
On the other hand,

x 0 0 a-y 0 (-W n )(u + v + y -x 0 )dudv ≤ (a -y) x 0 0 (-W n ) ≤ (a -y)W n (0).
This gives the desired upper bound of the form C x 0 s 2-α n , since W n (0) ≤ s 2-α n and 1 ≤ C x 0 when x 0 ≥ a/4 (writing 1 = x 0 /x 0 ≤ 4x 0 /a 0 ). This proves [START_REF] Jain | An invariance principle for the local time of a recurrent random walk[END_REF] in the case x 0 ≥ a/4. Assume now that x 0 ≤ a/4 ≤ a/2 ≤ y, so that y ≥ a 0 /2 and yx 0 ≥ a 0 /4. Then

a-y 0 W n (u + y)du x 0 0 W n (u + y -x 0 )du ≤ (a -y)W n (a 0 /2)x 0 W n (a 0 /4) ≤ C x 0 (a -y) and x 0 0 a-y 0 (-W n )(u + v + y -x 0 )dudv ≤ x 0 0 a-y 0 (-W n )(u + v + a 0 /4)dudv.
Since -W n is decreasing, so is the function ϕ(u) = a-y 0 (-W n )(u + v + a 0 /4)dv. Differentiating, this immediately shows that the function z → z -1 z 0 ϕ is decreasing and since x 0 ≥ a 0 , this gives

x 0 0 a-y 0 (-W n )(u + v + a 0 /4)dudv ≤ x 0 a -1 0 a-y 0 a 0 0 (-W n )(u + v + a 0 /4)dudv.
Further, exploiting that -W n is decreasing, we obtain

x 0 0 a-y 0 (-W n )(u + v + a 0 /4)dudv ≤ x 0 a -1 0 (a -y) a 0 0 (-W n )(u + a 0 /4)du ≤ C x 0 (a -y).
This proves [START_REF] Jain | An invariance principle for the local time of a recurrent random walk[END_REF] in the case x 0 ≤ a/4 ≤ a/2 ≤ y. Assume now that x 0 ≤ a/4 and that y ≤ a/2: then

a-y 0 W n (u + y)du x 0 0 W n (u + y -x 0 )du ≤ C x 0 W n (y -x 0 ) and x 0 0 a-y 0 (-W n )(u + v + y -x 0 )dudv ≤ x 0 a-y 0 (-W n )(u + y -x 0 )du ≤ x 0 W n (y -x 0 ).
This concludes the proof of ( 19), Lemma 7. [START_REF] Borodin | Asymptotic behavior of local times of recurrent random walks with infinite variance[END_REF] For any A > a 0 , there exists a finite constant C such that for any n ≥ 1, any a 0 ≤ a < b ≤ A and any x 0 ≤ a,

1 -p x 0 n,ξ (a, b) ≤ C(b -a)s n ( 20 
)
and for any n ≥ 1, any a 0 ≤ a < b < c ≤ A with ba ≤ t 0 /s n and any x 0 ≤ b,

1 -p x 0 n,θ (a, b, c) ≤ C(c -b)s n . ( 21 
)
Proof Let us first prove [START_REF] Kang | A note on the weak invariance principle for local times[END_REF], so assume until further notice x 0 ≤ a. Let in the rest of the proof τ a = inf{t 

≤ P x 0 n (a ≤ X (τ a ) < b) W n (a) x 0 0 W n (a -u)du ≤ C x -1 0 P x 0 n (a ≤ X (τ a ) < b) .
Thus [START_REF] Kang | A note on the weak invariance principle for local times[END_REF] will be proved if we can show that

P x 0 n (a ≤ X (τ a ) < b) ≤ C x 0 (b-a)s n . Let h n (z) = ακ n s α+1 n (1 + zs n ) -α-1
be the density of the measure n with respect to Lebesgue measure; note that it is decreasing and that the sequence (h n (z)) is bounded for any z > 0. Corollary 2 in [START_REF] Bertoin | Exponential decay and ergodicity of completely asymmetric Lévy processes in a finite interval[END_REF] gives

P x 0 n (X (τ a -) ∈ dy, X (τ a ) ∈ dz) = u n,a (x 0 , y)h n (z)dzdy, y ≤ a ≤ y + z, ( 22 
)
where X (t) = X (t) -X (t-) for any t ≥ 0 and

u n,a (x 0 , y) = W n (a -x 0 )W n (y) W n (a) -W n (y -x 0 )1 {y≥x 0 } ,
so it follows that

P x 0 n (a ≤ X (τ a ) < b) = 1 {y<a,a-y≤z<b-y} u n,a (x 0 , y)h n (z)dzdy ≤ (b -a) a 0
u n,a (x 0 , y)h n (ay)dy.

Hence [START_REF] Kang | A note on the weak invariance principle for local times[END_REF] will be proved if we can show that a 0 u n,a (x 0 , y)h n (ay)dy ≤ C x 0 s n . We have by definition of u n,a a 0 u n,a (x 0 , y)h n (ay)dy = W n (ax 0 ) W n (a)

x 0 0 W n (y)h n (a -y)dy + a x 0 W n (a -x 0 )W n (y) W n (a) -W n (y -x 0 ) h n (a -y)dy
which readily implies a 0 u n,a (x 0 , y)h n (ay)dy ≤ C W n (ax 0 )

x 0 0 h n (ay)dy +C a x 0 j n,a (x 0 , y)h n (ay)dy [START_REF] Khoshnevisan | An embedding of compensated compound Poisson processes with applications to local times[END_REF] with j n,a (x 0 , y) = W n (ax 0 )W n (y) -W n (yx 0 )W n (a) as in Lemma 7.5. We will show that each term of the above right-hand side is upper bounded by a term of the form C x 0 s n . Let us focus on the first term, so we want to show that

W n (a -x 0 ) x 0 0 h n (a -y)dy ≤ C x 0 s n .
Assume first that x 0 ≤ a/2, then ay ≥ ax 0 ≥ a/2 ≥ a 0 /2 for any y ≤ x 0 which gives

W n (a -x 0 ) x 0 0 h n (a -y)dy ≤ W n (A)x 0 h n (a 0 /2) ≤ C x 0 ≤ C x 0 s n .
Assume now x 0 ≥ a/2: Since h n is the density of n , we have

W n (a -x 0 ) x 0 0 h n (a -y)dy ≤ W n (a -x 0 ) n ((a -x 0 , ∞)) = κ n s n w n ((a -x 0 )s n ) (1 + (a -x 0 )s n ) α .
Since 1 ≤ C x 0 (because x 0 ≥ a 0 /2), the desired upper bound of the form C x 0 s n follows from Lemma 7.1. We now control the second term of the right-hand side in [START_REF] Khoshnevisan | An embedding of compensated compound Poisson processes with applications to local times[END_REF], i.e., we have to show that a x 0 j n,a (x 0 , y)h n (ay)dy ≤ C x 0 s n .

In the case x 0 ≥ a/4, the first bound in [START_REF] Jain | An invariance principle for the local time of a recurrent random walk[END_REF] gives

a x 0 j n,a (x 0 , y)h n (a -y)dy ≤ C x 0 s 2-α n a x 0 (a -y)s α+1 n (1 + (a -y)s n ) α+1 dy = C x 0 s n (a-x 0 )s n 0 y (1 + y) α+1 dy ≤ C x 0 s n .
Assume from now on that x 0 ≤ a/4 and decompose the interval [x 0 , a] into the union [x 0 , a/2] ∪ [a/2, a]. For [a/2, a], [START_REF] Jain | An invariance principle for the local time of a recurrent random walk[END_REF] gives [START_REF] Jain | An invariance principle for the local time of a recurrent random walk[END_REF] gives, using ay ≥ a 0 /2 when y ≤ a/2, a/2

a a/2 j n,a (x 0 , y)h n (a -y)dy ≤ C x 0 a a/2 (a -y)s α+1 n (1 + (a -y)s n ) α+1 dy ≤ C x 0 s α-1 n ≤ C x 0 s n since α -1 < 1. For [x 0 , a/2],
x 0 j n,a (x 0 , y)h n (a -y)dy ≤ C x 0 h n (a 0 /2) a x 0 W n (y -x 0 )dy ≤ C x 0 ≤ C x 0 s n .
This finally concludes the proof of ( 20), which we use to derive [START_REF] Kella | Some time-dependent properties of symmetric M/G/1 queues[END_REF]. Assume from now on that x 0 ≤ b, we have by definition

1 -p x 0 n,θ (a, b, c) = P x 0 n (T (b) < T (c), T (b) < T (a) < T (0)) P x 0 n (T (b) < T (a) < T (0)) ≤ P x 0 n (T (b) < T (c), T (b) < T (0)) P x 0 n (T (b) < T (a) < T (0)) = P x 0 n (T (b) < T (0)) P x 0 n (T (b) < T (a) < T (0)) 1 -p x 0 n,ξ (b, c) . Since P z n (T (b) < T (0)) = z 0 ϕ where ϕ(u) = W n (b -u)/W n (b) is increasing, it is readily shown by differentiating that z ∈ [0, b] → z -1 P z n (T (b) < T (0)
) is also increasing. Thus, for x 0 ≤ b, we obtain

P x 0 n (T (b) < T (0)) ≤ x 0 b -1 P b n (T (b) < T (0)) ≤ C x 0 .
In combination with [START_REF] Kang | A note on the weak invariance principle for local times[END_REF] and the fact that

P x 0 n (X (τ a ) ≥ b) ≤ P x 0 n (T (b) < T (a) < T (0)), this entails 1 -p x 0 n,θ (a, b, c) ≤ C(c -b)s n x 0 P x 0 n (X (τ a ) ≥ b)
.

Hence [START_REF] Kella | Some time-dependent properties of symmetric M/G/1 queues[END_REF] will be proved if we show that x 0 ≤ CP x 0 n (X (τ a ) ≥ b). If follows from ( 22) that

P x 0 n (X (τ a ) ≥ b) = a 0 u n,a (x 0 , y)κ n s α n P( ≥ (b -y)s n )dy
and because P( ≥ u) = (1 + s) -α , it can be checked that P( ≥ u + v) ≥ P( ≥ u)P( ≥ v) for any u, v > 0, so that

P x 0 n (X (τ a ) ≥ b) ≥ P( ≥ (b -a)s n ) a 0
u n,a (x 0 , y)κ n s α n P( ≥ (ay)s n )dy.

In view of [START_REF] Kesten | An iterated logarithm law for local time[END_REF], this last integral is equal to P x 0 n (X (τ a ) ≥ a) = P x 0 n (T (a) < T (0)) so finally, using (ba)s n ≤ t 0 we get

x 0 P x 0 n (X (τ a ) ≥ b) ≤ x 0 W n (a) P( ≥ t 0 )(W n (a) -W n (a -x 0 )) ≤ C
which proves [START_REF] Kella | Some time-dependent properties of symmetric M/G/1 queues[END_REF].

Lemma 7.7 There exists a finite constant C such that for all a 0 ≤ a < b and all n ≥ 1,

E ξ a n ≤ C(b -a)s n (r n W n (a)).
Proof Starting from a, X (under P a n ) makes 1 + G n (a) visits to a. Decomposing the path (X (t), 0 ≤ t ≤ T (0)) between successive visits to a, one gets a) .

P a n (T (b) > T (0)) = E P a n (T (a) < T (b) | T (a) < T (0)) G n (a) = E (1 -p a n,ξ (a, b)) G n (
By definition, the left-hand side is equal to 1p a n (b), so integrating on G n (a) gives

E (1 -p a n,ξ (a, b)) G n (a) = 1 -p a n (a) 1 -(1 -p a n,ξ (a, b)) p a n (a) = 1 -p a n (b) which gives 1 -p a n,ξ (a, b) = W n (b -a)W n (a) -W n (b)W n (0) W n (b -a)(W n (a) -W n (0)) . ( 24 
) Let p n = p b-a n (b -a) and p n,ξ = p a n,ξ (a, b): We have E ξ a n = p n,ξ -1 + p n,ξ E(G n (b -a)) = p n,ξ -1 + p n,ξ p n 1 -p n = p n,ξ 1 -p n -1.
Plugging in ( 1) and ( 24) gives after some computation

E ξ a n = W n (b) -W n (a) -(W n (b -a) -W n (0)) W n (a) -W n (0) = a 0 b-a 0 W n (u + v)dudv a 0 W n . Since W n ≥ 0 and W n ≤ 0, this gives E ξ a n = a 0 b-a 0 (-W n )(u + v)dudv a 0 W n (25)
and since W n is convex, we get

E ξ a n ≤ (b -a) a 0 (-W n ) a 0 W n = (b -a)W n (0) W n (a) W n (a)(W n (0) -W n (a)) W n (0)(W n (a) -W n (0)) . Since W n (0) ≤ s n /r n and W n (a)(W n (0) -W n (a)) W n (0)(W n (a) -W n (0)) ≤ W n (a 0 ) W n (a 0 ) -W n (0) ≤ C,
the proof is complete.

To control the higher moments of ξ a n and also the moments of the θ 's, we introduce the following constants:

C i = sup E (G n (δ)) i δs n : n ≥ 1, 0 ≤ δ ≤ t 0 /s n , i ≥ 1. ( 26 
)
Lemma 7.8 For any integer i ≥ 1, the constant C i is finite.

Proof Using the concavity of w n , one gets w n (δs n ) ≤ w n (0) + δs n w n (0) ≤ 1 + δs n since w n (0) = 1 and w n (0) = κ n ≤ 1 by Lemma 7.1. Hence

p δ n (δ) = w n (δs n ) -w n (0) w n (δs n ) ≤ δs n 1 + δs n ≤ min δs n , t 0 1 + t 0
where the last inequality holds for δs n ≤ t 0 . In particular, for any i ≥ 1, we have

E (G n (δ)) i δs n = E (G n (δ)) i p δ n (δ) p δ n (δ) δs n ≤ sup 0≤ p≤ε p -1 E G i p
where ε = t 0 /(1 + t 0 ) < 1 and G p is a geometric random variable with parameter p.

It is well known that

E(G i p ) = p P i-1 ( p) (1 -p) i
where P i is the polynomial P i ( p) = i k=0 T k,i p i with T k,i ≥ 1 the Eulerian numbers. Since P i satisfies P i (0) = 1, one easily sees that for any ε

< 1, sup 0≤ p≤ε p -1 E G i p < +∞
which achieves the proof. Lemma 7.9 For any A > a 0 and i ≥ 1, there exists a finite constant C such that for all n ≥ 1 and all a 0 ≤ a

< b < c ≤ A with (b -a) ∨ (c -b) ≤ t 0 /s n max E |ξ a n | i , E |θ a n | i , E |θ b n | i ≤ C(c -a)s n . ( 27 
)
Proof The results for ξ a n and θ a n are direct consequences of ( 20) and ( 21) and the finiteness of C i : Indeed, using these two results, we have for instance for ξ

a n E |ξ a n | i = 1 -p a n,ξ (a, b)+ p a n,ξ (a, b)E (G n (b-a)) i ≤ C(b -a)s n +C i (b-a)s n
and similarly for θ a n . The result for θ b n is also straightforward because

p b n,θ (a, b, c) = P b n (T (c) < T (b) | T (b) < T (a) < T (0)) = P b n (T (c) < T (b) | T (b) < T (a)) = p b-a n,ξ (c -a, b -a).
and so the result follows similarly as for ξ a n .

Recall the random variables ξ a n and θ a n defined in [START_REF] Jacod | Limit theorems for Stochastic Processes[END_REF].

Lemma 7.10

For any A > a 0 , there exists a finite constant C such that for all n ≥ 1 and all a 0 ≤ a

< b < c ≤ A with (b -a) ∨ (c -b) ≤ t 0 /s n , E ξ a n i ≤ C(b -a)s n and E θ a n i ≤ C(c -a)s n . ( 28 
)
Proof Combining the two definitions ( 15) and ( 18), we obtain [START_REF] Kang | A note on the weak invariance principle for local times[END_REF] to obtain the inequality. We obtain similarly for θ a n , using (21) instead of ( 20),

E ξ a n i = ∞ 0 1 -p x 0 n,ξ (a, b) + p x 0 n,ξ (a, b)E (G n (b -a)) i P(χ a n ∈ dx 0 ) ≤ C(b -a)s n + P(a ≤ χ a n ≤ b) + C i (b -a)s n using ( 
E θ a n i ≤ C(c -b)s n + P(b ≤ χ a n ≤ c) + C i (c -b)s n .
Thus, the result will be proved if we can show that P(a ≤ χ a n ≤ c) ≤ C(ca)s n ; remember that χ a n is by definition equal in distribution to X (0) under P * n ( • | T (a) < T (0)). Because X is spectrally positive and a ≤ A, it holds that

P * n (a < X (0) ≤ c | T (a) < T (0)) = P * n (a < X (0) ≤ c) P * n (T (a) < T (0)) ≤ P * n (a < X (0) ≤ c) P * n (T (A) < T (0)) . Since P * n (T (A) < T (0)) = P 0 n (T (A) < T (0)) by Lemma 2.1, Lemma 3.6 implies that inf n≥1 r n P * n (T (A) < T (0)) > 0 which leads to P * n (a < X (0) ≤ c | T (a) < T (0)) ≤ Cr n P * n (a < X (0) ≤ c).
We have by definition

r n P * n (a < X (0) ≤ c) = (α -1)r n cs n as n du (1 + u) α ≤ C(c -a) ≤ C(c -a)s n
which achieves the proof.

To control the sum of i.i.d. random variables, we will repeatedly use the following simple combinatorial lemma. In the sequel for I ∈ N and β ∈ N I note |β| = β i and β = iβ i .

Lemma 7.11 Let (Y k ) be i.i.d. random variables with common distribution Y . Then for any even integer I ≥ 0 and any

K ≥ 0, E ⎡ ⎣ K k=1 Y i I ⎤ ⎦ ≤ I I β∈N I : β =I K |β| I i=1 E Y i β i . Proof We have E (Y 1 + • • • + Y K ) I = 1≤k 1 ,...,k I ≤K E(Y k 1 . . . Y k I ). Since the (Y k )'s are i.i.d., we have E Y k 1 . . . Y k I = m β 1 1 . . . m β I
I with m i = E(Y i ) and β i the number of i-tuples of k, i.e., β 1 is the number of singletons, β 2 the number of pairs, etc … Since I is even, this leads to In the sequel, we will use the inequality

E (Y 1 + • • • + Y K ) I ≤ 0≤β 1 ,...,β I ≤K : β =I A I,K (β) |m 1 | β 1 . . . |m I | β I with A I,K (β)
E (G n (a)) i ≤ i!(r n W n (a)) i , i ≥ 1, a > 0,
which comes from the fact that G n (a) is stochastically dominated by an exponential random variable with parameter 1p a n (a) = 1/(r n W n (a)). We now use the previous bounds on the moments to control the probability

P ⎛ ⎝ ξ a n + G n (a) k=1 ξ a n,k ≥ λr n ⎞ ⎠ .
We will see that it achieves a linear bound (in ba) which justifies the need of the min later on.

Lemma 7.12 For any A > a 0 and any even integer I ≥ 2, there exists a finite constant C such that for all n ≥ 1, all λ > 0 and all a 0 ≤ a < b ≤ A with ba ≤ t 0 /s n ,

P ⎛ ⎝ Y + G n (a) k=1 ξ a n,k ≥ λr n ⎞ ⎠ ≤ C b -a λ I s n r -I /2 n
where Y is any random variable equal in distribution either to ξ a n or to G n (ba).

Proof Using first the triangular inequality and then Markov inequality gives

P ⎛ ⎝ Y + G n (a) k=1 ξ a n,k ≥ λr n ⎞ ⎠ ≤ (2/λr n ) I ⎛ ⎜ ⎝E Y I + E ⎡ ⎢ ⎣ ⎛ ⎝ G n (a) k=1 ξ a n,k ⎞ ⎠ I ⎤ ⎥ ⎦ ⎞ ⎟ ⎠ .
Using the independence between G n (a) and (ξ a n,k , k ≥ 1) together with Lemma 7.11 gives

E ⎡ ⎢ ⎣ ⎛ ⎝ G n (a) k=1 ξ a n,k ⎞ ⎠ I ⎤ ⎥ ⎦ ≤ C β∈N I : β =I E (G n (a)) |β| I i=1 E (ξ a n ) i β i ≤ C β∈N I : β =I (r n W n (a)) |β| I i=1 E (ξ a n ) i β i .
Lemma 7.7 gives the bound 

I i=1 E (ξ a n ) i β i ≤ C ((b -a)s n /(r n W n (a))) β 1 I i=2 ((b -a)s n ) β i = C((b -a)s n ) |β| (r n W n (a)) -β 1 ≤ C(b -a)s n (r n W n (a)) -
⎛ ⎝ Y + G n (a) k=1 ξ a n,k ≥ λr n ⎞ ⎠ ≤ C(λr n ) -I (b -a)s n ⎛ ⎝ 1 + β∈N I : β =I (r n W n (a)) |β|-β 1 ⎞ ⎠ . But |β| -β 1 = I i=2 β i ≤ I i=2 (i/2)β i = 1 2 ( β -β 1 ) ≤ I /2 (29) and r n W n (a) ≥ 1 so (r n W n (a)) |β|-β 1 ≤ (r n W n (a)) I /2
, which proves the result.

Lemma 7.13

For any i ≥ 1 and A > 0, it holds that

sup r -i n E (N n,a ) i : n ≥ 1, 0 < a < b ≤ A < +∞ and sup r -i n E ( N a n,b ) i : n ≥ 1, 0 < a < b < c ≤ A, b -a ≤ t 0 /s n < +∞.
Proof The result on N n,a comes from the following inequality E and we finally get the desired bound for I large enough, i.e., such that I (α -1) ≥ 3.

((N n,a ) i ) ≤ E((G n (a)) i ).
Inspecting the proof of Proposition 7.2 one can check that one can choose the two constants γ to be equal.

  similarly, one can obtain N (T (a) < T (0)) = W (a)/W (a) as follows (which will prove W n (a) → W (a) in view of Lemma 3.3). Setting h(x) := N (T (x) < T (0)), by the exponential formula for the Poisson point process of excursions, we get, by

Proposition 4 . 3 . 4 . 1

 4341 1 establishes the convergence of the finite-dimensional distributions of the local time processes shifted at a positive level, from which we deduce the finite-dimensional convergence of the processes appearing in Theorems 2.3 and 2.4 in Corollaries 4.2 and 4.Proposition Let a 0 > 0. Then, the two sequences of shifted processes L 0

Lemmas 2 .

 2 1 and 3.6 (use Lemma 3.3 for P n ) give lim n→+∞ P * n (T (a 1 ) < T (0))

Proposition 5 . 1

 51 For any a 0 > 0, the sequence L 0 (a 0 + • ) under P * n ( • | T (a 0 ) < T (0)) converges weakly to the continuous process L 0 (a 0 + • ) under N ( • | T (a 0 ) < T (0)).

4 . 6 . 1 Theorem 6 . 2

 46162 In the sequel, for ζ > 0 introduce Z ζ * the law of L( • , T L (ζ )) under P 0 ( • | T L (ζ ) < +∞) and Z * (resp. Z) the push-forward of N (resp. N ) by L 0 . In other words, Z * and Z are defined byZ * (A) = N (L 0 ∈ A) and Z(A) = N (L 0 ∈ A)for any Borel set A ⊂ E . The two theorems below are therefore plain reformulations of Theorem 2.3 and 2.Theorem For any ε > 0, the two sequencesZ 1 * n ( • | T (0) > ε) and Z 1 n ( • | T (0) > ε) converge in the sense of finite-dimensional distributions to Z * ( • | T (0) > ε) and Z( • | T (0) > ε), respectively. If in addition, the tightness assumption holds, then both convergences hold in the sense of weak convergence. Let ζ > 0 and (z n ) be any integer sequence such that z n /r n → ζ . Then, the sequence Z z n * n converges in the sense of finite-dimensional distributions to Z ζ * . If in addition, the tightness assumption holds, then the convergence holds in the sense of weak convergence.

Proposition 7 .

 7 3 then concludes the proof.

  ≥ 0 : X (t) / ∈ (0, a)}: then the inclusion {T (a) < T (b), T (a) < T (0)} ⊂ {a ≤ X (τ a ) < b} holds P x 0 n -almost surely and leads to 1p x 0 n,ξ (a, b) = P x 0 n (T (a) < T (b), T (a) < T (0)) P x 0 n (T (a) < T (0))

  the number of I -tuples k ∈ {1, . . . , K } I with exactly β i i-tuples for each i = 1, . . . , I . There are K (K -1) . . . (K -(|β|-1)) different ways of choosing the |β| different values taken by k, thus A I,K (β) = K (K -1) . . . (K -(|β| -1)) × B(I, |β|) with B(i, a) the number of ways of assigning i objects into a different boxes in such a way that no box is empty, so that A I,K (β) ≤ K |β| I |β| ≤ K |β| I I since |β| ≤ β = I .

β 1 where

 1 ((ba)s n ) |β| ≤ C(ba)s n follows from the fact that (ba)s n ≤ t 0 while |β| ≥ 1. Using (28) for the case Y = ξ a n and the finiteness of C I for the case Y = G n (ba), one can write E(Y I ) ≤ C(ba)s n , which gives P

( 1 +E ( 1 +E ( 1 + 1 β∈N I 1 :.≤.)

 11111 For N a n,b , we use the fact that | ξ a n | is stochastically dominated by 1 + G n (ba) (since for any x 0 > 0, |ξ x 0 n | is), thus E ( N a n,b ) i ≤ E G n,k (ba)) n,k (ba), k ≥ 1) i.i.d. with common distribution G n (ba), independent of G n (a). Thus, Lemma 7.11 givesE ( N a n,b ) i ≤ C β∈N i : β =i E (1 + G n (a)) |β| i k=1 G n (ba)) k β k .Since G n (a) is stochastically dominated by an exponential random variable with parameter 1p a n (a) = 1/(r n W n (a)) and G n (ba) is integer valued, so that (1 + G n (ba)) k ≤ (1 + G n (ba)) i for any 1 ≤ k ≤ i,we get, using that |β| ≤ i and that all quantities are greater than 1,E ( N a n,b ) i ≤ C E (1 + Er n W n (a)) i E (1 + G n (ba)) i iwhere E is a mean-1 exponential random variable. Using that for each 1≤ k ≤ i E (G n (ba)) k ≤ E (G n (ba)) i ≤ C i (ba)s n ≤ C i t 0 , one gets sup E (1 + G n (ba)) i i : n ≥ 1, ba ≤ t 0 /s n < +∞.Together with the inequalityEr n W n (a)) i ≤ E (1 + Er n W n (A)) i ≤ Cr i nthis concludes the proof.We can now prove Proposition 7.2. Remember that we must find constants C and γ > 0 such thatP * n L 0 (c) -L 0 (b) ∧ L 0 (b) -L 0 (a) ≥ λ | T (a) < T (0) ≤ C (ca) 3/2 λ γ uniformly in n ≥ 1, λ > 0 and a 0 ≤ a < b < c ≤ A with (ba) ∨ (cb) ≤ t 0 /s n .Proof of Proposition 7.2 Fix four even integers I 1 , I 2 , I 3 , I 4 . By[START_REF] Helland | Continuity of a class of random time transformations[END_REF],P * n L 0 (c) -L 0 (b) ∧ L 0 (b) -L 0 (a) ≥ λ | T (a) < T (0) λ n = λr n .Let F be the σ -algebra generated by χ a n , G n (a), ξ a n and the (ξ a n,k , k ≥ 1). Then, the above probability is equal toE π + π a + π b where π = P θ a n 1 { ξ a n ≥0} ≥ λ n /3 F = 1 { ξ a n ≥0} P θ a n ≥ λ n /3 χ a n , ≥ λ n /3 N n,a ⎞ ⎠ and π b = P The two terms π a and π b can be dealt with very similarly. Fix u = a or b, and denote by N u the random variable N n,a if u = a or N a n,b if u = b. With this notation,(θ un,k , k ≥ 1) are i.i.d. and independent from N u , so that Markov inequality and Lemma 7.11 giveπ u ≤ (3I 1 /λ n ) I i ≤ C((ca)s n ) |β| ≤ C(ca)s n since 1 ≤ |β| ≤ I 1 and (ca)s n ≤ t 0 . Since N u is integer valued, it holds that N |β| u ≤ N I 1u and finally this givesπ u ≤ Cλ -I 1 (N u /r n ) I 1 (ca)s n . Cλ -I1 (ca)s n E (N u /r n ) 2I1 P Lemma 7.12 with Y = ξ a n gives, together with Lemma 7.13,It remains to control the term π : in { ξ a n ≥ 0}, ξ a n is equal in distribution to G n (ba)and is independent of everything else; thus, we haveE Since E(| θ a n | I 3 | χ a n ) is independent of G n (ba) + G n (a) Cλ -I 3 -I 4 n (ca) 2 s 2 n r -I 4 /2 nwhere the second inequality follows using[START_REF] Lambert | The weak convergence of regenerative processes using some excursion path decompositions[END_REF] and Lemma 7.12 withY = G n (ba). Since (ca)s n ≤ t 0 , we have ((ca)s n ) 2 ≤ C((ca)s n ) 3/2and finally, gathering the previous inequalities, one sees that we have derived the boundP * n L 0 (c) -L 0 (b) ∧ L 0 (b) -L 0 (a) ≥ λ | T (a) < T (0) ≤ C(c -a) 3/2 s Now choose I 2 and I 4 large enough such that both sequences (s are bounded: This is possible since for any β ∈ R, s n r -β n = s 1-β(α-1) n . Moreover, choose I 2 not only even but a multiple of 4. Then, once I 2 and I 4 are fixed, choosing I 1 and I 3 in such a way that I 1 + I 2 /2 = I 3 + I 4 concludes the proof.

7. 2 3 . 7 . 14 E (ξ a n ) i β i ⎞ ⎠≤

 23714⎞ Case ba ≥ t 0 /s n We now consider the simpler case ba ≥ t 0 /s n and prove Proposition 7.Lemma For any i ≥ 1, there exists a finite constant C such that for all n ≥ 1 and all 0 < a < b such that ba ≥ t 0 /s n ,E | ξ a n | i ≤ C(r n W n (ba)) i .Proof In view of[START_REF] Jacod | Limit theorems for Stochastic Processes[END_REF], it is enough to show thatE |ξ x 0 n | i ≤ C(r n W n (ba)) i for every x 0 > 0. Since ba ≥ t 0 /s n , exploiting the monotonicity of w n gives p b-a n (ba) = 1 -w n (0) w n ((ba)s n ) ≥ 1 -1 w n (t 0 ) ≥ 1 2since t 0 has been chosen such that w n (t 0 ) ≥ 2. Since G n (ba) is a geometric random variable with parameter p b-a n (ba), we haveE (G n (ba)) i ≥ E(G n (ba)) = p b-a n (ba) 1p b-a n (ba) ≥ 1,using p b-a n (ba) ≥ 1/2. Thus for any x 0 > 0,E |ξ x 0 n | i = 1p x 0 n,ξ (a, b) + p x 0 n,ξ (a, b)E (G n (ba)) i ≤ (1p x 0 n,ξ (a, b))E (G n (ba)) i + p x 0 n,ξ (a, b)E (G n (ba)) i .This last quantity is equal to E (G n (b-a)) i and so the inequalityE (G n (ba)) i ≤ i!(r n W n (ba)) i achieves the proof. Lemma 7.[START_REF] Grimvall | On the convergence of sequences of branching processes[END_REF] For any i ≥ 1, there exists a finite constant C such that for all n ≥ 1 and all0 < a < b with ba ≥ t 0 /s n , E ξ a n i ≤ C(r n W n (ba)) i-1 .Moreover, for any n ≥ 1 and 0 < a < b,E(ξ a n ) ≤ W n (ba) W n (a) -W n (0) Proof By definition (15) of ξ n , we have E ξ a n i = 1p a n,ξ (a, b) + p a n,ξ (a, b)E (G n (ba))i and so plugging in[START_REF] Knight | Random walks and a sojourn density process of Brownian motion[END_REF] givesE ξ a n i ≤ 1 + i! W n (ba) W n (0) i W n (0)(W n (b) -W n (ba)) W n (ba)(W n (a) -W n (0)) ≤ 2i!(r n W n (ba)) i-1 using W n (b) -W n (ba) ≤ W n (a) -W n (0) and 1 ≤ i!(r n W n (ba)) i-1 .The second inequality is a direct consequence of[START_REF] Kuznetsov | The theory of scale functions for spectrally negative Lévy processes[END_REF] which can be expanded toE ξ a n = W n (ba) -W n (0) -(W n (b) -W n (a)) W n (a) -W n (0) .The result is proved.Proof of Proposition 7.3 By (17), we haveP * n L 0 (b) -L 0 (a) ≥ λ | T (a) < T (0) = P λr n ) -I ⎛ ⎝ E | ξ a n | I + β∈N I : β =I E (G n (a)) |β| I i=1 Cλ -I ⎛ ⎝ (W n (ba)) I + β∈N I : β =I r |β|-I n (W n (a)) |β| I i=1 E (ξ a n ) i β i ⎞ ⎠where the first inequality comes from the triangular inequality, Markov inequality and Lemma 7.11, and the second inequality is a consequence of Lemma 7.14 and the fact that G n (a) is stochastically dominated by an exponential random variable with parameter 1p a n (a). Using Lemma 7.15 and the identity I i=2 (i -1)β i = I -|β| gives r |β|-I n (W n (a)) |β| I i=1 E (ξ a n ) i β i ≤ Cr |β|-I n (W n (a)) |β| W n (ba) W n (a) -W n (0) β 1 (r n W n (ba)) I -|β| ≤ C(W n (ba)) I +β 1 -|β| . n (ba)) I + β∈N I : β =I (W n (ba)) I -|β|+β 1 ⎞ ⎠ . Since W n (t) = w n (ts n )/s α-1 n , it holds that sup W n (t) t α-1 : n ≥ 1, t ≥ t 0 /s n = sup w n (t) t α-1 : n ≥ 1, t ≥ t 0which has been shown to be finite in the proof of Lemma 7.1. Hence, the last upper bound yields P ⎛ ⎝ ξ a n + G n (a) k=1 ξ a n,k ≥ λr n ⎞ ⎠ ≤ Cλ -I ⎛ ⎝ (ba) I (α-1) + β∈N I : β =I (ba) (I -|β|+β 1 )(α-1) ⎞ ⎠ . By (29), I -|β| + β 1 ≥ I /2 and since we consider ba ≤ A, this gives (ba) (I -|β|+β 1 )(α-1) ≤ C(ba) (α-1)I /2
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