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We study the boron-oxygen defect in Si co-doped with gallium and boron with the hole density

10 times higher than the boron concentration. Instead of the linear dependence of the defect density

on the hole density observed in boron and phosphorus compensated silicon, we find a

proportionality to the boron concentration. This indicates the participation of substitutional, rather

than interstitial, boron in the defect complex. The measured defect formation rate constant is

proportional to the hole density squared, which gives credit to latent defect models against defect

reactions limited by the diffusion and trapping of oxygen dimers by boron atoms. VC 2012 American
Institute of Physics. [doi:10.1063/1.3680205]

A degradation of the minority-carrier lifetime is known to

occur in boron (B)-doped and oxygen (O)-containing crystal-

line silicon (Si) under illumination or carrier injection. There-

fore, solar cells made of B-doped Czochralski (Cz)-Si or cast

multi-crystalline (mc)-Si suffer from a loss of conversion effi-

ciency of up to 10% relative. This issue has to be addressed

with particular care in the case of Cz-Si containing high O con-

centrations or low-cost upgraded-metallurgical grade (Ref. 1)

(UMG)-Si which usually contains larger B concentrations than

standard Siemens purified Si. Since 2004 (Ref. 2) and until

very recently, the observed degradation was believed to be due

to the formation of a complex made up of one substitutional B

atom (Bs) and one interstitial O dimer (O2i). This defect model

was proposed after the observation that the saturated (i.e., after

complete degradation) effective defect density Nt,sat* exhibits a

linear dependence on Bs concentration [B] and a quadratic de-

pendence on interstitial O concentration [Oi]. However, recent

measurements made on B and phosphorus (P) co-doped p-type

Si (Refs. 3 and 4) showed that Nt,sat* was proportional to the

hole density p0 (i.e., to the net dopant density NA-ND) rather

than to the total boron concentration [B]. Note that this obser-

vation was made possible in Si co-doped with B and P because

p0 is, in such material, systematically below [B] whereas it is

almost equal to [B] in uncompensated B-doped Si. This finding

was initially explained by the existence of B-P pairs in com-

pensated Si resulting in a decrease of available Bs atoms for

BsO2i complex formation.3 However, the existence of such

B-P pairs in large proportion was later shown to be very doubt-

ful5,6 and thus unable to explain the observed reduction of

Nt,sat* in compensated p-type Si.

In the light of those observations, Voronkov and Falster7

proposed a model consisting of a latent defect made of one

interstitial boron atom Bi and one oxygen dimer O2i. The lin-

ear dependence of Nt,sat* on p0 is thereby explained by the

proportionality of the solubility NBi of positively charged

Bi
þ in p-type Si to the free hole density, during the last stage

of crystal cooling. The degradation is proposed to result

from a change of the configuration of the defect triggered by

the injection of excess carriers.

On the other hand, it is well-known that light-induced mi-

nority-carrier lifetime degradation does not take place in

electronic-grade (EG)-Si doped with only gallium (Ga). This

implies that either no complex can form between Ga atoms and

O2i (Refs. 2 and 8) or such complex is electrically inactive.9 In

Ga and B co-doped Cz-Si samples of the same total doping

p0¼ [B]þ [Ga] � 1.5� 1016 cm�3, Arivanandhan et al.10

measured lower lifetime after degradation in samples contain-

ing higher [B]. This result might lead one to question Voron-

kov and Falster’s model which would expect, in Si containing

B, the amplitude of the degradation to be proportional to p0 and

independent on [B]. Arivanandhan’s study was, however, based

on minority-carrier lifetime measurements on samples with no

surface passivation and in which [Oi] was not measured,

assuming the latter to be the same in all samples. Given the

quadratic dependence of Nt,sat* on [Oi], an experimental mea-

surement of [Oi] is, however, essential. Moreover, the degraded

lifetime was measured after only 120 min light-soaking which

is a priori insufficient to ensure complete degradation.

In this work, we focus on the boron-oxygen (BO) defect

in Si co-doped with Ga and B in which p0> [B]. We deter-

mine the saturated defect density and formation rate and

study their dependences on [B] and p0. The aim of the pres-

ent work is to check whether the presence of Ga in Si co-

doped with B impacts on the formation of the BO defect and

to verify if experimental results are consistent with a recently

proposed defect model7 based on measurements in B-doped

and B and P co-doped Si.

For that purpose, samples were selected at different

heights (20%, 30%, and 40%) of a Cz-Si crystal of 50–70 mm

in diameter, grown from a melt doped with 1.47� 1015 cm�3

of B and 1.67� 1018 cm�3 of Ga. These samples, together

with B-doped and Ga-doped Cz-Si control samples, were first

subjected to a phosphorus-diffusion gettering at 820 �C to dis-

solve oxygen-related thermal donors (TDs) and eliminate me-

tallic impurities. This ensures that there is no or very little

a)Author to whom correspondence should be addressed. Electronic mail:
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impact of Fe-B or Fe-Ga pairs during the degradation experi-

ment. Then, samples were subsequently acid etched to remove

the diffused layers and the saw damage, RCA cleaned and

coated on both sides at low temperature (400 �C) with PECVD

hydrogenated silicon-nitride (SiNx:H) layers in order to ensure

a good surface passivation.11 The samples’ thicknesses, after

acid etch, were in the range 130–560 lm. The minority-carrier

lifetime s(t) was then measured using the quasi-steady-state

photoconductance (QSSPC) technique (Ref. 12) immediately

after annihilation of the boron-oxygen defect by a 30 min

annealing at 200 �C in the dark (t¼ 0), and after different deg-

radation times t under a 10 mW/cm2 light-soaking at a tem-

perature of 25–27 �C. Samples were carefully protected from

light-exposure between annealing and the initial minority-

carrier lifetime measurement to ensure that no BO defects

were generated before the measurement of s(0). The minority-

carrier lifetime degraded under illumination in all the samples

except for the Ga-doped Si one, in which it remained stable

(Fig. 1). This proves that the surface passivation quality of the

SiNx:H layer did not change throughout the experiment. The

observed degradation in samples containing B can thus be

attributed to a decrease of the bulk lifetime.

SiNx:H layers were then etched off in hydrofluoric acid

and [Oi] was determined by Fourier transform infrared spec-

troscopy (FTIR) to be in the range [Oi]¼ (6 6 1)� 1017 cm�3

to (11 6 2)� 1017 cm�3. Carbon is also known to affect the

defect density,2 presumably by capturing O2i.
13 Its concentra-

tion was measured in our samples by FTIR to be comprised in

the narrow range [C]¼ (7 6 1)� 1016 cm�3 to (9 6 2)

� 1016 cm�3 and should thus not have a significant influence

in the present study. In each sample, the carrier density p0 is

deduced from the resistivity measured with a four-point probe,

in the range 0.7–10.4 X.cm. In samples doped with B only,

[B] is taken as equal to p0, assuming complete dopant ioniza-

tion. This assumption is valid since only samples with [B]

lower than 2� 1016 cm�3 are considered in this work.14 In

samples co-doped with Ga and B, [B] is calculated from the

sample’s position in the crystal and the initial concentrations

in the Si melt using the Scheil equation. In our samples, it lies

in the range [B]¼ (1.2 6 0.5)� 1015 cm�3 to (1.3 6 0.9)

� 1015 cm�3. Note that the high segregation coefficient of B

in Si (kB¼ 0.8) means that its concentration varies along the

ingot much less than the concentration of Ga. In addition, no

significant evaporation of B from the melt is expected to

occur. Hence, the B concentration at a given height of the in-

got can be determined with an accuracy that is sufficient for

the purposes of the present study. These co-doped samples

present the advantage for this study that they contain more Ga

than B and therefore p0 is about 10 times higher than [B]. This

will enable us to clearly establish if the defect density’s linear

dependence on p0, observed in compensated Si in which

p0< [B], is still valid when p0> [B].

After a degradation time t, the effective defect density

Nt*(t) is calculated with the following expression,

N�t ðtÞ ¼
1

sLID

¼ 1

sðtÞ �
1

sð0Þ ; (1)

s(t) being the minority-carrier lifetime measured at a fixed

excess-carrier injection Dn equal to 10% of the carrier den-

sity p0 after illumination for a duration t. The evolution of

Nt*(t) with illumination time can be fitted, as previously

reported,3 with

N�t ðtÞ ¼ N�fast þ N�t;sat � ð1� expð�Rgen � tÞÞ; (2)

in which Nfast* accounts for a fast initial degradation occur-

ring during the first few seconds of light exposure which can

be observed in Fig. 1. Since this fast degradation has a very

small impact on the final degraded s, we only focus on the

slow-forming defect by studying its saturated effective den-

sity Nt,sat* and formation rate constant Rgen.

It is well known that Nt,sat* displays a quadratic depend-

ence on [Oi]. This dependence is thought to be due to the

participation of oxygen dimers2 which are themselves pres-

ent in a concentration proportional to [Oi] squared.13 Hence,

small variations in [Oi] from sample to sample can lead to

significant variations in Nt,sat* even for equal doping levels.

Since we intend to study the impact of dopant concentration

on the defect density and the nature of the B atom involved

in the complex, a more relevant parameter to focus on is

NBC¼Nt,sat*/[Oi].
2 This oxygen-normalized parameter

reflects the influence of defect components (such as [B] or

p0) not directly related to [Oi].

The relative defect density NBC measured for three sam-

ples co-doped with Ga and B and three B-doped control sam-

ples is plotted in Fig. 2 as a function of p0 and [B]. For

comparison, we have also plotted a linear regression of ex-

perimental data points from Schmidt and Bothe2 obtained on

uncompensated B-doped Cz-Si samples. A reduction of the

BO defect density by about a factor of 2 was found by the

same authors in P-diffused Si as compared to as-cut Si.15

Since our samples underwent a phosphorus-diffusion,

whereas the samples from Ref. 2 did not, we have corrected

the linear fit from Ref. 2 by dividing the effective defect den-

sity by 2, in order to be able to compare it with our measure-

ments. We have also plotted for comparison two points from

Lim et al.4 on P-diffused B and P compensated p-type Si.

These two points correspond to the seed and tail ends of the

ingot studied in their paper, for which the measured value of

FIG. 1. (Color online) Minority-carrier lifetime measured in B-doped and

Ga-doped controls and in Si co-doped with Ga and B as a function of time

under illumination at 10 mW/cm2. Lines are guides to the eye.
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[Oi] was reported. As can be seen in Fig. 2, B-doped controls

measured in the present work agree well with the previously

measured defect density, which supports the validity of our

experimental setup. In samples co-doped with Ga and B,

however, NBC is reduced by more than one order of magni-

tude compared to B-doped Si when plotted against p0. On

the other hand, it scales well with B-doped Si when plotted

as a function of [B]. Note that the drastic reduction of NBC

compared to the linear dependence on p0 is only observable

in these samples because [B] is about 10 times lower than p0

due to the high concentration of Ga. We conclude from this

result that in Si co-doped with B and Ga, the defect density

is not related to p0 but is, instead, proportional to [B]. This

gives a general picture of the defect in which its density is

proportional to p0¼NA�ND when p0< [B] (i.e., when co-

doped with P (Refs. 3 and 4)) and to [B] when p0> [B] (i.e.,

when co-doped with Ga). Voronkov and Falster’s model7

fails to describe the present result, since the concentration of

dissolved interstitial Bi involved in that defect model is

believed to be proportional to p0 and independent on [B].

Instead, the proportionality with [B], found in our experi-

ments, indicates the participation of substitutional Bs in the

defect formation. The reduction of the defect density

observed in Si compensated with P as compared to the

expected linear dependence on [B] remains, however, to be

explained.

One could also imagine that the defect is made of Bi,

according to Voronkov and Falster’s model, but that either one

of the two densities of Bi or O2i is strongly affected by the

presence of Ga. For example, the formation of BiGas or GasO2i

pairs during the cooling of samples after phosphorus-diffusion

is conceivable. No indication of the existence of such com-

plexes has, however, been reported yet. Further investigation

would be necessary to assess if they would be stable enough to

reduce either concentrations of Bi or O2i to such an extent that

the BO defect density would decrease by more than one order

of magnitude, as it is observed in this work.

The formation rate constant Rgen of the slow forming

BO defect can also be informative to understand the genesis

of the defect. Its value, extracted from the fit of equation (2)

to the measured Nt*(t), is plotted in Fig. 3 against p0
2 and

p0� [B]. Fig. 3 also depicts Rgen calculated with Palmer’s

model, which fits previous experimental data in uncompen-

sated B-doped Si.16 As can be seen, Rgen measured in the B-

doped controls agrees well with Palmer’s model, which

again proves the validity of our experimental setup.

Depending on the defect formation mechanism, the for-

mation rate constant Rgen is believed to depend either on p0
2

or on p0� [B]. A linear dependence on p0
2 is expected from

the reconstruction of a latent defect,7 whereas a defect reac-

tion involving the diffusion of mobile O2i under illumination

should result in our samples in a linear dependence on

p0� [B],16 since the B-related component of the defect was

shown to be proportional to [B]. In the co-doped samples

measured in this work, Rgen scales well with uncompensated

Si when plotted against p0
2 but shows significant deviation

when plotted against p0� [B]. It is worth noting that in

p-type Si co-doped with B and P, Rgen is also proportional to

p0
2, despite the fact that p0< [B].3,4 It seems, therefore, that

whatever the ratio between p0 and [B], Rgen is always deter-

mined by p0
2 and independent on [B]. This result therefore

supports the version of the defect model in which it is acti-

vated by the reconfiguration of its latent state into a

recombination-active form. Note that this does not contradict

our previous conclusion that Bs is involved in the defect

complex instead of Bi. The latent character of the complex

does not imply a specific composition; the existence of a

latent BsO2i defect that would form during Si cooling is

possible.

In summary, we have measured the effective BO defect

density in Si co-doped with B and Ga to be significantly

reduced compared to the linear dependence on p0 expected

by the model recently proposed by Voronkov and Falster.7

Instead, the defect density in samples studied in this work

shows a good agreement with a linear dependence on [B].

This result could be explained either by the involvement of

FIG. 2. (Color online) Relative saturated defect density plotted in B-doped

controls and in Si co-doped with B and Ga as a function of the B concentra-

tion or the carrier density. Solid line is a fit to experimental data on B-doped

Si from Ref. 2. Dashed line corresponds to the same fit divided by a correction

factor of 2 to account for the defect density reduction expected in P-diffused

Si. Open symbols correspond to effective defect density from Ref. 4 measured

in P-diffused B and P compensated Si and plotted as a function of p0.

FIG. 3. (Color online) Defect formation rate constant plotted as a function

of p0
2 or [B]� p0, in B-doped controls and Si co-doped with B and Ga. Solid

line represents Rgen at 25 �C as calculated with Palmer’s model.
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Bs instead of Bi in the defect or by the reduction of the den-

sity of Bi or O2i due to the presence of Ga. In any case, the

implications of this result for solar cells are positive. For

example, it shows that the addition of Ga during crystalliza-

tion of UMG-Si, used to control the Si doping uniformity,17

does not lead, as would be expected by Voronkov and Fal-

ster’s model, to a stronger degradation. Finally, the measured

linear dependence of Rgen on p0
2 supports a model for the

defect formation based on the activation of a latent defect,

rather than due to the diffusion and trapping of O2i.
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