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STABILITY OF STANDING WAVES FOR A NONLINEAR KLEIN–GORDON EQUATION

WITH DELTA POTENTIALS

ELEK CSOBO, FRANÇOIS GENOUD, MASAHITO OHTA, AND JULIEN ROYER

Abstract. In this paper, we study local well-posedness and orbital stability of standing waves for a singularly perturbed

one-dimensional nonlinear Klein–Gordon equation. We first establish local well-posedness of the Cauchy problem by a

fixed point argument. Unlike the unperturbed case, a noteworthy difficulty here arises from the possible non-unitarity
of the semigroup generating the corresponding linear evolution. We then show that the equation is Hamiltonian and

we establish several stability/instability results for its standing waves. Our analysis relies on a detailed study of the

spectral properties of the linearization of the equation, and on the well-known ‘slope condition’ for orbital stability.

1. Introduction

The purpose of this work is to initiate the study of the Cauchy problem for a singularly perturbed one-dimensional
nonlinear Klein–Gordon equation, namely

utt − uxx +m2u+ γδu+ iαδut − |u|p−1u = 0,

u(t, x) −−−−→
|x|→∞

0,

(u(t), ∂tu(t))|t=0 = (u0, u1),

(1.1)

where u : R × R → C, m > 0, α, γ ∈ R are parameters and p > 1 determines the strength of the nonlinearity. The
two coefficients δ = δ(x) are singular perturbations both given by a Dirac mass at x = 0, often referred to as a
‘delta potential’ in the context of one-dimensional evolution equations. Such space-dependent problems are sometimes
termed ‘inhomogeneous’, as they model wave propagation in inhomogeneous media.

The condition that u vanishes at spatial infinity reflects a common physical requirement of having spatially localized
waves, sometimes called ‘solitons’. We shall in fact seek solutions of (1.1) in H1(R).

We will show that the evolution generated by (1.1) admits a peculiar Hamiltonian formalism, with a symplectic
structure depending on the coupling constant α ∈ R. In fact, if α ∈ C \ R, the Hamiltonian of the system is not
constant along the flow, as can be deduced from the symplectic structure in Section 3, or by a direct calculation using
a smooth solution. Furthermore, this Hamiltonian system is phase invariant (if u is a solution, so is eiθu, for any
θ ∈ R), and thus possesses standing wave solutions, of the form u(t, x) = eiωtϕ(x), with ω ∈ R and ϕ : R → R. The
stability of standing waves in Hamiltonian systems with symmetries has attracted a lot of attention since the 1980’s.
So far, this issue has been fairly well understood in homogeneous media, while in inhomogeneous media it is still
a subject of intense research, both theoretically and experimentally. Inhomogeneous nonlinear dispersive equations
appear in various fields of physics such as nonlinear optics, cold quantum gases (e.g. Bose–Einstein condensates),
plasma physics, etc. More specifically, our interest in the present problem was initially motivated by [25], where (1.1)
arises as an effective model for a superfluid Bose gas.

The nonlinear Klein–Gordon equation in homogeneous media has been extensively studied. A detailed presentation
of the local and global well-posedness theory can be found in [7]. Orbital stability of standing wave solutions was
first addressed in the classical papers of Shatah [29,30], and Shatah and Strauss [31]. They proved that, in N space
dimensions, standing waves of any frequency are orbitally unstable if p > 1 + 4/N . If 1 < p < 1 + 4/N , then there
exists a critical frequency ωc such that a standing wave of frequency ω is orbitally stable if ωc < |ω| < m and unstable
if |ω| < ωc. Strong instability by blow-up in finite time was studied by Liu, Ohta and Todorova [23], and by Ohta and
Todorova [26,27]. In [19], Jeanjean and Le Coz introduced a mountain-pass approach to orbital stability for the Klein–
Gordon equation, which allowed them to simplify the classical proofs and to obtain new results. In [6], Bellazzini,
Ghimenti and Le Coz proved the existence of multi-solitary waves for the nonlinear Klein–Gordon equation.

The effect of a singular potential on the dynamics of the nonlinear Schrödinger equation has recently attracted
substantial attention. Well-posedness of the Cauchy problem in the presence of a delta potential was studied in [1],
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while scattering was addressed in [8,14,18]. The stability of standing waves of the nonlinear Schrödinger equation
with a delta potential was studied in [11–13,22,24] in various regimes. (Some authors consider δ′ interactions as well,
see e.g. [2,4].) Stability properties of so-called ‘black solitons’ (standing waves with |ϕ(x)| → 1 as |x| → ∞) were also
recently addressed in [17].

The present work is a first step in the study of the nonlinear Klein–Gordon equation with delta potentials. Our
main goal here is to discuss orbital stability of standing waves of (1.1). Shortly after the seminal works [29–31], a
general theory of orbital stability for infinite-dimensional Hamiltonian systems with symmetries was established by
Grillakis, Shatah and Strauss [15]. Their approach, based on the so-called ‘energy-momentum’ method of geometric
mechanics, was recently revisited by De Bièvre, Rota Nodari and the second author [9], and by Stuart [32]. Under
general assumptions on the dynamical system, conditions are given in these papers for orbital stability and instability.
Of course, in order to discuss stability of standing waves, an essential preliminary step is to prove that the Hamiltonian
system under consideration is locally well-posed. We shall thus start by addressing this issue, which is far from obvious
in the context of (1.1).

The singular terms in (1.1) should be interpreted in the sense of distributions. Let us assume that u and ut are
continuous at x = 0. δu is then defined by 〈δu,w〉 = Reu(0)w̄(0), for any function w continuous at x = 0. And δut
is defined similarly. Now, solutions of the equation in (1.1) will be continuous functions satisfying the corresponding
unperturbed equation (with γ = α = 0) pointwise, outside of x = 0, together with the jump condition

u′(0+)− u′(0−) = γu(0) + iαut(0). (1.2)

Formally, this relation is indeed obtained from the equation with the delta potentials by integrating it over x ∈ (−ε,+ε)
and letting ε → 0+. The notion of solution will be made more precise in Section 2, once the appropriate functional
setting has been introduced.

Although writing the delta potentials explicitly may be useful for some formal calculations, we now introduce a
functional-analytic formulation, based on the jump condition (1.2), which will make our analysis more transparent.
It is convenient to reformulate the initial-value problem (1.1) as a first order system for the dependent variables
(u, v) = (u, ut). We will seek solutions to (1.1) with (u, v) ∈ H = H1(R)× L2(R), which we regard as a real Hilbert
space, endowed with the inner product

〈(u1, v1), (u2, v2)〉H = 〈u′1, u′2〉L2 + 〈u1, u2〉L2 + 〈v1, v2〉L2 ,

where the real L2 inner product is defined as

〈u, v〉L2 = Re

∫
R
uv̄ dx.

Here and henceforth, ′ denotes differentiation with respect to x ∈ R.
We identify L2(R) × L2(R) with its dual. Then the dual H ∗ of H is H−1(R) × L2(R), and for any (ϕ,ψ) ∈

L2(R)× L2(R) ⊂ H−1(R)× L2(R), the duality pairing is given by

〈(ϕ,ψ), (u, v)〉H ∗×H = 〈ϕ, u〉L2 + 〈ψ, v〉L2 , (u, v) ∈H .

We shall merely write 〈·, ·〉 for 〈·, ·〉H ∗×H when no confusion is possible.
The central object in our discussion of the well-posedness of (1.1) in Section 2 is the generatorA of the corresponding

linear evolution, defined as

A =

(
0 IdL2

∂2x −m2 0

)
, (1.3)

with domain
D =

{
(u, v) ∈ H2,∗ ×H1 : u′(0+)− u′(0−) = γu(0) + iαv(0)

}
⊂H , (1.4)

where
H2,∗ = H1(R) ∩H2(R \ {0}).

Note that the effect of the delta potentials is encoded in the domain of the generator.
We will show that the operator A generates a C0-semigroup on H which, remarkably, may not be a unitary group.

In contrast to the classical unperturbed case, it is in general only exponentially bounded. We recall that a skew-adjoint
operator on a Hilbert space generates a unitary group (the results which we use in this paper can be found in [7], we
refer for instance to [10] for a more detailed presentation of the theory of semigroups). Skew-adjointness of A depends
on the Hilbert structure chosen on H . For γ non-negative (or negative and close to 0), it will be possible to define
on H an inner product whose corresponding norm is equivalent to the usual one and which makes A skew-adjoint.
However, for other values of γ, we can only consider on H a Hilbert structure for which A generates a continuous
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(possibly exponentially growing) semigroup. This is in fact enough for our purpose. Notice that the parameter α will
not play any role in this discussion.

Using Duhamel’s formula and the Banach Fixed Point Theorem, we will then construct, for any initial data in H ,
a unique local in time solution. We also prove the blow-up alternative and continuous dependence on the initial data
for this solution.

Next, standing waves, which will be our main focus, are solutions of (1.1) of the form

uω(t, x) = eiωtϕω(x),

where ω ∈ R, and ϕω ∈ H2,∗ is real-valued and satisfies the stationary equation

− ϕ′′ + (m2 − ω2)ϕ+ (γ − αω)δϕ− |ϕ|p−1ϕ = 0, (1.5)

which will be interpreted as

− ϕ′′ + (m2 − ω2)ϕ− |ϕ|p−1ϕ = 0, a.e. x ∈ R, (1.6)

together with the jump condition

ϕ′(0+)− ϕ′(0−) = (γ − αω)ϕ(0). (1.7)

Non-trivial localized solutions to this problem exist if and only if

m2 − ω2 >
(γ − αω)2

4
, (1.8)

in which case they are given by the explicit formula (see Proposition 1 and Remark 1 in [22])

ϕω(x) =

[
(p+ 1)(m2 − ω2)

2
sech2

(
(p− 1)

√
m2 − ω2

2
|x|+ tanh−1

(
− γ − αω

2
√
m2 − ω2

))] 1
p−1

. (1.9)

In particular, there are no standing wave solutions of (1.1) when m = 0.

Definition 1.1. For any fixed m, α and γ, we shall say that ω is admissible if it satisfies the relation (1.8).

In order to reveal the Hamiltonian structure of the initial-value problem (1.1), we shall follow the notation and
terminology of [9]. The Hamiltonian energy functional associated with (1.1) is given by

E(u, v) =
1

2
‖u′‖2L2 +

m2

2
‖u‖2L2 +

1

2
‖v‖2L2 +

γ

2
|u(0)|2 − 1

p+ 1

∫
R
|u|p+1 dx. (1.10)

We shall prove in Section 3 that E is a constant of the motion. Another important quantity is conserved along the
flow of the solution, namely the charge, defined as

Q(u, v) = Im

∫
R
uv̄ dx− α

2
|u(0)|2. (1.11)

We will establish in Section 3 that E,Q ∈ C2(H ,R). Let us now introduce the symplector J : H →H ∗ defined by

J (u, v) = (−iαδu− v, u).

This notion, somewhat more flexible than that of a symplectic map, is introduced in [9, Sec. 6] to define Hamiltonian
systems. It is noteworthy that the coupling constant α appears here in the symplectic structure itself. In this
framework, the equation in (1.1) is formulated as the Hamiltonian system

J d

dt
U(t) = E′(U(t)), (1.12)

where E′ denotes the Fréchet derivative of E. A standing wave is now a solution of the form

Uω(t, x) = eiωtΦω(x), (1.13)

where Φω := (ϕω, iωϕω) satisfies the stationary equation

E′(Φω) + ωQ′(Φω) = 0. (1.14)

We will study the orbital stability of the standing waves (1.13), for admissible values of ω ∈ R, with respect to the
symmetry group S1 acting on H through

T (θ)(u, v) = eiθ(u, v), θ ∈ R. (1.15)

This group action leaves (1.12) invariant. The corresponding notion of orbital stability is the following.
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Definition 1.2. For a fixed ω0 ∈ R, the standing wave eiω0tΦω0 is orbitally stable if the following holds: for any ε > 0
there is a δ > 0 such that, if U(t) is a solution of (3.3), then we have

‖U(0)− Φω0
‖H < δ =⇒ inf

θ∈R

∥∥U(t)− eiθΦω0

∥∥
H

< ε for all t ∈ R. (1.16)

Otherwise, Φω0
is said to be orbitally unstable.

In addition to orbital stability, we will also prove some linear instability results. Writing a solution U of (1.12) in
the form U(t) = eiω0t(Φω0

+ V (t)), we have that, at first order, V satisfies the linearized equation

J d

dt
V (t) = L′′ω0

(Φω0
)V (t), (1.17)

where Lω is defined in (1.20).

Definition 1.3. The standing wave eiω0tΦω0
is linearly unstable if 0 is a linearly unstable solution (in the sense of

Lyapunov) of (1.17).

In Section 4, we will carry out a stability analysis based on the energy-momentum method developed in [9,15,32].
More precisely, our proofs will make use of the well-known slope condition (also known as the ‘Vahkitov–Kolokolov
criterion’), which states that the standing wave Φω0

is stable/unstable provided

d

dω

∣∣∣
ω=ω0

Q(Φω) > 0
/ d

dω

∣∣∣
ω=ω0

Q(Φω) < 0, (1.18)

where the charge of the standing wave (1.13) is explicitly given by

Q(Φω) = Q(ϕω, iωϕω) = −ω ‖ϕω‖2L2 −
α

2
|ϕω(0)|2. (1.19)

The stability/instability of Φω in fact relies on a subtle combination of the slope condition (1.18) and suitable
spectral properties of the linearization of (1.12) (see e.g. [9, Sec. 10.3] for a detailed discussion in the context of
the nonlinear Schrödinger equation). The spectral conditions are conveniently expressed in terms of the Lyapunov
functional Lω : H → R associated with (1.12), defined by

Lω(u, v) = E(u, v) + ωQ(u, v). (1.20)

Let R̃ = diag(R, IdL2) : H → H ∗, where R = −∂2x + 1 : H1(R) → H−1(R) is the Riesz isomorphism. It follows

from the results of Sections 3 and 4 that, for any ω ∈ R, Lω ∈ C2(H ,R), and that R̃−1L′′ω(Φω) : H → H is a

bounded selfadjoint operator. Let us denote by σ(R̃−1L′′ω(Φω)) ⊂ R its spectrum. The relevant spectral conditions
for stability are then formulated as follows.

(S1) There exists λω ∈ R such that σ(R̃−1L′′ω(Φω)) ∩ (−∞, 0) = {−λ2ω} and the subspace ker(L′′ω(Φω) + λ2ωR̃) is
one-dimensional.

(S1′) R̃−1L′′ω(Φω) has two negative eigenvalues (counted with multiplicities): either there exist λω, µω ∈ R such that

σ(R̃−1L′′ω(Φω))∩ (−∞, 0) = {−λ2ω,−µ2
ω}, λ2ω 6= µ2

ω, and the subspaces ker(L′′ω(Φω) + λ2ωR̃) and ker(L′′ω(Φω) +

µ2
ωR̃) are both one-dimensional; or there exists λω ∈ R such that σ(R̃−1L′′ω(Φω)) ∩ (−∞, 0) = {−λ2ω} and the

subspace ker(L′′ω(Φω) + λ2ωR̃) has dimension 2.
(S2) kerL′′ω(Φω) = span{iΦω}.
(S3) Apart from the non-positive eigenvalues, σ(R̃−1L′′ω(Φω)) is positive and bounded away from zero.

In the present context, the Cauchy problem (1.1) being locally well posed, the main results of [9,15,32] imply that,
if the standing wave Φω0

satisfies (S1)–(S3), then it is orbitally stable/unstable provided (1.18) holds. In case (S1) is
replaced by (S1′), we will discuss linear instability of the standing waves, by means of results obtained in [16]. We
shall therefore carry out a thorough spectral analysis to see when conditions (S1)–(S3) (resp. (S1′)–(S3)) are satisfied,
depending on the values of the parameters. By discussing the slope condition for some values of the parameters, we
will then prove various stability/instability results in H and in the subspace Hrad of radial functions.

In this analysis, we shall benefit from the explicit dependence of the solution on the parameters, but the calculations
required for the slope condition are rather involved. This difficulty is reflected in the intricate form of the results
we present in Section 4 and explains why we decided to focus on some regimes and refrained from attempting a
comprehensive analysis. Of course, numerics might come in handy to discuss the slope condition outside the scope of
our analytical results. We conclude this introduction with the following table, which captures simply what ought to be
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checked in order to obtain stability/instability results. The integer nω (resp. nω,rad) denotes the number of negative

eigenvalues (counted with multiplicities) of the operator R̃−1L′′ω(Φω) in H (resp. Hrad).1

nω = 1 nω = 2 and nω,rad = 1
d
dωQ(Φω) > 0 orbitally stable linearly unstable
d
dωQ(Φω) < 0 orbitally unstable orbitally unstable in Hrad, hence in H

2. Local well-posedness of the Cauchy problem

In this section we discuss the local well-posedness of the Cauchy problem (1.1). In order to apply the standard
theory of operator semigroups, we reformulate (1.1) as a first order system on H . We consider on H the operator A
defined by (1.3)–(1.4). Given f : R→ R we set, for U = (u, v) ∈H ,

F (U) =

(
0

f(u)

)
.

With f(u) = |u|p−1 u and U0 = (u0, u1), (1.1) can be rewritten as{
Ut(t)−AU(t) = F (U(t)),

U(0) = U0.
(2.1)

We will show that A generates a strongly continuous semigroup on H , which will allow us to establish the local
well-posedness of (1.1).

Definition 2.1. Let T ∈ (0,∞].

• A strong solution to (2.1) is a function U ∈ C0([0, T ),D) ∩ C1([0, T ),H ) such that (2.1) holds on [0, T ). We
say that u is a strong solution of (1.1) on [0, T ) if (u, ut) is a strong solution of (2.1).

• A weak solution of (2.1) is a function U ∈ C0([0, T ),H ) such that, for all t ∈ [0, T ), there holds

U(t) = etAU0 +

∫ t

0

e(t−s)AF (U(s)) ds. (2.2)

We say that u is a weak solution of (1.1) on [0, T ) if (u, ut) is a weak solution of (1.1).

We begin with a lemma which ensures, in particular, that A is densely defined.

Lemma 2.2. D is dense in H .

Proof. Let (u, v) ∈H . We can consider a sequence (vn) in H1 such that vn(0) = 0 and vn → v in L2. We then choose
a sequence (un) in H2 which converges to u in H1. For n ∈ N and x ∈ R, we set

ζn(x) = 1 +
γ |x|

2
e−nx

2

.

We have ζ ′n(0+) = −ζ ′n(0−) = γ
2 , so

(unζn)′(0+)− (unζn)′(0−) = un(0)
(
ζ ′n(0+)− ζ ′n(0−)

)
= γ(unζn)(0).

This proves that (unζn, vn) belongs to D for all n ∈ N. Moreover,

‖ζn − 1‖L∞ −−−−−→n→+∞
0 and ‖ζ ′n‖L∞ −−−−−→n→+∞

0,

so ‖unζn − un‖H1 → 0, and hence (ζnun, vn) goes to (u, v) in H . �

1It follows from Proposition 4.9 and Remark 4.10 that nω,rad = 1 whenever nω = 2.
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2.1. Linear evolution in the energy space. In this subsection we show that the operator A generates a strongly
continuous group on H . We know that if A is skew-adjoint then it generates a one parameter unitary group on H .
Since the notion of skew-adjointness depends on the inner product, we first discuss the choice of a suitable Hilbert
structure on H .

For µ > 0 we introduce on H the quadratic form defined by

‖(u, v)‖2H ,µ,γ = ‖u′‖2L2 + µ2‖u‖2L2 + γ|u(0)|2 + ‖v‖2L2 . (2.3)

We denote by 〈·, ·〉H ,µ,γ the corresponding bilinear form. With µ = m we observe that, for U = (u, v) ∈ D,

〈AU,U〉H ,m,γ = 〈v′, u′〉L2 +m2 〈v, u〉L2 + γ Re(v(0)u(0)) + 〈u′′, v〉L2 −m2 〈u, v〉L2

= 〈v′, u′〉L2 + γ Re(v(0)u(0))− 〈u′, v′〉L2 − Re(γu(0)v(0) + iα|v(0)|2)

= 0.

(2.4)

This makes 〈·, ·〉H ,m,γ a good candidate to be a suitable inner product on H . However, for negative γ, it may happen
that the corresponding quadratic form takes negative values. In this case we have to choose a larger parameter µ.

Lemma 2.3. Let

µ0 =

{
0 if γ > 0,
|γ|
2 is γ < 0.

Then for µ > µ0 there exists Cµ > 1 such that, for all u ∈ H1, we have

C−1µ ‖u‖
2
H1 6 ‖u′‖2L2 + µ2 ‖u‖2L2 + γ |u(0)|2 6 Cµ ‖u‖2H1 . (2.5)

In particular, the functional ‖ · ‖H ,µ,γ is a norm on H , equivalent to the usual one.

Proof. For u ∈ H1 we have

|γ| |u(0)|2 = 2 |γ|Re

∫ 0

−∞
u(x)ū′(x) dx 6 2 |γ| ‖u‖L2‖u′‖L2 6

‖u′‖2L2

2
+ 2γ2 ‖u‖2L2 . (2.6)

This gives in particular the second inequality of (2.5). By Theorem I.3.1.4 in [3], we have

‖u′‖2L2 + γ |u(0)|2 + µ2
0 ‖u‖

2
L2 > 0

for all u ∈ H1. Then for ε > 0 we have

‖u′‖2L2 + µ2 ‖u‖2L2 + γ |u(0)|2 > 2ε ‖u′‖2L2 + 2εγ |u(0)|2 + (µ2 − (1− 2ε)µ2
0) ‖u‖2L2

> ε ‖u′‖2L2 +
(
µ2 − (1− 2ε)µ2

0 − 4εγ2
)
‖u‖2L2 .

With ε > 0 small enough, this gives the first inequality in (2.5), and the second statement of the proposition follows. �

We intend to prove the following proposition.

Proposition 2.4. The operator A generates a C0-semigroup on H . Moreover, there exist M > 0 and β > 0 such
that, for all t ∈ R, we have ∥∥etA∥∥L(H )

6Meβ|t|.

For this we need the following lemma.

Lemma 2.5. Let µ > 0 be as in Lemma 2.3 and λ >
√
µ2 −m2.

(i) The bounded operator

−∂xx + (m2 + λ2) + (γ + iλα)δ : H1 → H−1 (2.7)

has a bounded inverse, which we denote by R(λ).
(ii) Let ϕ ∈ L2 and ψ ∈ H1. Then R(λ)(ϕ− δψ) belongs to H2,∗. It is the unique solution u in H2,∗ of the problem{

−u′′ + (m2 + λ2)u = ϕ,

u′(0+)− u′(0−) = (γ + iλα)u(0) + ψ(0).
(2.8)
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Proof. By Lemma 2.3 we have, for all u ∈ H1,

〈(−∂xx + (m2 + λ2) + (γ + iλα)δ)u, u〉H−1,H1 > ‖u′‖2L2 + µ2‖u‖2L2 + γ|u(0)|2 & ‖u‖2H1 .

Similarly, for all u and v in H1,

〈(−∂xx + (m2 + λ2) + (γ + iλα)δ)u, v〉H−1,H1 . ‖u‖H1 ‖v‖H1 .

Hence, the operator (2.7) has a bounded inverse by the Lax–Milgram Lemma.
Let us assume that (2.8) has a solution u ∈ H2,∗. For all w ∈ H1 we have

〈−u′′, w〉L2 + (m2 + λ2)〈u,w〉L2 = 〈ϕ,w〉L2 .

Integrating by parts and using the jump condition (2.8), we get

〈u′, w′〉L2 + (m2 + λ2)〈u,w〉L2 + Re((γ + iλα)u(0)w̄(0)) = 〈ϕ,w〉L2 − Re(ψ(0)w̄(0)). (2.9)

This proves that u = R(λ)(ϕ−δψ). Conversely, let u = R(λ)(ϕ−δψ) ∈ H1. Then (2.9) holds for all w ∈ C∞0 (R\{0}),
so u belongs to H2,∗ and −u′′ + (m2 + λ2)u = ϕ. We now write (2.9) with w ∈ C∞0 (R) such that w(0) = 1, which
yields the jump condition in (2.8). �

We can now prove Proposition 2.4.

Proof of Proposition 2.4. Consider µ as given by Lemma 2.3. For U = (u, v) ∈ D, we have

〈AU,U〉H ,µ,γ = 〈v′, u′〉L2 + µ2 〈v, u〉L2 + γ Re(v(0)u(0)) + 〈u′′, v〉L2 −m2 〈u, v〉L2

= 〈v′, u′〉L2 + (µ2 −m2) 〈v, u〉L2 + γ Re(v(0)u(0))− 〈u′, v′〉L2 − Re
(
γu(0)v(0)− iα|v(0)|2

)
= (µ2 −m2) 〈v, u〉L2 ,

and so

|〈AU,U〉H ,µ,γ | = (µ2 −m2)|〈u, v〉L2 | 6 µ2 −m2

2
(‖u‖2L2 + ‖v‖2L2).

On the other hand, by Lemma 2.3,

‖U‖2H ,µ,γ & ‖u‖
2
L2 + ‖v‖2L2 .

Hence, fixing β > 0 large enough, we have

〈(±A− β)U,U〉H ,µ,γ 6 0. (2.10)

Therefore, by [7, Proposition 2.4.2], the operators ±A− β are dissipative. In particular, for λ > β, we have

‖(±A− λ)U‖2H ,µ,γ > ‖(±A− β)U‖2H ,µ,γ + (λ− β)2 ‖U‖2H ,µ,γ , (2.11)

so that ±A− λ are injective with closed range. Now, let F = (f, g) ∈H . For U = (u, v) ∈ D, we have

(A− λ)U = F ⇐⇒

{
v = λu+ f,

u′′ − (m2 + λ2)u = g + λf.

By Lemma 2.5, if β is large enough, there exists U = (u, v) ∈ D such that the right-hand side is satisfied. It is given
by u = R(λ)(−g − λf − iαδf) and v = λu + f . This proves that Ran(A − λ) = H . Hence, (A − λ) has a bounded
inverse and, by (2.11), ∥∥(A− λ)−1

∥∥
L(H )

6
1

λ− β
.

By the Hille–Yosida Theorem, this proves that A generates a C0-semigroup on (H , ‖·‖H ,µ,γ). Furthermore, for t > 0
and U ∈H , we have ∥∥etAU∥∥

H ,µ,γ
6 eβt ‖U‖H ,µ,γ .

Since the norm ‖·‖H ,µ,γ is equivalent to the usual one, there exists M > 1 such that we also have∥∥etAU∥∥
H
6Meβt ‖U‖H .

Now the same holds true with A replaced by −A, and the proof is complete. �

Remark 2.6. If γ > −m, we can chose µ = m in Lemma 2.3 and 2.5. As in the proof of Proposition 2.4, we can
show that A is skew-adjoint and, by [7, Theorem 3.2.3], it now generates a one-parameter unitary group:∥∥etAU∥∥

H ,m,γ
= ‖U‖H ,m,γ .
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2.2. Local well-posedness of the nonlinear problem. We are now in a position to prove the local well-posedness
of the Cauchy problem (1.1). We suppose that the general nonlinearity f ∈ C(C,C) satisfies the following:

f(0) = 0, (2.12)

|f(u)− f(v)| 6 Cf (1 + |u|p−1 + |v|p−1)|u− v|, (2.13)

where p > 1 and Cf > 0.

Lemma 2.7. For any R > 0, there exists CR > 0 such that, for u1, u2 ∈ H1 with ‖u1‖H1 6 R and ‖u2‖H1 6 R, we
have

‖f(u1)‖L2 6 CR ‖u1‖H1 ,

‖f(u1)− f(u2)‖L2 6 CR ‖u1 − u2‖H1 .

Proof. For j ∈ {1, 2} we have ‖uj‖L∞ 6 R, so with Cf we get

‖f(u1)− f(u2)‖2L2 6
∫
R
C2
f

(
1 + |u1(x)|p−1 + |u2(x)|p−1

)2 |u1(x)− u2(x)|2 dx

6 C2
f (1 + 2Rp−1)2 ‖u1 − u2‖2L2 .

This gives the second inequality. The first one follows by taking u2 = 0. �

Corollary 2.8. F : H → H is Lipschitz continuous on bounded subsets of H : for any R > 0, there is a constant
L(R) such that, for U, V ∈H with ‖U‖H 6 R and ‖V ‖H 6 R, we have

‖F (U)− F (V )‖H 6 L(R)‖U − V ‖H .

Lemma 2.9. Let T > 0, U0 ∈H , and U, V ∈ C([0, T ],H ) be two solutions to (2.2). Then U = V .

Proof. Let us set R = supt∈[0,T ] max{‖U(t)‖H , ‖V (t)‖H }. For t ∈ [0, T ] we have

‖U(t)− V (t)‖H 6
∫ t

0

∥∥∥e(t−s)A(F (U(s))− F (V (s))
)∥∥∥

H
ds 6MeTβL(R)

∫ t

0

‖U(s)− V (s)‖H ds.

By Gronwall’s Lemma we conclude that U(t) = V (t) for all t ∈ [0, T ]. �

In the next proposition we prove the existence of a weak solution to the Cauchy problem.

Proposition 2.10. Take R > 0 and U0 ∈H such that ‖U0‖H 6 R. Then there exists TR > 0 and a unique solution
U ∈ C([0, TR),H ) of problem (2.2).

Proof. We only need to prove the existence of the solution, as uniqueness follows from Lemma 2.9. Let M and β be
as in Proposition 2.4. Consider U0 ∈H such that ‖U0‖H 6 R. For T > 0 to be determined later, let

X := {U ∈ C([0, T ],H ) : ‖U(t)‖H 6 3MR ∀t ∈ [0, T ]}

and

d(U, V ) := max
t∈[0,T ]

‖U(t)− V (t)‖H .

Then (X, d) is a complete metric space. We now define a map Ψ : X → C([0, T ],H ) by

Ψ(U) : t 7→ etAU0 +

∫ t

0

e(t−s)AF (U(s)) ds.

Note that, for all s ∈ [0, T ], we have ‖F (U(s))‖H 6 3MRL(3MR) by Corollary 2.8. Thus,

‖Ψ(U)(t)‖H 6 ‖etAU0‖H +

∫ t

0

‖e(t−s)AF (U(s))‖H ds

6MeTβR+MeTβ
∫ t

0

‖F (U(s))‖H ds

6MeTβR+MeTβ3MRL(3MR)T. (2.14)
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Furthermore, for U, V ∈ E, we have

‖Ψ(U)(t)−Ψ(V )(t)‖H 6MeTβ
∫ t

0

‖F (U(s))− F (V (s))‖H ds

6MeTβL(3MR)T d(U, V ).

It is now straightforward to check that, if T = TR > 0 is chosen small enough, there holds

MeTβR+MeTβ3MRL(3MR)T 6 3MR,

MeTβL(3MR)T 6 1/3.

This shows that Ψ maps (X, d) to itself and is a contraction. The result now follows from the Fixed Point Theorem. �

Theorem 2.11. There exists a function T : H → (0,∞] with the following properties. For all U0 ∈H , there exists
a function U ∈ C([0, T (U0)),H ) such that, for all 0 < T < T (U0), U is the unique solution of (2.2) in C([0, T ],H ).
Furthermore, the blow-up alternative holds: if T (U0) <∞ then limt↑T (U0) ‖U(t)‖H =∞.

Proof. For all U0 ∈H , we set

T (U0) = sup{T > 0 : ∃U ∈ C([0, T ],H ) solution to (2.2)}.
From Proposition 2.10, we know that T (U0) > T‖U0‖ > 0 and Lemma 2.9 allows us to extend it to a maximal solution
U ∈ C([0, T (U0)],H ). The blow-up alternative follows from an argument by contradiction. Suppose that T (U0) <∞
and that there exists a constant C and a sequence tn in [0, T (U0)) such that tn ↑ T (U0) and supn∈N ‖U(tn)‖H 6 C.
Now take a time tn such that tn + TC > T (U0). Using Lemma 2.9 and Proposition 2.10, we can extend the solution
up to tn + TC by considering the initial value problem (2.2) with initial value U(tn). This contradicts the definition
of T (U0) and concludes the proof. �

Theorem 2.12. Following the notation of Theorem 2.11, we have the following properties:

(i) T : H → (0,∞] is lower semicontinuous: given the initial conditions U0, U0,n ∈ H such that U0,n converges to
U0 in H , we have that

T (U0) 6 lim inf
n→∞

T (U0,n).

(ii) If U0,n → U0 and if T < T (U0), then Un → U in C([0, T ],H ), where Un and U are the solutions of (2.2)
corresponding to the initial data U0,n and U0.

Proof. Let U0 ∈ H and U ∈ C([0, T (U0)),H ) be the solution of (2.2) given by Theorem 2.11. Let 0 < T < T (U0).
It suffices to show that, if U0,n → U0 then T (U0,n) > T for n large enough, and Un → U in C([0, T ],H ). We set

R = 2 sup
t∈[0,T ]

‖U(t)‖H ,

and

τn = sup{t ∈ [0, T (U0,n)) : ‖Un(s)‖H 6 2R ∀s ∈ [0, t]}.
If n is large enough, we have ‖U0,n‖H 6 R. Hence, by Proposition 2.10, 0 < TR < τn. Now, for all 0 < t 6 min{τn, T},

‖U(t)− Un(t)‖H 6
∥∥etA(U0 − U0,n)

∥∥
H

+

∫ t

0

∥∥∥e(t−s)A(F (U(s))− F (Un(s)))
∥∥∥

H
ds

6MeTβ ‖U0 − U0,n‖H +MeTβL(2R)

∫ T

0

‖U(s)− Un(s)‖H ds.

Therefore, by Gronwall’s lemma,

‖U(t)− Un(t)‖H 6MeTβ ‖U0 − U0,n‖H eMeTβL(2R)T (2.15)

for all t 6 min{T, τn}. In particular, if n is large enough,

‖Un(t)‖H 6 R
for t 6 min{T, τn}. Hence τn > T , which implies that T (U0,n) > T . From (2.15) we also see that Un → U in
C([0, T ],H ), which completes the proof. �

Theorem 2.13. Let U0 ∈ D and T ∈ (0, T (U0)). Let U ∈ C([0, T ],H ) be the corresponding solution of (2.2). Then
U ∈ C([0, T ],D) ∩ C1([0, T ],H ).
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Proof. Let h > 0 and t ∈ [0, T − h). By a change of variables it is easy to see that

U(t+ h)− U(t) = e(t+h)AU0 − etAU0 +

∫ t

0

esA
(
F (U(t+ h− s))− F (U(t− s))

)
ds+

∫ h

0

e(t+h−s)AF (U(s)) ds.

Hence,

‖U(t+ h)− U(t)‖H 6
∥∥etA(ehAU0 − U0)

∥∥
H

+

∫ t

0

∥∥esA(F (U(t+ h− s))− F (U(t− s))
)∥∥

H
ds

+

∫ h

0

∥∥∥e(t+h−s)AF (U(s))
∥∥∥

H
ds

6MeTβ
∥∥ehAU0 − U0

∥∥
H

+MeTβL(R)

∫ t

0

‖U(t+ h− s)− U(t− s)‖H ds

+MeTβh sup
s∈[0,T ]

‖F (U(s))‖H .

We know that

ehAU0 − U0 =

∫ h

0

esAAU0 ds,

and so
∥∥ehAU0 − U0

∥∥
H
6 hMeβT ‖AU0‖H . Applying Gronwall’s Lemma, we get

‖U(t+ h)− U(t)‖H . h

for all 0 6 t < t + h 6 T . Hence, U : [0, T ] → H and F (U) : [0, T ] → H are Lipschitz continuous. We conclude
by [7, Corollary 1.4.41] and [7, Proposition 4.1.6]. �

Remark 2.14. It is worth noting that solutions of (1.1) may blow up in finite time. To this aim, let us consider the
ordinary differential equation

v′′(t) + v(t)− v3(t) = 0. (2.16)

For any fixed T > 0, this equation has the solution

v(t) =
1

tanh
(
T − t/

√
2
) , (2.17)

which blows up at time
√

2T . Now, consider (1.1) with m = 1, γ = α = 0 and p = 3, and choose the constant initial
data u0 = 1/ tanh (T ). By finite speed of propagation (see e.g. [7]), if u0 is smoothly truncated outside an interval of

length 2
√

2T + 1, the corresponding solution of (1.1) will blow up like (2.17) at time
√

2T . Again by finite speed of
propagation, if the support of the truncated u0 is chosen far away from x = 0, then the solution u will not ‘see’ the
Dirac potentials over the time interval [0,

√
2T ), and will also blow up at time

√
2T , for any values of γ and α.

3. Hamiltonian structure

In this section we show that (1.1) is a Hamiltonian system, and we establish the relevant conservation laws, namely
that the energy and the charge defined in (1.10) and (1.11) are constants of the motion. We shall use the general
framework developed in [9] to study orbital stability of standing waves of infinite-dimensional Hamiltonian systems.

We start by showing that, in the terminology of [9, Sec. 6], (H ,D,J ) forms an appropriate symplectic Banach
triple for our problem, provided the map J : H →H ∗ defined by

J (u, v) = (−iαδu− v, u) (3.1)

is a (weak) symplector, in the sense of Definition 6.2 (i) in [9], which we check now.

Lemma 3.1. The map J : H →H ∗ defined by (3.1) is a symplector, that is:

(i) J is a bounded linear map;
(ii) J is one-to-one;
(iii) J is anti-symmetric, in the sense that

〈J (u, v), (w, z)〉 = −〈J (w, z), (u, v)〉 , (u, v), (w, z) ∈H .
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Proof. (i) Linearity is obvious and boundedness follows from the Sobolev embedding theorem through the estimate

| 〈J (u, v), (w, z)〉 | =
∣∣∣ Imαu(0)w̄(0)− Re

∫
R
vw̄ + Re

∫
R
uz̄
∣∣∣

6 |α| ‖u‖H1 ‖w‖H1 + ‖v‖L2 ‖w‖L2 + ‖u‖L2 ‖z‖L2

.
(
‖u‖H1 + ‖v‖L2

)(
‖w‖H1 + ‖z‖L2

)
.

(ii) J is one-to-one since, clearly, J (u, v) = (0, 0) if and only if (u, v) = (0, 0).
(iii) The antisymmetry of J follows by a straightforward calculation, using that α ∈ R. �

We now turn our attention to the regularity of the energy and charge functionals respectively introduced in (1.10)
and (1.11). In particular, in the terminology of Definition 6.5 in [9], we show that E and Q have J -compatible
derivatives, i.e. that E′(u, v), Q′(u, v) ∈ rgeJ for all (u, v) ∈ D. We write E,Q ∈ Dif(D,J ).

Lemma 3.2. We have that E ∈ C1(H ,R) ∩ C2(D,R) and Q ∈ C2(H ,R). For (ϕ,ψ) ∈ D and (u, v), (w, z) ∈ H ,
we have

E′(ϕ,ψ) = (−ϕ′′ +m2ϕ− |ϕ|p−1ϕ− iαδψ, ψ),

〈E′′(ϕ,ψ)(u, v), (w, z)〉 = Re
[
γu(0)w̄(0)+

∫
R

(
u′w̄′+

(
m2u−|ϕ|p−1u− (p−1)|ϕ|p−3ϕRe(ϕū)

)
w̄
)

dx+

∫
R
vz̄ dx

]
,

and for (ϕ,ψ), (u, v) ∈H
Q′(ϕ,ψ) = (−αδϕ+ iψ,−iϕ),

Q′′(ϕ,ψ)(u, v) = (−αδu+ iv,−iu).

Furthermore, E′(ϕ,ψ) ∈ rgeJ and Q′(ϕ,ψ) ∈ rgeJ for all (ϕ,ψ) ∈H .

Proof. The regularity stated and the expressions obtained for the Fréchet derivatives follow from routine verifications.
Let (ϕ,ψ) ∈ D. To see that E′(ϕ,ψ) ∈ rgeJ , one has to find (w, z) ∈H such that

−iαδw − z = −ϕ′′ +m2ϕ− |ϕ|p−1ϕ− iαδψ and w = ψ in H ∗.

This yields (w, z) = (ψ,ϕ′′ −m2ϕ+ |ϕ|p−1ϕ), which clearly belongs to H . Similarly, for (ϕ,ψ) ∈H ,

J (w, z) = Q′(ϕ,ψ) ⇐⇒ (w, z) = −i(ϕ,ψ). (3.2)

This completes the proof. �

Lemmas 3.1 and 3.2 show that (H ,D,J ) is a suitable symplectic Banach triple for our problem, with associated
Hamiltonian E. For initial conditions U0 = (u0, u1) ∈ D, the differential equation in (1.1) can indeed be written as
the Hamiltonian system (see Definition 6.6 in [9])

J d

dt
U(t) = E′(U(t)). (3.3)

Remark 3.3. The well-posedness theory in Section 2 shows that the domain D is stable under the flow of (3.3), so
that, by Lemma 3.2, E′(U(t)) indeed belongs to rgeJ over the lifespan of the solution.

Proposition 3.4. The energy E and the charge Q are constants of the motion for (3.3), i.e. for any U0 = (u0, u1) ∈
H , E(U(t)) = E(U0) and Q(U(t)) = Q(U0), as long as the solution exists.

Proof. Following [9, Theorem 5, p. 191], one only needs to check that both E and Q Poisson-commute with E, i.e. that
{E,E}(u, v) = {E,Q}(u, v) = 0 for all (u, v) ∈ D, where for any F ∈ Dif(D,J ), the Poisson bracket {E,F} is defined
as

{E,F}(u, v) =
〈
E′(u, v),J−1F ′(u, v)

〉
, (u, v) ∈ D. (3.4)

That {E,E}(u, v) = 0 for all (u, v) ∈ D is a trivial consequence of the anti-symmetry of J . As for {E,Q}, using the
explicit expression J−1(w, z) = (z,−w − iαδz) (or (3.2)), we have

{E,Q}(u, v) =
〈
(−u′′ +m2u− |u|p−1u− iαδv, v), (−iu,−iv)

〉
= Re

[ ∫
R

(−u′′ +m2u− |u|p−1u− iαδv)(−iu) dx+ Re

∫
R
v(−iv) dx

]
= Re

[
− i
∫
R
u′′ūdx+ αv(0)ū(0)

]
= Re[−iū(0)(u(0−)− u(0+)) + αū(0)v(0)] = 0,
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which completes the proof. �

4. Stability of standing waves

Having established the well-posedness and the Hamiltonian structure of the initial-value problem (1.1), we now
investigate the stability of standing waves by applying the energy-momentum method described in the introduction.
The criterion for orbital stability of the standing waves (1.13) is the following.

Proposition 4.1. Suppose the standing wave eiω0tΦω0(x) satisfies the spectral conditions (S1)–(S3). Then it is
orbitally stable if

d

dω

∣∣∣
ω=ω0

Q(Φω) > 0,

and orbitally unstable if
d

dω

∣∣∣
ω=ω0

Q(Φω) < 0.

Let A be a selfadjoint operator that is bounded below with positive essential spectrum. We shall henceforth denote
by n(A) ∈ N the number of negative eigenvalues (counted with multiplicities) of A, and we set

nω := n
(
R̃−1L′′ω(Φω)

)
,

for all admissible ω ∈ R. In Proposition 4.1, we have nω0 = 1. For nω0 = 2, we will exhibit regimes of linear instability
using the following criterion, borrowed from [16].

Proposition 4.2. Let

p(d′′(ω)) =

1 if d
dω

∣∣∣
ω=ω0

Q(Φω) > 0,

0 if d
dω

∣∣∣
ω=ω0

Q(Φω) < 0.

Then the standing wave eiω0tΦω0
is linearly unstable if nω0

− p(d′′(ω0)) is odd.

Corollary 4.3. Suppose the standing wave eiω0tΦω0
satisfies (S1′)–(S3) and

d

dω

∣∣∣
ω=ω0

Q(Φω) > 0.

Then it is linearly unstable.

4.1. Spectral analysis. Our purpose here is to give some spectral properties (in particular the number of negative

eigenvalues) of the operator R̃−1L′′ω(Φω). We will consider α, γ and ω satisfying (1.8). The quantity

β = β(ω) := γ − αω,

which appears in (1.5), will play an important role below. In view of the admissibility condition (1.8), we shall consider

β ∈ (−β0, β0), where β0 := 2
√
m2 − ω2. The main results of this subsection rely on the dependence on β of the key

objects entering the spectral analysis. With this in mind (and to avoid a too heavy notation) we shall relabel various
quantities by β and temporarily drop the index ω. For instance — with a slight abuse of notation — we will write ϕβ
instead of ϕω, that is,

ϕβ(x) =

[
(p+ 1)(m2 − ω2)

2
sech2

(
(p− 1)

√
m2 − ω2

2
|x|+ tanh−1

(
− β

2
√
m2 − ω2

))] 1
p−1

. (4.1)

One should of course keep in mind the dependence on ω. It will not be relevant for our analysis here, but will come
back with full force in the next subsection. For U = (u, v) ∈H , we now let

L′′βU :=
(
− u′′ +m2u− ϕp−1β u− (p− 1)ϕp−1β Re(u) + βδu+ iωv, v − iωu

)
∈H ∗. (4.2)

In view of Lemma 3.2, this reads L′′β = L′′ω(Φω). We shall also use the convenient notation L̃′′β := R̃−1L′′β .

Let β ∈ (−β0, β0). We observe that L′′β : H →H ∗ is a bounded operator and, for U,W ∈H , we have

〈L̃′′βU,W 〉H = 〈L′′βU,W 〉H ∗,H = 〈U,L′′βW 〉H ,H ∗ = 〈U, L̃′′βW 〉H , (4.3)

so L̃′′β is a bounded self-adjoint operator on H .
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Instead of analyzing directly the spectral properties of L̃′′β , it will be more convenient to work with the operator on

L2 × L2 associated to the form L′′β . More precisely, we set

Dβ := {u ∈ H2,∗ : u′(0+)− u′(0−) = βu(0)} (4.4)

and we consider on L2 × L2 the operator Lβ defined by D(Lβ) = Dβ × L2 and, for U = (u, v) ∈ D(Lβ),

LβU =
(
− u′′ +m2u− ϕp−1β u− (p− 1)ϕp−1β Re(u) + iωv, v − iωu

)
∈ L2 × L2.

This defines a (R-linear) self-adjoint operator which shares the same relevant spectral properties as L̃′′β :

Proposition 4.4. The operator Lβ is selfadjoint and bounded from below on L2 × L2, and for U ∈ Dβ × L2 we have

〈LβU,U〉L2×L2 = 〈L′′βU,U〉H ∗,H = 〈L̃′′βU,U〉H .

We have
ker(Lβ) = ker(L̃′′β). (4.5)

Moreover
inf σess(Lβ) > 0 ⇐⇒ inf σess(L̃

′′
β) > 0, (4.6)

and, in this case,
n(Lβ) = n(L̃′′β). (4.7)

Proof. • For U, V ∈H , we set Q(U, V ) = 〈L′′βU, V 〉H ∗,H . This defines on L2 × L2 a symmetric bilinear form with

domain D(Q) = H . Using a trace inequality as in (2.6), we can check that Q is bounded from below and closed. We
denote by T the corresponding selfadjoint operator given by the Representation Theorem (see for instance [20, VI-
Theorem 2.1] for sesquilinear complex forms, the symmetric case being analogous for real bilinear forms). In particular,

D(T ) =
{
U ∈H : V 7→ Q(U, V ) is a continuous linear functional on L2 × L2

}
,

and
〈TU, V 〉L2×L2 = Q(U, V ), for all U ∈ D(T ), V ∈H . (4.8)

Since 〈LβU, V 〉L2×L2 = Q(U, V ) for all U ∈ D(T ) and V ∈H , we have D(Lβ) ⊂ D(T ) and Lβ = T on D(Lβ). Now let

U = (u, v) ∈ D(T ). Writing (4.8) with V = (w, 0) for any w ∈ C∞0 (R∗) proves that u ∈ H2,∗. Then, with w ∈ C∞0 (R)
such that w(0) = 1 or w(0) = i, we obtain u ∈ Dβ , so U ∈ D(Lβ). This means that Lβ = T , and the first part of the
proposition is proved.
• Let U = (u, v) ∈ ker(Lβ). In particular we have U ∈H and 〈L̃′′βU,W 〉H = 〈L′′βU,W 〉H ∗,H = 0 for all W ∈H , so

U ∈ ker(L̃′′β). Conversely, if U ∈ ker(L̃′′β) then 〈L′′βU,W 〉 = 〈0,W 〉L2×L2 for all W ∈H , so U ∈ D(Lβ) and LβU = 0.

This proves (4.5).
• Now suppose that inf σess(Lβ) > 0. Since Lβ is bounded from below, it has a finite number m̃ of non-positive

eigenvalues (counted with multiplicities). We denote by Θ̃ the subspace of L2 × L2 generated by the corresponding

eigenvectors, and by Θ̃⊥ the orthogonal complement of Θ̃ in L2×L2. We also set Θ̃⊥1 = Θ̃⊥∩H . Since Θ̃ ⊂ D(Lβ) ⊂
H , Θ̃ and Θ̃⊥1 are complementary subspaces of H .

There exists σ0 > 0 such that σ(Lβ) ∩ (0, σ0) = ∅. Then, for all U ∈ D(Lβ) ∩ Θ̃⊥, we have

〈L̃′′βU,U〉H = 〈L′′βU,U〉H ∗,H = 〈LβU,U〉L2×L2 > σ0 ‖U‖2L2×L2 .

On the other hand, by the trace inequality there exists C > 0 such that, for all U ∈H ,

〈L′′βU,U〉H ∗,H >
‖U‖2H

2
− C ‖U‖L2×L2 .

Thus, for η ∈ (0, 1) and U ∈ D(Lβ) ∩ Θ̃⊥1 , we have

〈L̃′′βU,U〉H >
η

2
‖U‖2H − ηC ‖U‖L2×L2 + (1− η)σ0 ‖U‖2L2×L2 .

For η > 0 small enough, this yields

〈L̃′′βU,U〉H >
η

2
‖U‖2H , for all U ∈ D(Lβ) ∩ Θ̃⊥1 .

But D(Lβ) ∩ Θ̃⊥1 is dense in Θ⊥1 , so

〈L̃′′βU,U〉H >
η

2
‖U‖2H , for all U ∈ Θ̃⊥1 .
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Since Θ̃⊥1 is of codimensionm in H , the Min-Max Principle (see, e.g., Theorem XIII.1 in [28]) implies that inf σess(L̃
′′
β) >

0 and that L̃′′β has at most m̃ negative eigenvalues (counted with multiplicities).

Conversely, assume that inf σess(L̃
′′
β) > 0. Since L̃′′β is bounded, it has a finite number m of non-positive eigenvalues

(counted with multiplicities). We denote by Θ the subspace of H generated by the corresponding eigenvectors, and

by Θ⊥ the orthogonal complement of Θ in H . There exists σ1 > 0 such that σ(L̃′′β) ∩ (0, σ1) = ∅. Then, for all

U ∈ Θ⊥, we have

〈L′′βU,U〉H ∗,H = 〈L̃′′βU,U〉H > σ1 ‖U‖
2
H > σ1 ‖U‖

2
L2×L2 .

We recall that H is the form domain of Lβ and that Lβ is associated to the form Q, so by the form version of the
Min-Max Principle (see Theorem XIII.2 in [28]), we have inf σess(Lβ) > σ1 > 0 and Lβ has at most m non-positive
eigenvalues (counted with multiplicities).

We have thus proved (4.6) and that, in this case, the operators L̃′′β and Lβ have the same number of non-positive

eigenvalues. With (4.5), this gives (4.7). �

Since Lβ is not C-linear, it is usual to split functions into real and imaginary parts. Then, the operator Lβ acting on
pairs of complex-valued functions is formally equivalent to the following operator acting on quadruplets of real-valued
functions: 

L+
β + ω2 0 0 −ω

0 L−β + ω2 ω 0

0 ω 1 0
−ω 0 0 1

 ,

where

L+
β u = −u′′ + (m2 − ω2)u− pϕp−1β u, (4.9)

L−β u = −u′′ + (m2 − ω2)u− ϕp−1β u. (4.10)

Here, L+
β and L−β are R-linear operators acting on a space of real-valued functions. However, we are going to use some

spectral arguments which are more conveniently written with complex operators.
We denote by L2

C the Lebesgue space L2(R,C) endowed with its usual complex structure. Then we define H1
C and

H2,∗
C accordingly. We also define Dβ

C as Dβ , with H2,∗ replaced by H2,∗
C . Then we define the operators L+

β and L−β
by D(L+

β ) = D(L−β ) = Dβ
C × L2

C and, for u in Dβ
C × L2

C, L+
β u and L−β u are defined by (4.9) and (4.10). These are in

particular C-linear operators.

For λ ∈ R \ {1} we set (see Figure 1)

Λ(λ) := λ+
λω2

1− λ
.

Proposition 4.5. The operators L+
β and L−β are selfadjoint and bounded from below on L2

C. Moreover, for λ ∈ R\{1},
(i) λ ∈ σ(Lβ) if and only if Λ(λ) ∈ σ(L+

β ) ∪ σ(L−β ),

(ii) we have
dim(ker(Lβ − λ)) = dim(ker(L+

β − Λ(λ))) + dim(ker(L−β − Λ(λ))), (4.11)

and in particular,
n(L̃′′β) = n(L+

β ) + n(L−β ), (4.12)

(iii) λ ∈ σess(Lβ) if and only if Λ(λ) ∈ σess(L+
β ) ∪ σess(L−β ).

In (4.11) and (4.12), the left-hand sides are dimensions of real vector spaces while the right-hand sides are dimensions
of complex vector spaces.

Proof. • As in the proof of Proposition 4.4, we can check that L+
β and L−β are the selfadjoint operators corresponding

to the sesquilinear forms

q+β : (u,w) 7→ 〈u′, w′〉L2
C

+ (m2 − ω2) 〈u,w〉L2
C
− p〈ϕp−1β u,w〉L2

C
+ βu(0)w̄(0) (4.13)

and
q−β : (u,w) 7→ 〈u′, w′〉L2

C
+ (m2 − ω2) 〈u,w〉L2

C
− 〈ϕp−1β u,w〉L2

C
+ βu(0)w̄(0), (4.14)

which are closed, symmetric and bounded from below.
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• Let λ ∈ R. Let U = (u, v) and F = (f, g) in L2 × L2. We write u = u1 + iu2 where u1 and u2 are real-valued. We

use similar notation for v, f and g. Then u belongs to Dβ if and only if u1 and u2 belong to Dβ
C and in this case

(Lβ − λ)U = F ⇐⇒


(L+

β + ω2 − λ)u1 − ωv2 = f1,

(L−β + ω2 − λ)u2 + ωv1 = f2,

(1− λ)v1 + ωu2 = g1,
(1− λ)v2 − ωu1 = g2.

If λ 6= 1 this gives

(Lβ − λ)U = F ⇐⇒


(L+

β − Λ(λ))u1 = f1 + ωg2
1−λ ,

(L−β − Λ(λ))u2 = f2 − ωg1
1−λ ,

v1 = g1−ωu2

1−λ ,

v2 = g2+ωu1

1−λ .

(4.15)

• We set K+(λ) = ker(L+
β − Λ(λ)) and denote by K+

R (λ) the R-linear subspace of real-valued functions in K+(λ).

Given u ∈ Dβ
C, we have u ∈ K+(λ) if and only if Re(u) and Im(u) are in K+

R (λ). A family of linearly independent

vectors in K+
R (λ) is also a family of linearly independent vectors in K+(λ), so dimR(K+

R (λ)) 6 dimC(K+(λ)). In

particular, if the left-hand side is infinite, then so is the right-hand side. Now assume that dimR(K+
R (λ)) is finite

(possibly 0) and consider a basis e = (e1, . . . , em) of K+
R (R) (with m ∈ N). Let u ∈ K+(λ). Then Re(u) and Im(u)

belong to K+
R (λ) and are R-linear combinations of vectors in e, so u is a C-linear combination of vectors in e. This

proves that
dimCK

+(λ) = dimRK
+
R (λ).

We similarly define K−(λ) and K−R (λ) and see that dimCK
−(λ) = dimRK

−
R (λ).

If e+1 , . . . , e
+
m+

are linearly independent vectors in K+
R (λ) and e−1 , . . . , e

−
m− are linearly independent vectors in K−R (λ)

(m± may be zero), then(
e+1 ,

iωe+1
1− λ

)
, . . . ,

(
e+1 ,

iωe+m+

1− λ

)
,

(
ie−1 ,−

ωe−1
1− λ

)
, . . . ,

(
ie−1 ,−

ωe−m−
1− λ

)
(4.16)

is a family of linearly independent vectors in ker(Lβ − λ), so

dim(ker(Lβ)− λ) > dim(K+
R (λ)) + dim(K−R (λ)). (4.17)

In particular, if the right-hand side is infinite, then so is the left-hand side. Now assume that the right-hand side is
finite. If the above families span K+

R (λ) and K−R (λ), then (4.16) span ker(Lβ −Λ(λ)), so the inequality in (4.17) is an
equality and (4.11) is proved. Since Λ is a bijection from (−∞, 0) to itself, (4.12) follows.
• Assume that Λ(λ) ∈ ρ(L+

β ) ∩ ρ(L−β ). Let F = (f1 + if2, g1 + ig2) ∈ L2 × L2. Let (u1, u2, v1, v2) be the unique

solution of (4.15) and U = (u1 + iu2, v1 + iv2). Then U ∈ D(Lβ) and (Lβ − λ)U = F , so (Lβ − λ) is surjective. We
already know that λ is not an eigenvalue of Lβ , so (Lβ − λ) is bijective. This implies that λ is in the resolvent set of
Lβ .

Conversely, assume that λ ∈ ρ(Lβ) and let f = f1 + if2 ∈ L2
C. We denote by u1 (resp. u2) the first component of

(Lβ −λ)−1(f1, 0, 0, 0) (resp. (Lβ −λ)−1(f2, 0, 0, 0)). Then u = u1 + iu2 is such that (L+
β −Λ(λ))u = f , and we deduce

that Λ(λ) ∈ ρ(L+
β ). Similarly, Λ(λ) ∈ ρ(L−β ). This proves (i). Then (iii) follows from (i) and (ii). �

Remark 4.6. If we denote by Λ− and Λ+ the restrictions of Λ to (−∞, 1) and (1,+∞), then Λ− : (−∞, 1)→ R and
Λ+ : (1,+∞)→ R are increasing bijections. Therefore,

σess(Lβ) \ {1} = Λ−1− (σess(L
+
β ) ∪ σess(L−β )) ∪ Λ−1+ (σess(L

+
β ) ∪ σess(L−β )).

Furthermore, since σess(L
+
β ) ∪ σess(L−β ) contains a neighborhood of +∞ (see Proposition 4.7 below) and σess(Lβ) is

closed, we have that 1 ∈ σess(Lβ). More precisely,

σess(Lβ) = [σ1, 1] ∪ [σ2,+∞),

with σ1 = Λ−1− (m2 − ω2) ∈ (0, 1) and σ2 = Λ−1+ (m2 − ω2) > 1.

With Propositions 4.4 and 4.5, we can deduce the spectral properties of L̃′′β from those of L+
β and L−β , which we

now describe.

Proposition 4.7. Let β ∈ (−β0, β0).
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Figure 1. Graph of λ 7→ Λ(λ)

(i) We have σess(L
+
β ) = σess(L

−
β ) = [m2 − ω2,+∞).

(ii) The first eigenvalue of L−β is 0, it is simple, and the corresponding eigenspace is spanned by ϕβ.

(iii) 0 is an eigenvalue of L+
β if and only if β = 0. Moreover, ker(L+

0 ) = span(∂xϕ0) and the negative spectrum of L+
0

reduces to a simple eigenvalue.

Proof. It is known from [3, Theorem I-3.1.4] that the essential spectrum of −∂2x + (m2−ω2) is [m2−ω2,+∞). As L+
β

and L−β are relatively compact perturbations of this operator, (i) follows from the Weyl Theorem (see, e.g., [20, IV-

Theorem 5.35]).
Since ϕβ ∈ Dβ , L−β ϕβ = 0 and ϕβ > 0, the first eigenvalue of L−β is 0, it is simple and the rest of the spectrum is

positive (see, e.g., [5, Chapter 2]). This proves (ii).
As for (iii), we observe that ϕβ satisfies

− ϕ′′β + (m2 − ω2)ϕβ − ϕpβ = 0 (4.18)

on (−∞, 0) and on (0,+∞). When β = 0, ϕ0 is smooth and (4.18) holds on R. After differentiation, we see that ϕ′0
belongs to ker(L+

0 ). By Theorem 3.3 in [5, Chapter 2], 0 is a simple eigenvalue of L+
0 and the corresponding eigenspace

is spanned by ϕ′0. Moreover, by [21, Lemma 4.16], L+
0 has one simple negative eigenvalue.

Now assume that β 6= 0. Let u ∈ ker(L+
β ). In particular, u satisfies

− u′′ + (m2 − ω2)u− pϕp−1β u = 0 (4.19)

on (−∞, 0) and on (0,+∞). Since ϕ′β is also a solution of (4.19) on (−∞, 0) and (0,+∞), there exist µ−, µ+ ∈ R
such that u = µ−ϕ

′
β on (−∞, 0) and u = µ+ϕ

′
β on (0,+∞). As u is continuous at 0, we have

µ−ϕ
′
β(0−) = u(0) = µ+ϕ

′
β(0+). (4.20)

Thus µ− = −µ+ because ϕ′β(0+) = −ϕ′β(0−) 6= 0. Moreover, ϕβ and u both satisfy the jump condition in (4.4), so

βϕβ(0) = ϕ′β(0+)− ϕ′β(0−) = 2ϕ′β(0+) (4.21)

and

βu(0) =
(
u′(0+)− u′(0−)

)
= µ+

(
ϕ′′β(0+) + ϕ′′β(0−)

)
. (4.22)

On the other hand, by (4.18),

ϕ′′β(0±) = lim
x→0±

ϕ′′β(x) = (m2 − ω2)ϕβ(0)− ϕpβ(0). (4.23)

Using (4.20)–(4.23) we now have

µ+β
2

2
ϕβ(0) = 2µ+

(
(m2 − ω2)ϕβ(0)− ϕpβ(0)

)
.
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Since ϕβ(0) 6= 0, it follows that

µ+ϕ
p−1
β (0) = µ+

(
m2 − ω2 − β2

4

)
.

But a direct computation using (4.1) gives

ϕp−1β (0) =
p+ 1

2

(
m2 − ω2 − β2

4

)
.

This proves that µ+ = 0, whence u = 0. Therefore, 0 is not an eigenvalue of L+
β when β 6= 0. The proof is complete. �

Since n(L−β ) = 0, (4.12) now gives n(L̃′′β) = n(L+
β ). By Proposition 4.7, L+

0 has a simple negative eigenvalue, has 0
as a simple eigenvalue, and the rest of its spectrum is positive. We now determine the number of negative eigenvalue
of L+

β for all β ∈ (−β0, β0) by a perturbation argument.

Proposition 4.8. Let β ∈ (β0, β0). Then

n(L+
β ) =

{
1 if β 6 0,

2 if β > 0.

Proof. We recall that L+
β is associated to the form q+β defined in (4.13). This form is bounded from below and

closed with dense domain H1
C. Moreover, for all u ∈ H1

C, the map β 7→ q+β (u, u) is analytic (the map β 7→ ϕβ is

pointwise analytic and locally bounded in L∞), so the family of operators L+
β is analytic of type (B) in the sense of

Kato (see [20, Sec. VII.4.2]). Thus, by analytic perturbation of L+
0 , there exist β1 ∈ (0, β0) and an analytic function

λ : (−β1, β1) → R such that λ(0) = 0 and, for all β ∈ (−β1, β1), λ(β) is a simple eigenvalue of L+
β , L+

β has a simple

eigenvalue smaller than λ(β), and the rest of its spectrum is positive. Furthermore, there exists an analytic function

f : (−β1, β1) → L2
C such that, for β ∈ (−β1, β1), f(β) belongs to Dβ

C and is an eigenfunction corresponding to the
eigenvalue λ(β).

In particular, there exist λ1 ∈ R and f1 ∈ L2
C such that

λ(β) = βλ1 +O(β2), (4.24)

f(β) = ϕ′0 + βf1 +O(β2). (4.25)

From (1.9), ϕβ is also analytic in β ∈ (−β0, β0) as a function in H1(R), so there exists g1 ∈ H1
C such that

ϕβ = ϕ0 + βg1 +O(β2). (4.26)

For β small, the sign of λ(β) is given by the sign of λ1, which we now compute. We have

〈L+
β f(β), ϕ′0〉L2

C
= 〈λ(β)f(β), ϕ′0〉L2

C
= λ1β‖ϕ′0‖2L2

C
+O(β2). (4.27)

On the other hand, since L+
β is selfadjoint and f(β), ϕ′0 ∈ Dβ ,

〈L+
β f(β), ϕ′0〉L2

C
= 〈f(β), L+

β ϕ
′
0〉L2

C
.

Then, by (4.26),

L+
β ϕ
′
0 = (L+

β − L
+
0 )ϕ′0 = −p(ϕp−1β − ϕp−10 )ϕ′0 = −βp(p− 1)ϕp−20 ϕ′0g1 +O(β2).

With (4.25), this yields

〈L+
β f(β), ϕ′0〉L2

C
= −β〈ϕ′0, p(p− 1)ϕp−20 ϕ′0g1〉L2

C
+O(β2). (4.28)

A straightforward calculation using that L−β ϕ0 = 0 gives

p(p− 1)ϕp−20 (ϕ′0)2 = L+
0

(
(m2 − ω2)ϕ0 − ϕp0

)
. (4.29)

Now consider an arbitrary ψ ∈ H1(R,R). Differentiating the identity q−β (ψ,ϕβ) = 0 with respect to β at β = 0 yields

q+0 (ψ, g1) = −ψ(0)ϕ0(0). (4.30)

In view of (4.29) and (4.30), (4.28) then becomes

〈L+
β f(β), ϕ′0〉L2

C
= −βq+0

(
(m2 − ω2)ϕ0 − ϕp0, g1

)
+O(β2) = β[(m2 − ω2)ϕ0(0)2 − ϕ0(0)p+1] +O(β2).
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Combining this with (4.27), we obtain

λ1 =
(m2 − ω2)ϕ0(0)2 − ϕ0(0)p+1

‖ϕ′0‖2L2
C

.

But from (1.9) we have

ϕ0(0)p−1 =
p+ 1

2
(m2 − ω2) > (m2 − ω2),

hence λ1 < 0. It follows that there exists β2 ∈ (0, β1) such that L+
β has exactly one negative eigenvalue for all

β ∈ [−β2, 0) and exactly two negative eigenvalues for all β ∈ (0, β2].
Finally, there exists κ ∈ R such that L+

β > κ for all β ∈ (−β0, β0), so the negative eigenvalues of L+
β are in [κ, 0).

Moreover, we know from Proposition 4.7 that 0 is not an eigenvalue of L+
β if β 6= 0. We define the contour Γ as the

boundary of the set Ω = (κ − 1, 0) + i(−1, 1). Since Γ is in the resolvent set of L+
β for β 6= 0, we know from the

analytic perturbation theory (see [20, VII-Section 1.3]) that the number of eigenvalues of L+
β in Ω does not depend on

β ∈ (−β0, 0) or β ∈ (0, β0). Since L+
ω,β2

has two negative eigenvalues and L+
ω,−β2

has exactly one, we have n(L+
β ) = 1

for all β ∈ (−β0, 0) and n(L+
β ) = 2 for all β ∈ (0, β0). �

Combining Propositions 4.4, 4.5, 4.7 and 4.8 with β = γ − αω, we finally obtain the following result.

Proposition 4.9. Suppose m2 − ω2 > (γ − αω)2/4. Then

nω =

{
1 if γ − αω 6 0,

2 if γ − αω > 0.

Remark 4.10. For γ − αω > 0, the operator L̃′′β restricted to Hrad has only one negative eigenvalue (see [22,

Lemma 21]). Hence, d
dωQ(Φω) < 0 implies orbital instability in Hrad, and so orbital instability in H .

4.2. Slope condition. We shall now turn our attention to the slope condition in order to classify various stabil-
ity/instability regimes. We still consider α, γ and ω satisfying (1.8), and we now restore the dependence on ω in the
notation — which was dropped in the previous subsection, where the parameter β = γ − αω played the key role.

From (1.9) and (1.11), we get

Q(Φω) = −ω‖ϕω‖2L2 −
α

2
|ϕω(0)|2

= −C(ω)
4ω

(p− 1)
√
m2 − ω2

∫ ∞
τ(ω)

sech
4
p−1 (y) dy − α

2
C(ω)

(
1− (γ − αω)2

4(m2 − ω2)

) 2
p−1

, (4.31)

where

C(ω) =

(
(p+ 1)(m2 − ω2)

2

) 2
p−1

and τ(ω) = tanh−1
(
−(γ − αω)

2
√
m2 − ω2

)
.

We first investigate the stability of standing waves when p = 3, in which case (4.31) reduces to

Q(Φω) = 2(m2 − ω2)

[
−2ω√
m2 − ω2

(
1 +

γ − αω
2
√
m2 − ω2

)
− α

2

(
1− (γ − αω)2

4(m2 − ω2)

)]
= −4ω

√
m2 − ω2 − 2ω(γ − αω)− α(m2 − ω2) +

α

4
(γ − αω)2.

We shall inspect the derivative of Q(Φω) with respect to ω, which is given by

d

dω
Q(Φω) =

4ω2

√
m2 − ω2

− 4
√
m2 − ω2 +

(
α3

2
+ 6α

)
ω − γ

(
2 +

α2

2

)
. (4.32)

In the following theorem we address the case when either α = 0 or γ = 0. Let us first remark that in these cases
there exists an H1 solution of (1.5). Indeed, if

α = 0, |γ| < 2m and ω ∈ (−ωγ , ωγ), with ωγ =

√
m2 − γ2

4
,

or if

γ = 0 and ω ∈ (−ωα, ωα), with ωα =
2m√

4 + α2
,
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then the admissibility relation (1.8) is satisfied.

Theorem 4.11. Let p = 3 and m > 0.

(i) Suppose that α = 0, |γ| < 2m and |ω| 6 ωγ . Let

ω̃γ =

√
16m2 − γ2 + γ

√
γ2 + 32m2

32
= m

√
1

2
+

γ√
γ2 + 32m2 + γ

.

• For γ < 0, eiωtΦω is orbitally stable if |ω| > ω̃γ and orbitally unstable if |ω| < ω̃γ .
• For γ > 0, eiωtΦω is linearly unstable if |ω| > ω̃γ and orbitally unstable on Hrad if |ω| < ω̃γ .

(ii) Suppose that γ = 0 and |α| < 2
√√

5− 2. We set

ω±α =
m√

2

√
1∓ |κ|√

4 + κ2
, where κ =

1

4

(
α3

2
+ 6α

)
.

Suppose α < 0.
• If ω ∈ (−ωα,−ω−α ) then eiωtΦω is orbitally stable.
• If ω ∈ (−ω−α , 0) then eiωtΦω is orbitally unstable.
• If ω ∈ (0, ω+

α ) then eiωtΦω is orbitally unstable on Hrad.
• If ω ∈ (ω+

α , ωα) then eiωtΦω is linearly unstable.

Suppose α > 0.
• If ω ∈ (−ωα,−ω+

α ) then eiωtΦω is linearly unstable.
• If ω ∈ (−ω+

α , 0) then eiωtΦω is orbitally unstable on Hrad.
• If ω ∈ (0, ω−α ) then eiωtΦω is orbitally unstable.
• If ω ∈ (ω−α , ωα) then eiωtΦω is orbitally stable.

Let us remark that orbitally instability on Hrad implies orbitally instability on H .

Proof. (i) Since α = 0, we have d
dωQ(Φω) = 0 if and only if

4ω2 − 2m2 = γ
√
m2 − ω2,

that is,
16ω4 + (γ − 16m2)ω2 + (4m4 − γ2m2) = 0 and sgn(2ω2 −m2) = sgn(γ).

The only possibility is ω2 = ω̃2
γ . Since d

dωQ(Φω) is negative when ω = 0 and goes to +∞ when ω goes to ±µ, we

deduce that d
dωQ(Φω) < 0 if and only if |ω| 6 ω̃γ . Furthermore, Proposition 4.9 with α = 0 yields nω = 1 if γ < 0

and nω = 2 if γ > 0. Hence, the conclusions in (i) follow from Proposition 4.1, Proposition 4.2 and Remark 4.10.
(ii) We now consider the case γ = 0. We have that d

dωQ(Φω) = 0 if and only if

ω4 −m2ω2 +
m4

4 + κ2
= 0 and sgn(2ω2 −m2) = sgn(−κω).

The solutions are −ω−α and ω+
α . Then, for |ω| < ωα, we have d

dωQ(Φω) < 0 if and only if ω ∈ (−ω−α , ω+
α ). Furthermore,

nω = 1 if αω > 0 and nω = 2 if αω < 0. Hence, the conclusions again follow from Proposition 4.1, Proposition 4.2
and Remark 4.10. �

Remark 4.12. Notice that ω̃γ > ωγ when γ > 2m/
√

3. In this case, eiωtΦω is orbitally unstable for all ω ∈ (−ωγ , ωγ).

Similarly, if |α| > 2
√√

5− 2 then ω+
α > ωα, so the set of ω for which we have linear instability is empty.

We next give some results with non-zero coupling constants, γ 6= 0 and α 6= 0. We first observe that the right-hand
side of (4.32) vanishes for

γ = γ̃(α, ω) :=
2

4 + α2

[
4ω2

√
m2 − ω2

− 4
√
m2 − ω2 +

(
α3

2
+ 6α

)
ω

]
.

It follows that

sgn
d

dω
Q(Φω) = − sgn(γ − γ̃).

The following theorem is then proved using Proposition 4.1, Proposition 4.2 and Remark 4.10, similarly to the proof
of Theorem 4.11.
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Theorem 4.13. Let p = 3 and consider ω ∈ (−m,m), α ∈ R and γ ∈ R satisfying (1.8).

(i) Suppose γ − αω < 0. Then eiωtΦω is orbitally stable if γ < γ̃ and orbitally unstable if γ > γ̃.
(ii) Suppose γ − αω > 0. Then eiωtΦω is linearly unstable if γ < γ̃ and orbitally unstable in Hrad if γ > γ̃.

Remark 4.14. For any fixed α ∈ R, there always exist values of the parameters ω, γ satisfying the above conditions
for stability/instability. For instance, conditions (1.8), γ < αω and γ < γ̃ are all satisfied provided

0 < γ̃ − αω + 2
√
m2 − ω2 =

8

4 + α2

2ω2 −m2

√
m2 − ω2

+ 2
√
m2 − ω2 +

8αω

4 + α2
.

Clearly, this condition is satisfied for |ω| ≈ m. The other cases follow by similar arguments.

We now consider more general values of the power 1 < p < 5. To keep the exposition simple enough, we focus on
the cases where the coupling constants α, γ have the same sign. Of course, mixed cases could also be considered.

Lemma 4.15. Let 1 < p < 5.

(i) Suppose α, γ > 0. We have
d

dω
Q(Φω) < 0 for ω ∈

(
−m

2

√
p− 1, 0

)
and

d

dω
Q(Φω) > 0 for ω ∈

(
αγ

4 + α2
,
αm2

γ

)
∩
(m

2

√
p− 1,m

)
,

whenever these intervals are not empty.
(ii) Suppose α, γ < 0. We have

d

dω
Q(Φω) < 0 for ω ∈

(
0,
m

2

√
p− 1

)
∩
(

αγ

4 + α2
,
αm2

γ

)
and

d

dω
Q(Φω) > 0 for ω ∈

(
αm2

γ
,

αγ

4 + α2

)
∩
(m

2

√
p− 1,m

)
,

whenever these intervals are not empty.

Proof. We only prove (i), as (ii) is proved by similar calculations. We rewrite (4.31) as

Q(Φω) = C1(ω)I(ω) + C2(ω),

where

C1(ω) = − 4

p− 1

(
p+ 1

2

) 2
p−1

ω(m2 − ω2)
2
p−1−

1
2 ,

I(ω) =

∫ ∞
τ(ω)

sech
4
p−1 (y) dy,

C2(ω) = −α
2

(
p+ 1

8

) 2
p−1

(4(m2 − ω2)− (γ − αω)2)
2
p−1 .

We first find

∂C2

∂ω
= − α

p− 1

(
p+ 1

8

) 2
p−1

(4(m2 − ω2)− (γ − αω)2))
2
p−1−1(−8ω + 2α(γ − αω)).

It follows that ∂C2

∂ω > 0 if

ω >
αγ

4 + α2
. (4.33)

We next determine the sign of ∂
∂ω (C1I) assuming ω > 0. Since I is positive and C1 is negative for ω > 0, we will have

∂

∂ω
(C1I) =

∂C1

∂ω
I + C1

∂I

∂ω
> 0,

provided ∂C1

∂ω > 0 and ∂I
∂ω < 0. On the one hand, we have

∂C1

∂ω
= − 4

p− 1

(
p+ 1

2

) 2
p−1

(m2 − ω2)
2
p−1−

1
2 +

8

p− 1

(
p+ 1

2

) 2
p−1

(
2

p− 1
− 1

2

)
ω2(m2 − ω2)

2
p−1−

3
2 ,
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which is positive if

|ω| > m

2

√
p− 1. (4.34)

On the other,

∂I

∂ω
= −sech

4
p−1 (τ)

∂

∂ω
τ = − 1√

m2 − ω2

(
1− (γ − αω)2

4(m2 − ω2)

) 2
p−1 2αm2 − 2γω

4(m2 − ω2)− (γ − αω)2
,

which is negative if

ω <
αm2

γ
. (4.35)

Hence, it follows from (4.33)–(4.35) that d
dωQ(Φω) > 0 if

ω ∈
(

αγ

4 + α2
,
αm2

γ

)
∩
(m

2

√
p− 1,m

)
.

We now show that d
dωQ(Φω) < 0 for ω ∈

(
−m2
√
p− 1, 0

)
.

As C1 and I are both positive for ω ∈ (−m, 0), we will have

∂

∂ω
(C1I) =

∂C1

∂ω
I + C1

∂I

∂ω
< 0,

provided ∂C1

∂ω < 0 and ∂I
∂ω < 0. From the previous calculations, we know that ∂C1(ω)

∂ω < 0 if

|ω| < m

2

√
p− 1 (4.36)

and ∂I
∂ω < 0 if

ω <
αm2

γ
. (4.37)

Finally, ∂C2

∂ω < 0 if

ω <
αγ

4 + α2
. (4.38)

Since α > 0 and γ > 0, we conclude from (4.36)–(4.38) that d
dωQ(Φω) < 0 for all ω ∈

(
−m2
√
p− 1, 0

)
. �

We finally combine Lemma 4.15 with the spectral conditions in Proposition 4.9 to get the following result.

Theorem 4.16. Let 1 < p < 5 and m = 1.

(i) Let α, γ > 0. If αγ
4+α2 < 1 and 1 < γ2

4+α2 + 2γ
α(4+α2)

√
4 + α2 − γ2, then there exists ω satisfying (1.8) and

ω ∈
(

αγ

4 + α2
,
α

γ

)
∩
(

1

2

√
p− 1, 1

)
.

For such ω, the standing wave eiωtΦω is orbitally stable.

If αγ < 2
√

4 + α2 − γ2, then there exists ω satisfying (1.8) and

ω ∈
(
−1

2

√
p− 1, 0

)
.

For such ω, eiωtΦω is orbitally unstable.
(ii) Let α, γ < 0. If 1 < γ

α , then there exists ω ∈ R satisfying (1.8) and

ω ∈
(
α

γ
,

αγ

4 + α2

)
∩
(

1

2

√
p− 1, 1

)
.

For such ω, eiωtΦω is orbitally stable.
If γ

α <
1
2

√
p− 1, then there exists ω ∈ R satisfying (1.8) and

ω ∈
(

0,
1

2

√
p− 1

)
∩
(

αγ

4 + α2
,
α

γ

)
.

For such ω, eiωtΦω is orbitally unstable.
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Proof. We only prove (i), the proof of (ii) being similar. The hypotheses m = 1 and γ < α imply that there exists
ω ∈ R satisfying

ω ∈
(

αγ

4 + α2
,
α

γ

)
∩
(

1

2

√
p− 1, 1

)
.

In particular, since αγ
4+α2 <

γ
α , we also have ω < γ

α . Furthermore, if 1 < γ2

4+α2 + 2γ
α(4+α2)

√
4 + α2 − γ2, then ω satisfies

the admissibility condition (1.8). Orbital stability then follows from Proposition 4.9 and Lemma 4.15.

The condition αγ < 2
√

4 + α2 − γ2 implies that there exists a ω ∈
(
− 1

2

√
p− 1, 0

)
satisfying (1.8). Orbital insta-

bility follows from Proposition 4.9, Remark 4.10 and Lemma 4.15. �

Remark 4.17. The condition 1 < γ2

4+α2 + 2γ
α(4+α2)

√
4 + α2 − γ2 is satisfied if 0 < α < γ <

√
4 + α2.
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