Stability of Standing Waves for a Nonlinear Klein-Gordon Equation with Delta Potentials - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2019

Stability of Standing Waves for a Nonlinear Klein-Gordon Equation with Delta Potentials

Résumé

In this paper, we study local well-posedness and orbital stability of standing waves for a singularly perturbed one-dimensional nonlinear Klein-Gordon equation. We first establish local well-posedness of the Cauchy problem by a fixed point argument. Unlike the unperturbed case, a noteworthy difficulty here arises from the possible non-unitarity of the semigroup generating the corresponding linear evolution. We then show that the equation is Hamiltonian and we establish several stability/instability results for its standing waves. Our analysis relies on a detailed study of the spectral properties of the linearization of the equation, and on the well-known 'slope condition' for orbital stability.
Fichier principal
Vignette du fichier
CsoboGenoudOhtaRoyer_rev.pdf (609.61 Ko) Télécharger le fichier
Lambda.pdf (100.4 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01890232 , version 2 (09-10-2018)
hal-01890232 , version 1 (18-10-2019)
hal-01890232 , version 3 (22-10-2019)

Identifiants

Citer

Elek Csobo, François Genoud, Masahito Ohta, Julien Royer. Stability of Standing Waves for a Nonlinear Klein-Gordon Equation with Delta Potentials. 2019. ⟨hal-01890232v3⟩
376 Consultations
383 Téléchargements

Altmetric

Partager

More