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By Vincent Guedj, Chinh H. Lu and Ahmed Zeriahi

(Received Jan 25, 2018)

Abstract. We compare various notions of weak subsolutions to degen-
erate complex Monge-Ampère equations, showing that they all coincide. This

allows us to give an alternative proof of mixed Monge-Ampère inequalities due

to Ko lodziej and Dinew.

1. Introduction

Let Ω be a domain of Cn. We consider in this article the notion of subsolution for

degenerate complex Monge-Ampère equations in Ω. These are bounded plurisubharmonic

functions which satisfy

(ddcϕ)n ≥ fdV,

where dV denotes the Lebesgue measure and 0 ≤ f ∈ L1(Ω).

This inequality can be interpreted in various senses (pluripotential sense [BT76],

viscosity sense [EGZ11], distribution sense [HL13]) and the goal of this note is to show

that all point of views do coincide.

Main theorem. Assume ϕ is plurisubharmonic and bounded. The following are equiv-

alent :

(i) (ddcϕ)n ≥ fdV in the pluripotential sense;

(ii) (ddc(ϕ ? χε))
n ≥ (f1/n ? χε)

ndV in the classical sense, for all ε > 0;

(iii) ∆Hϕ ≥ f1/n in the sense of distributions, for all H ∈ H.

In a particular case when ϕ and f are continuous, our main theorem was proved by

B locki (see [Bl96, Theorem 3.10]).

The operator ddc = ai∂∂̄ is here normalized so that dV = (ddc|z|2)n is the Euclidean

volume form on Cn. Thus for a smooth function ϕ,

(ddcϕ)n = det

(
∂2ϕ

∂zj∂z̄k

)
dV.

We letH denote the space of Hermitian positive definite matrix H that are normalized

by detH = 1, and let ∆H denote the Laplace operator

∆Hϕ :=
1

n

n∑
j,k=1

hjk
∂2ϕ

∂zj∂z̄k
.
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The functions χε are standard mollifiers, i.e. radial smooth non-negative functions

with compact support in the ε-ball centered at the origin, and such that
∫
χεdV = 1. It

is then classical that the convolutions ϕ?χε are smooth, plurisubharmonic , and decrease

to ϕ as ε decreases to 0.

When f is moreover continuous, one can also interpret the inequality (ddcϕ)n ≥ fdV
in the viscosity sense, as shown in [EGZ11, Proposition 1.5].

Our main theorem easily implies the following result of Kolodziej [Kol03, Lemma 1.2]

(see also [Din09, DL15]) :

Corollary. Assume ϕ1, . . . , ϕn are bounded plurisubharmonic functions in Ω, such that

(ddcϕi)
n ≥ fidV , where 0 ≤ fi ∈ L1(Ω). Then

ddcϕ1 ∧ · · · ∧ ddcϕn ≥ f1/n
1 · · · f1/n

n dV.

The note is organized as follows. We start by extending Ko lodziej’s subsolution theo-

rem (see Theorem 2.1), providing a solution to special Monge-Ampère equations that we

are going to use in the sequel. We prove our main result in Section 3.1. The starting point

is an identification of viscosity subsolutions and pluripotential subsolutions obtained in

[EGZ11]. We connect these identifications to mixed Monge-Ampère inequalities in Sec-

tion 3.2 and propose some generalizations in Section 3.3.

2. The subsolution theorem

Let Ω b Cn be a bounded hyperconvex domain (in the sequel we only need to deal

with the case when Ω is a ball). Let µ be a Borel measure on Ω. If there exists a function

v ∈ PSH(Ω) ∩ L∞(Ω) such that

µ ≤ (ddcv)n in Ω, with lim
Ω3z→ζ

v(z) = 0, ∀ζ ∈ ∂Ω,

then it was proved by S. Kolodziej [Kol95] that there exists a unique solution ψ ∈
PSH(Ω) ∩ L∞(Ω) to the equation

(ddcψ)n = µ,

such that limΩ3z→ζ ψ(z) = 0. We need the following generalization:

Theorem 2.1. Assume µ is a non pluripolar Borel measure on Ω which has finite

total mass. Then there exists a unique function ϕ ∈ F1(Ω) satisfying

(2.1) (ddcϕ)n = eϕµ in Ω.

Moreover if µ satisfies µ ≤ (ddcu)n in Ω, for some bounded negative psh function u,

then the solution ϕ ∈ PSH(Ω) is bounded with u ≤ ϕ. In particular, if lim supz→ζ u(z) =

0 for every ζ ∈ ∂Ω then the same property holds for ϕ.

Before entering into the proof let us recall the definition of Cegrell’s finite energy

classes. We refer the reader to [Ce98, Ce04] for more details.
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A domain Ω is called hyperconvex if there exists a continuous plurisubharmonic ex-

haustion function ρ : Ω → [−∞, 0) such that the sublevel sets {ρ < −c} are relatively

compact in Ω, for all constants c > 0.

Let u be a negative plurisubharmonic function in Ω. We recall the following defini-

tions:

• u ∈ E0(Ω) if u is bounded in Ω, u vanishes on the boundary, i.e. limz→∂Ω u(z) = 0,

and
∫

Ω
(ddcu)n < +∞.

• u ∈ E(Ω) if for each z0 ∈ Ω there exists an open neighborhood z0 ∈ Vz0 b Ω

and a decreasing sequence (uj) ⊂ E0(Ω) such that uj converges to u in Vz0 and

supj
∫

Ω
(ddcuj)

n < +∞.

• u ∈ Ep(Ω), p > 0 if there exists a sequence (uj) in E0(Ω) decreasing to u and

satisfying

sup
j∈N

∫
Ω

(−uj)p(ddcuj)n < +∞.

If we ask additionally that
∫

Ω
(ddcuj)

n is uniformly bounded then by definition

u ∈ Fp(Ω).

It was proved in [Ce98, Ce04] that the Monge-Ampère operator (ddc)n is well-defined

for functions in E(Ω). Moreover, it was shown in [BGZ09, Theorem A] that if u ∈ E(Ω)

then (ddc max(u,−j))n converges in the strong sense of Borel measures in Ω∩{u > −∞}
to (ddcu)n.

Theorem 2.1 was proved in [CK06] using a fixed point argument. We provide in this

note an alternative proof using the variational method, adapting the techniques developed

in Kähler geometry in [BBGZ13] (similar ideas have been used in [ACC12, Lu15]).

Proof of Theorem 2.1. Consider

Fµ(φ) := E1(φ)−
∫

Ω

eφdµ, φ ∈ E1(Ω),

where

E1(φ) :=
1

n+ 1

∫
Ω

φ(ddcφ)n.

The Euler-Lagrange equation of Fµ can be computed as follows. Fix φ ∈ E1(Ω) and

assume (φ(t)) is a smooth path in E1(Ω) starting at φ(0) = φ with φ̇(0) = v ∈ C(X). It

follows from Stokes theorem that

d

dt
E1(φ(t))|t=0 =

∫
Ω

v(ddcφ)n,

hence

d

dt
Fµ(φ(t))|t=0 =

∫
Ω

v(ddcφ)n −
∫

Ω

veφdµ.
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Thus φ is a critical point of the functional Fµ if it is a solution to the complex Monge-

Ampère equation (2.1). It is thus natural to try and extremize Fµ in order to solve (2.1).

We proceed in three steps :

Step 1: Upper semi-continuity of Fµ. Observe first that the functional J(φ) :=

−E1(φ) = |E1(φ)| is a positive proper functional on the space E1(Ω) i.e. its sublevel

subsets

E1
B(Ω) := {φ ∈ E1(Ω); 0 ≤ J(φ) ≤ B}, B > 0

are compact for the L1-topology. Moreover the functional E1 is upper semi-continuous

on each compact subset E1
B(Ω) for the L1-topology.

The continuity of the functional Lµ : φ 7−→
∫

Ω
eφdµ on each compact subset E1

B(Ω)

follows from the following fact due to Cegrell [Ce98], [ACC12, Lemma 4.1] : if φj → φ

in E1
B(Ω) then φj → φ µ-a.e., hence by Lebesgue’s convergence theorem, limj Lµ(φj) =

Lµ(φ) (we use here the fact that µ is non-pluripolar).

This proves that Fµ is upper semi-continuous on each E1
B(Ω).

Step 2: Coercivity of Fµ. Observe that 0 ≤ eϕ ≤ 1 for ϕ ∈ E1(Ω), hence

Fµ(φ) ≤ E1(φ).

We infer that Fµ is J−proper on E1(Ω), i.e.

lim
J(φ)→+∞

Fµ(φ) = −∞.

This implies that the maximum of Fµ on E1(Ω) is localized at a finite level of energy, i.e.

there exists a constant B > 0 such that

sup{Fµ(φ);φ ∈ E1(Ω)} = sup{Fµ(φ);φ ∈ E1
B(Ω)},

Since Fµ is upper semi-continuous on the compact set E1
B(Ω), there exists φ ∈ E1

B(Ω)

which maximizes Fµ on E1
B(Ω) i.e.

Fµ(φ) = inf{Fµ(ψ);ψ ∈ E1
B(Ω)}.

Step 3: φ is a critical point of Fµ. Fix a continuous test function χ with compact sup-

port in Ω and set φ(t) := PΩ(φ+tχ) for t ∈ R, where PΩ(u) denotes the plurisubharmonic

envelope of u in Ω.

Observe that φ(t) ∈ E1(Ω). Indeed let ρ be a continuous psh exhaustion for Ω such

that ρ < −|χ| on the support of χ. Then φ+ |t|ρ ≤ φ(t) for t ∈ R. Since φ+ |t|ρ ∈ E1(Ω),

it follows that φ(t) ∈ E1(Ω). Set

h(t) := E1(φ(t))−
∫

Ω

eφ+tχdµ.

Then since φ(t) ≤ φ + tχ, it follows that h(t) ≤ Fµ(φ(t)) ≤ Fµ(φ) which means that h

achieves its maximum at the point 0.
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On the other hand we know by [BBGZ13, ACC12, Lu15] that

d

dt
h(t) |t=0=

∫
Ω

χ(ddcφ)n −
∫

Ω

χeφdµ.

Since h achieves its maximum at the point 0, we have h′(0) = 0, hence∫
Ω

χ(ddcφ)n =

∫
Ω

χeφdµ.

As the test function χ was arbitrary, this means that the function φ is a solution of

the equation (2.1). As µ has finite total mass we actually have that ϕ ∈ F1(Ω).

We now prove the uniqueness. If ψ ∈ F1(Ω) is another solution to (2.1) then it follows

from the comparison principle [Ce98, Lemma 4.4] that∫
{ϕ<ψ}

eψdµ =

∫
{ϕ<ψ}

(ddcψ)n ≤
∫
{ϕ<ψ}

(ddcϕ)n

=

∫
{ϕ<ψ}

eϕdµ ≤
∫
{ϕ<ψ}

eψdµ.

We infer
∫
{ϕ<ψ}(e

ψ − eϕ)dµ = 0 hence ψ ≤ ϕ, µ-almost everywhere and (ddcϕ)n-almost

everywhere in Ω. For each ε > 0, since (ddcϕ)n vanishes in {ϕ ≤ ψ − ε} ⊂ {ϕ < ψ}, it

follows from [BGZ09, Theorem 2.2] that

(ddc max(ϕ,ψ − ε))n ≥ 1{ϕ>ψ−ε}(dd
cϕ)n = (ddcϕ)n.

It then follows from the comparison principle [Ce98, Theorem 4.5] that max(ϕ,ψ −
ε) ≤ ϕ, for all ε > 0, hence ψ ≤ ϕ. Reversing the role of ϕ and ψ in the above argument

gives ϕ = ψ, proving the uniqueness.

Assume finally that µ ≤ (ddcu)n, where u is a bounded negative psh function in

Ω. Then since ϕ ≤ 0 we have (ddcϕ)n = eϕµ ≤ µ ≤ (ddcu)n. Since u is bounded (in

particular it belongs to the domain of definition of the complex Monge-Ampère operator)

and ϕ ∈ F1(Ω) with (ddcϕ)n putting no mass on pluripolar sets, it follows from [BGZ09,

Corollary 2.4] that u ≤ ϕ. In particular ϕ vanishes on the boundary ∂Ω if u does so.

�

3. The main result

3.1. Proof of the main result

Given ϕ a plurisubharmonic function in a domain Ω, we let

ϕε(z) = ϕ ? χε(z) :=

∫
Cn
ϕ(z − εw)χ(w)dV (w) =

∫
Cn
ϕ(w)χε(z − w)dV (w)

denote the standard regularizations of ϕ defined in Ωε for ε > 0 small enough, where

Ωε = {z ∈ Ω, dist(z, ∂Ω) > ε}.
Here χε are non-negative radial functions with compact support in the ball B(ε) of

radius ε and such that
∫
Cn χεdV = 1, where dV denotes the Euclidean volume form. The

first expression shows that ϕε is a (positive) sum of plurisubharmonic functions (hence
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itself plurisubharmonic) in Ωε, while the second expression shows that ϕε is smooth in

Ω.

3.1.1. The implication (ii) ⇒ (i)

The mean value property shows that the ϕε’s decrease to ϕ as ε decreases to zero. It

follows therefore from Bedford-Taylor’s continuity results [BT76, BT82] that (ii) ⇒ (i)

holds.

3.1.2. The equivalence (ii) ⇔ (iii)

The starting point of (iii) is the classical interpretation of the determinant as an

infimum of traces :

Lemma 3.1.

(detQ)1/n = inf{n−1tr(HQ) ; H ∈ H}.

We first show that (iii)⇒ (ii). Indeed assume that

∆Hϕ ≥ f1/n

for all positive definite Hermitian matrix H normalized by detH = 1. Since ∆H is a

linear operator, we infer

∆H(ϕ ? χε) ≥ f1/n ? χε.

This inequality holds for all normalized H, hence Lemma 3.1 yields

(ddc(ϕ ? χε))
n ≥ (f1/n ? χε)

ndV,

where this inequality holds in the classical (pointwise, differential) sense.

We conversely check that (ii) ⇒ (iii). Since ϕ ? χε is smooth, Lemma 3.1 shows

indeed that

∆H(ϕ ? χε) ≥ f1/n ? χε

for all normalized H ∈ H. Letting ε → 0 and taking limits in the sense of distributions

yields (iii).

3.1.3. The implication (i) ⇒ (ii)

We finally focus on the most delicate implication.

Step 1. Assume first that (ddcϕ)n ≥ fdV , with f continuous. This inequality can be

here interpreted equivalently in the pluripotential or in the viscosity sense, as shown in

[EGZ11, Proposition 1.5], whose proof moreover shows the equivalence with the property

that

∆Hϕ ≥ f1/n for all H ∈ H.

Thus (i) ⇔ (iii) in our main theorem, when f is continuous. Since any lower semi-

continuous function is the increasing limit of continuous functions, the implication (i)⇒
(iii) immediately extends to the case when f is lower semi-continuous.

It remains to get rid of this extra continuity assumption. We are going to approximate

f by continuous densities fk, use the previous result and stability estimates to conclude.



Weak subsolutions to complex Monge-Ampère equations 7

The approximation process, inspired by [Ber13], is somehow delicate, so we proceed in

several steps.

Step 2. Note first that we can assume that f is bounded : we can replace f by

min(f,A) ∈ L∞(Ω) and let eventually A increase to +∞. Since the problem is local, we

can work on fixed balls B′ b B and use a max construction to modify ϕ in a neighborhood

of the boundary ∂B, making it equal to the defining function of B.

We fix 0 < δ < 1 and j ∈ N∗. Since f ∈ L2(B) ⊃ L∞(B), it follows from [CP92,

Kol95] that there exists Uf ∈ PSH(B) ∩ C0(B̄) such that

(ddcUf )n = fdV, Uf = 0 in ∂B.

Set Cj := sup e−jϕ/n and observe that

e−jϕ {fdV + δ(ddcϕ)n} ≤ (ddcv)n

where v := Cj(Uf + ϕ) is bounded, plurisubharmonic, with v = 0 on ∂B.

By Theorem 2.1 there exists a unique bounded plurisubharmonic solution ϕj,δ to the

Dirichlet problem

(3.1) (ddcϕj,δ)
n = ej(ϕj,δ−ϕ) {fdV + δ(ddcϕ)n}

in B with boundary values 0.

We now observe that ϕj,δ uniformly converges to ϕ, as j → +∞, independently of

the value of δ > 0 :

Lemma 3.2. For all j ≥ 1, δ ∈ (0, 1), z ∈ B,

ϕ(z)− log(1 + δ)

j
≤ ϕj,δ(z) ≤ ϕ(z) +

(− log δ)

j
.

Proof. It follows from the comparison principle that ϕj,δ is the envelope of subsolutions.

It thus suffices to find good sub/supersolutions to insure that ϕj,δ converges to ϕ, as

j → +∞.

Observe that u = ϕ − log(1+δ)
j ≤ ϕ is plurisubharmonic in B, with boundary values

u|∂B ≤ 0. Moreover

(ddcu)n = (ddcϕ)n = ej(u−ϕ)(1 + δ)(ddcϕ)n ≥ ej(u−ϕ) {fdV + δ(ddcϕ)n} ,

since (ddcϕ)n ≥ fdV . Thus u is a subsolution to the Dirichlet problem, showing that

u ≤ ϕj,δ.
Set now v = ϕ + (− log δ)

j . This is a plurisubharmonic function in B such that v ≥ 0

on ∂B and

(ddcv)n = (ddcϕ)n = ej(v−ϕ)δ(ddcϕ)n ≤ ej(v−ϕ) {fdV + δ(ddcϕ)n} .

Thus v is a supersolution of the Dirichlet problem hence ϕj,δ ≤ v. �

Step 3. We now approximate f in L2 by continuous densities 0 ≤ fk, with ||fk −
f ||L2 → 0 as k → +∞. Extracting a subsequence and relabelling, we can assume that
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there exists g ∈ L2(B) such that fk ≤ g for all k ∈ N and fk converges almost everywhere

to f . Arguing as above we obtain

e−jϕ {fkdV + δ(ddcϕ)n} ≤ (ddcv)n,

where v := Cj(Ug+ϕ) is bounded, plurisubharmonic, with v = 0 in ∂B. By Theorem 2.1,

there exists a unique bounded plurisubharmonic solution ϕj,δ,k to the Dirichlet problem

(ddcϕj,δ,k)n = ej(ϕj,δ,k−ϕ) {fkdV + δ(ddcϕ)n}

in B, with zero boundary values.

The comparison principle shows that for all k ∈ N,

(3.2) Cj(Ug + ϕ) ≤ ϕj,δ,k ≤ 0.

Thus k 7−→ ϕj,δ,k is uniformly bounded in B. Extracting and relabelling, we can assume

that it converges to a plurisubharmonic function ψ = ψj,δ in L1(Ω) such that

(3.3) Cj(Ug + ϕ) ≤ ψj,δ ≤ 0.

We claim that ψj,δ = ϕj,δ in B. To simplify notations we write uk := ϕj,δ,k and

u := ψj,δ. From (3.2) and (3.3), it follows that uk = u = 0 in ∂B. On the other hand let

ũ` := (supk≥` uk)∗ for ` ∈ N. This is a decreasing sequence of bounded plurisubharmonic

functions converging to u in B. We infer for all `,

(ddcũ`)
n ≥ einfk≥` j(uk−ϕ) inf

k≥`
(fkdV + δ(ddcϕ)n).

Letting `→ +∞ yields

(ddcu)n ≥ ej(u−ϕ) {fdV + δ(ddcϕ)n} ,

which implies that u = ψj,δ is a subsolution to the Dirichlet problem for the equation

(3.1). Hence ψj,δ ≤ ϕj,δ.
By [Kol95] there exists a bounded plurisubharmonic function ρk in B, solution to the

Dirichlet problem

(ddcρk)n = ej(ϕj,δ−ϕ)|f − fk|dV, with ρk|∂B = 0,

with the uniform bound

‖ρk‖L∞(B) ≤ C‖f − fk‖
1/n
L2(B),

where C > 0 is independent of k. In particular ρk → 0 uniformly in B.

Since fk ≤ f + |f − fk| and ρk ≤ 0 it follows that w := ϕj,δ + ρk satisfies

(ddcw)n = (ddc(ϕj,δ + ρk))n ≥ ej(w−ϕ)(fkdV + δ(ddcϕ)n).

The comparison principle insures w ≤ ϕj,δ,k hence ϕj,δ ≤ ψj,δ since ρk → 0.

Conclusion. We have thus shown that ψj,δ = ϕj,δ and ϕj,δ,k ≥ ϕj,δ + ρk. Lemma 3.2
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yields

j(ϕj,δ,k − ϕ) ≥ − log(1 + δ)− jηk,

where ηk := ‖ρk‖L∞(B)
k→+∞→ 0.

Since fk is continuous we can apply Step 1 to insure that

(ddcϕj,δ,k ? χε)
n ≥ e−jηk

δ + 1
(f

1/n
k ? χε)

ndV.

We know that lim supk→+∞ ϕj,δ,k ≤ ϕj,δ since ϕj,δ,k → ϕj,δ in L1(B) as k → +∞.

Since ϕj,δ,k ≥ ϕj,δ − ηk and limk→+∞ ηk = 0, it follows from Hartogs lemma that

ϕj,δ,k → ϕj,δ in capacity. Letting k → +∞ we obtain

(ddcϕj,δ ? χε)
n ≥ 1

δ + 1
(f1/n ? χε)

ndV.

By Lemma 3.2 (ϕj,δ) uniformly converges to ϕ as j → +∞, hence

(ddcϕ ? χε)
n ≥ 1

δ + 1
(f1/n ? χε)

ndV.

We let finally δ decrease to zero to obtain the desired lower bound (ii).

3.1.4. An extension of the main result

By approximating a given function ϕ in the Cegrell class E(Ω) by the decreasing

sequence ϕj := max(ϕ,−j) of bounded plurisubharmonic functions, we let the reader

check that the main theorem holds when ϕ merely belongs to E(Ω).

3.2. Mixed inequalities

We now prove the Corollary of the introduction on mixed Monge-Ampère measures

of subsolutions, providing an alternative proof of [Kol03, Lemma 1.2]:

Proposition 3.3. Assume ϕ1, . . . , ϕn are bounded plurisubharmonic functions in Ω,

such that (ddcϕi)
n ≥ fidV , where 0 ≤ fi ∈ L1(Ω). Then

ddcϕ1 ∧ · · · ∧ ddcϕn ≥ f1/n
1 · · · f1/n

n dV.

Proof. The inequality is classical when the functions ϕi are smooth, and follows from

the concavity of H 7→ log detH (see [HJ85, Corollary 7.6.9]).

To treat the general case we replace each ϕi by its convolutions ϕi ? χε. We can

always assume that fi ∈ L∞(Ω). Our main result insures that

(ddc(ϕi ? χε))
n ≥ (f

1/n
i ? χε)

ndV,

hence

ddc(ϕ1 ? χε) ∧ · · · ∧ ddc(ϕn ? χε) ≥ (f
1/n
1 ? χε) · · · (f1/n

n ? χε)dV.

The left hand side converges weakly to ddcϕ1 ∧ · · · ∧ ddcϕn by Bedford-Taylor’s con-

tinuity results [BT76, BT82], while (f
1/n
i ? χε) converges to (fi)

1/n in Ln by Lebesgue
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convergence Theorem. Hence

(f1 ? χε)
1/n · · · (fn ? χε)1/n converges to (f1)1/n · · · (fn)1/n

in L1. The conclusion follows. �

We note conversely that these mixed inequalities yield an important implication in our

main result. Assume indeed that (ddcϕ)n ≥ fdV in the pluripotential sense. Fix f1 = f

and ϕ2 = . . . = ϕn = ρH , where ρH =
∑
hjkzj z̄k with H ∈ H, so that (ddcϕi)

n ≥ fidV

with f2 = . . . = fn = 1. It follows from the mixed inequalities above that

∆Hϕ = ddcϕ ∧ ddcϕ2 ∧ · · · ∧ ddcϕn ≥ f1/n.

One can alternatively proceed as follows : observe that

(ddcϕ ? χε)
n(z)

=

∫
ddcϕ(z − w1) ∧ · · · ∧ ddcϕ(z − wn)χε(w1) · · ·χε(wn)dV (w1, . . . wn)

≥
∫
f1/n(z − w1) · · · f1/n(z − wn)dV (z)χε(w1) · · ·χε(wn)dV (w1, . . . wn)

= (f1/n ? χε)
n(z)dV (z).

3.3. More general right hand side

There are several ways one can extend our main observation. We note here the

following:

Theorem 3.4. Assume ϕ is plurisubharmonic and bounded. Fix g ∈ L1 and h : R→
R convex. The following are equivalent :

(i) (ddcϕ)n ≥ eh(ϕ)+gdV in the pluripotential sense;

(ii) (ddc(ϕ ? χε))
n ≥ eh(ϕ?χε)+g?χεdV in the classical sense, for all ε > 0;

(iii) ∆Hϕ ≥ eh(ϕ)/n+g/n in the sense of distributions, for all H ∈ H.

The proof is very close to what we have done above, using the convexity of exp and

h through Jensen’s inequality. We leave the details to the reader.
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Institut de Mathématiques de Toulouse

Université de Toulouse, CNRS

118 route de Narbonne

31400 Toulouse, France

E-mail: vincent.guedj@math.univ-toulouse.fr

Chinh H. Lu

Laboratoire de Mathématiques d’Orsay
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