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Weak subsolutions to complex Monge-Ampère equations

We compare various notions of weak subsolutions to degenerate complex Monge-Ampère equations, showing that they all coincide. This allows us to give an alternative proof of mixed Monge-Ampère inequalities due to Ko lodziej and Dinew.

Introduction

Let Ω be a domain of C n . We consider in this article the notion of subsolution for degenerate complex Monge-Ampère equations in Ω. These are bounded plurisubharmonic functions which satisfy (dd c ϕ) n ≥ f dV, where dV denotes the Lebesgue measure and 0 ≤ f ∈ L 1 (Ω).

This inequality can be interpreted in various senses (pluripotential sense [START_REF] Bedford | The Dirichlet problem for a complex Monge-Ampère equation[END_REF], viscosity sense [START_REF] Eyssidieux | Viscosity solutions to Degenerate Complex Monge-Ampère Equations[END_REF], distribution sense [START_REF] Harvey | The equivalence of viscosity and distributional subsolutions for convex subequations, a strong Bellman principle[END_REF]) and the goal of this note is to show that all point of views do coincide.

Main theorem. Assume ϕ is plurisubharmonic and bounded. The following are equivalent :

(i) (dd c ϕ) n ≥ f dV in the pluripotential sense;

(ii) (dd c (ϕ χ ε )) n ≥ (f 1/n χ ε ) n dV in the classical sense, for all ε > 0;

(iii) ∆ H ϕ ≥ f 1/n in the sense of distributions, for all H ∈ H.

In a particular case when ϕ and f are continuous, our main theorem was proved by B locki (see [START_REF] Locki | The complex Monge-Ampère operator in hyperconvex domains[END_REF]Theorem 3.10]).

The operator dd c = ai∂ ∂ is here normalized so that dV = (dd c |z| 2 ) n is the Euclidean volume form on C n . Thus for a smooth function ϕ,

(dd c ϕ) n = det ∂ 2 ϕ ∂z j ∂ zk dV.
We let H denote the space of Hermitian positive definite matrix H that are normalized by det H = 1, and let ∆ H denote the Laplace operator

∆ H ϕ := 1 n n j,k=1
h jk ∂ 2 ϕ ∂z j ∂ zk .

The functions χ ε are standard mollifiers, i.e. radial smooth non-negative functions with compact support in the ε-ball centered at the origin, and such that χ ε dV = 1. It is then classical that the convolutions ϕ χ ε are smooth, plurisubharmonic , and decrease to ϕ as ε decreases to 0.

When f is moreover continuous, one can also interpret the inequality (dd c ϕ) n ≥ f dV in the viscosity sense, as shown in [EGZ11, Proposition 1.5].

Our main theorem easily implies the following result of Kolodziej [Kol03, Lemma 1.2] (see also [START_REF] Dinew | An inequality for mixed Monge-Ampère measures[END_REF][START_REF] Dinew | Mixed Hessian inequalities and uniqueness in the class E(X, ω)[END_REF]) :

Corollary. Assume ϕ 1 , . . . , ϕ n are bounded plurisubharmonic functions in Ω, such that (dd c ϕ i ) n ≥ f i dV , where 0 ≤ f i ∈ L 1 (Ω). Then dd c ϕ 1 ∧ • • • ∧ dd c ϕ n ≥ f 1/n 1 • • • f 1/n n dV.
The note is organized as follows. We start by extending Ko lodziej's subsolution theorem (see Theorem 2.1), providing a solution to special Monge-Ampère equations that we are going to use in the sequel. We prove our main result in Section 3.1. The starting point is an identification of viscosity subsolutions and pluripotential subsolutions obtained in [START_REF] Eyssidieux | Viscosity solutions to Degenerate Complex Monge-Ampère Equations[END_REF]. We connect these identifications to mixed Monge-Ampère inequalities in Section 3.2 and propose some generalizations in Section 3.3.

The subsolution theorem

Let Ω C n be a bounded hyperconvex domain (in the sequel we only need to deal with the case when Ω is a ball). Let µ be a Borel measure on Ω. If there exists a function

v ∈ P SH(Ω) ∩ L ∞ (Ω) such that µ ≤ (dd c v) n in Ω, with lim Ω z→ζ v(z) = 0, ∀ζ ∈ ∂Ω,
then it was proved by S. Kolodziej [START_REF] Ko Lodziej | The range of the complex Monge-Ampère operator II[END_REF] that there exists a unique solution ψ ∈ P SH(Ω) ∩ L ∞ (Ω) to the equation (dd c ψ) n = µ, such that lim Ω z→ζ ψ(z) = 0. We need the following generalization: Theorem 2.1. Assume µ is a non pluripolar Borel measure on Ω which has finite total mass. Then there exists a unique function ϕ ∈ F 1 (Ω) satisfying

(2.1) (dd c ϕ) n = e ϕ µ in Ω.
Moreover if µ satisfies µ ≤ (dd c u) n in Ω, for some bounded negative psh function u, then the solution ϕ ∈ P SH(Ω) is bounded with u ≤ ϕ. In particular, if lim sup z→ζ u(z) = 0 for every ζ ∈ ∂Ω then the same property holds for ϕ.

Before entering into the proof let us recall the definition of Cegrell's finite energy classes. We refer the reader to [START_REF] Cegrell | Pluricomplex eenrgy[END_REF][START_REF] Cegrell | The general definition of the complex Monge-Amère operator[END_REF] for more details.

A domain Ω is called hyperconvex if there exists a continuous plurisubharmonic exhaustion function ρ : Ω → [-∞, 0) such that the sublevel sets {ρ < -c} are relatively compact in Ω, for all constants c > 0.

Let u be a negative plurisubharmonic function in Ω. We recall the following definitions:

• u ∈ E 0 (Ω) if u is bounded in Ω, u vanishes on the boundary, i.e. lim z→∂Ω u(z) = 0, and Ω (dd c u) n < +∞.

• u ∈ E(Ω) if for each z 0 ∈ Ω there exists an open neighborhood z 0 ∈ V z0 Ω and a decreasing sequence (u j ) ⊂ E 0 (Ω) such that u j converges to u in V z0 and sup j Ω (dd c u j ) n < +∞.

• u ∈ E p (Ω), p > 0 if there exists a sequence (u j ) in E 0 (Ω) decreasing to u and satisfying sup j∈N Ω (-u j ) p (dd c u j ) n < +∞.

If we ask additionally that Ω (dd c u j ) n is uniformly bounded then by definition u ∈ F p (Ω).

It was proved in [START_REF] Cegrell | Pluricomplex eenrgy[END_REF][START_REF] Cegrell | The general definition of the complex Monge-Amère operator[END_REF] that the Monge-Ampère operator (dd c ) n is well-defined for functions in E(Ω). Moreover, it was shown in [BGZ09, Theorem A] that if u ∈ E(Ω) then (dd c max(u, -j)) n converges in the strong sense of Borel measures in Ω ∩ {u > -∞} to (dd c u) n . Theorem 2.1 was proved in [START_REF] Cegrell | The equation of complex Monge-Ampère type and stability of solutions[END_REF] using a fixed point argument. We provide in this note an alternative proof using the variational method, adapting the techniques developed in Kähler geometry in [START_REF] Berman | A variational approach to complex Monge-Ampère equations[END_REF] (similar ideas have been used in [START_REF] Ahag | On Dirichlet's principle and problem[END_REF][START_REF] Lu | A variational approach to complex Hessian equations in C n[END_REF]).

Proof of Theorem 2.1. Consider

F µ (φ) := E 1 (φ) - Ω e φ dµ, φ ∈ E 1 (Ω),
where

E 1 (φ) := 1 n + 1 Ω φ(dd c φ) n .
The Euler-Lagrange equation of F µ can be computed as follows.

Fix φ ∈ E 1 (Ω) and assume (φ(t)) is a smooth path in E 1 (Ω) starting at φ(0) = φ with φ(0) = v ∈ C(X). It follows from Stokes theorem that d dt E 1 (φ(t))| t=0 = Ω v(dd c φ) n , hence d dt F µ (φ(t))| t=0 = Ω v(dd c φ) n - Ω ve φ dµ.
Thus φ is a critical point of the functional F µ if it is a solution to the complex Monge-Ampère equation (2.1). It is thus natural to try and extremize F µ in order to solve (2.1). We proceed in three steps :

Step 1: Upper semi-continuity of F µ . Observe first that the functional J(φ) := -E 1 (φ) = |E 1 (φ)| is a positive proper functional on the space E 1 (Ω) i.e. its sublevel subsets

E 1 B (Ω) := {φ ∈ E 1 (Ω); 0 ≤ J(φ) ≤ B}, B > 0 are compact for the L 1 -topology. Moreover the functional E 1 is upper semi-continuous on each compact subset E 1 B (Ω) for the L 1 -topology. The continuity of the functional L µ : φ -→ Ω e φ dµ on each compact subset E 1 B (Ω) follows from the following fact due to Cegrell [Ce98], [ACC12, Lemma 4.1] : if φ j → φ in E 1 B (Ω) then φ j → φ µ-a.e.
, hence by Lebesgue's convergence theorem, lim j L µ (φ j ) = L µ (φ) (we use here the fact that µ is non-pluripolar).

This proves that F µ is upper semi-continuous on each

E 1 B (Ω). Step 2: Coercivity of F µ . Observe that 0 ≤ e ϕ ≤ 1 for ϕ ∈ E 1 (Ω), hence F µ (φ) ≤ E 1 (φ). We infer that F µ is J-proper on E 1 (Ω), i.e. lim J(φ)→+∞ F µ (φ) = -∞.
This implies that the maximum of F µ on E 1 (Ω) is localized at a finite level of energy, i.e. there exists a constant B > 0 such that

sup{F µ (φ); φ ∈ E 1 (Ω)} = sup{F µ (φ); φ ∈ E 1 B (Ω)}, Since F µ is upper semi-continuous on the compact set E 1 B (Ω), there exists φ ∈ E 1 B (Ω) which maximizes F µ on E 1 B (Ω) i.e. F µ (φ) = inf{F µ (ψ); ψ ∈ E 1 B (Ω)}.
Step 3: φ is a critical point of F µ . Fix a continuous test function χ with compact support in Ω and set φ(t) := P Ω (φ+tχ) for t ∈ R, where P Ω (u) denotes the plurisubharmonic envelope of u in Ω.

Observe that φ(t) ∈ E 1 (Ω). Indeed let ρ be a continuous psh exhaustion for Ω such that ρ < -|χ| on the support of χ.

Then φ + |t|ρ ≤ φ(t) for t ∈ R. Since φ + |t|ρ ∈ E 1 (Ω), it follows that φ(t) ∈ E 1 (Ω). Set h(t) := E 1 (φ(t)) - Ω e φ+tχ dµ.
Then since φ(t) ≤ φ + tχ, it follows that h(t) ≤ F µ (φ(t)) ≤ F µ (φ) which means that h achieves its maximum at the point 0.

On the other hand we know by [BBGZ13, ACC12, Lu15] that

d dt h(t) | t=0 = Ω χ(dd c φ) n - Ω χe φ dµ.
Since h achieves its maximum at the point 0, we have h (0) = 0, hence

Ω χ(dd c φ) n = Ω χe φ dµ.
As the test function χ was arbitrary, this means that the function φ is a solution of the equation (2.1). As µ has finite total mass we actually have that ϕ ∈ F 1 (Ω).

We now prove the uniqueness. We infer {ϕ<ψ} (e ψ -e ϕ )dµ = 0 hence ψ ≤ ϕ, µ-almost everywhere and (dd c ϕ) n -almost everywhere in Ω. For each ε > 0, since (dd

If ψ ∈ F 1 (Ω) is
c ϕ) n vanishes in {ϕ ≤ ψ -ε} ⊂ {ϕ < ψ}, it follows from [BGZ09, Theorem 2.2] that (dd c max(ϕ, ψ -ε)) n ≥ 1 {ϕ>ψ-ε} (dd c ϕ) n = (dd c ϕ) n .
It then follows from the comparison principle [Ce98, Theorem 4.5] that max(ϕ, ψε) ≤ ϕ, for all ε > 0, hence ψ ≤ ϕ. Reversing the role of ϕ and ψ in the above argument gives ϕ = ψ, proving the uniqueness.

Assume finally that µ ≤ (dd c u) n , where u is a bounded negative psh function in Ω. Then since ϕ ≤ 0 we have (dd c ϕ) n = e ϕ µ ≤ µ ≤ (dd c u) n . Since u is bounded (in particular it belongs to the domain of definition of the complex Monge-Ampère operator) and ϕ ∈ F 1 (Ω) with (dd c ϕ) n putting no mass on pluripolar sets, it follows from [BGZ09, Corollary 2.4] that u ≤ ϕ. In particular ϕ vanishes on the boundary ∂Ω if u does so.

The main result

Proof of the main result

Given ϕ a plurisubharmonic function in a domain Ω, we let

ϕ ε (z) = ϕ χ ε (z) := C n ϕ(z -εw)χ(w)dV (w) = C n ϕ(w)χ ε (z -w)dV (w)
denote the standard regularizations of ϕ defined in Ω ε for ε > 0 small enough, where Ω ε = {z ∈ Ω, dist(z, ∂Ω) > ε}.

Here χ ε are non-negative radial functions with compact support in the ball B(ε) of radius ε and such that C n χ ε dV = 1, where dV denotes the Euclidean volume form. The first expression shows that ϕ ε is a (positive) sum of plurisubharmonic functions (hence itself plurisubharmonic) in Ω ε , while the second expression shows that ϕ ε is smooth in Ω.

3.1.1. The implication (ii) ⇒ (i)

The mean value property shows that the ϕ ε 's decrease to ϕ as ε decreases to zero. It follows therefore from Bedford-Taylor's continuity results [START_REF] Bedford | The Dirichlet problem for a complex Monge-Ampère equation[END_REF][START_REF] Bedford | A new capacity for plurisubharmonic functions[END_REF] that (ii) ⇒ (i) holds.

3.1.2. The equivalence (ii) ⇔ (iii)

The starting point of (iii) is the classical interpretation of the determinant as an infimum of traces :

Lemma 3.1. (det Q) 1/n = inf{n -1 tr(HQ) ; H ∈ H}.
We first show that (iii) ⇒ (ii). Indeed assume that ∆ H ϕ ≥ f 1/n for all positive definite Hermitian matrix H normalized by det H = 1. Since ∆ H is a linear operator, we infer

∆ H (ϕ χ ε ) ≥ f 1/n χ ε .
This inequality holds for all normalized H, hence Lemma 3.1 yields

(dd c (ϕ χ ε )) n ≥ (f 1/n χ ε ) n dV,
where this inequality holds in the classical (pointwise, differential) sense.

We conversely check that (ii) ⇒ (iii). Since ϕ χ ε is smooth, Lemma 3.1 shows indeed that ∆ H (ϕ χ ε ) ≥ f 1/n χ ε for all normalized H ∈ H. Letting ε → 0 and taking limits in the sense of distributions yields (iii).

The implication (i) ⇒ (ii)

We finally focus on the most delicate implication.

Step 1. Assume first that (dd c ϕ) n ≥ f dV , with f continuous. This inequality can be here interpreted equivalently in the pluripotential or in the viscosity sense, as shown in [EGZ11, Proposition 1.5], whose proof moreover shows the equivalence with the property that

∆ H ϕ ≥ f 1/n for all H ∈ H.
Thus (i) ⇔ (iii) in our main theorem, when f is continuous. Since any lower semicontinuous function is the increasing limit of continuous functions, the implication (i) ⇒ (iii) immediately extends to the case when f is lower semi-continuous.

It remains to get rid of this extra continuity assumption. We are going to approximate f by continuous densities f k , use the previous result and stability estimates to conclude.

The approximation process, inspired by [START_REF] Berman | From Monge-Ampère equations to envelopes and geodesic rays in the zero temperature limit[END_REF], is somehow delicate, so we proceed in several steps.

Step 2. Note first that we can assume that f is bounded : we can replace f by min(f, A) ∈ L ∞ (Ω) and let eventually A increase to +∞. Since the problem is local, we can work on fixed balls B B and use a max construction to modify ϕ in a neighborhood of the boundary ∂B, making it equal to the defining function of B.

We fix 0 < δ < 1 and j

∈ N * . Since f ∈ L 2 (B) ⊃ L ∞ (B), it follows from [CP92, Kol95] that there exists U f ∈ P SH(B) ∩ C 0 ( B) such that (dd c U f ) n = f dV, U f = 0 in ∂B.
Set C j := sup e -jϕ/n and observe that

e -jϕ {f dV + δ(dd c ϕ) n } ≤ (dd c v) n where v := C j (U f + ϕ) is bounded, plurisubharmonic, with v = 0 on ∂B.
By Theorem 2.1 there exists a unique bounded plurisubharmonic solution ϕ j,δ to the Dirichlet problem

(3.1) (dd c ϕ j,δ ) n = e j(ϕ j,δ -ϕ) {f dV + δ(dd c ϕ) n }
in B with boundary values 0.

We now observe that ϕ j,δ uniformly converges to ϕ, as j → +∞, independently of the value of δ > 0 :

Lemma 3.2. For all j ≥ 1, δ ∈ (0, 1), z ∈ B, ϕ(z) - log(1 + δ) j ≤ ϕ j,δ (z) ≤ ϕ(z) + (-log δ) j .
Proof. It follows from the comparison principle that ϕ j,δ is the envelope of subsolutions. It thus suffices to find good sub/supersolutions to insure that ϕ j,δ converges to ϕ, as j → +∞.

Observe that u = ϕ -log(1+δ)

j ≤ ϕ is plurisubharmonic in B, with boundary values u |∂B ≤ 0. Moreover (dd c u) n = (dd c ϕ) n = e j(u-ϕ) (1 + δ)(dd c ϕ) n ≥ e j(u-ϕ) {f dV + δ(dd c ϕ) n } , since (dd c ϕ) n ≥ f dV . Thus u is a subsolution to the Dirichlet problem, showing that u ≤ ϕ j,δ . Set now v = ϕ + (-log δ) j
. This is a plurisubharmonic function in B such that v ≥ 0 on ∂B and

(dd c v) n = (dd c ϕ) n = e j(v-ϕ) δ(dd c ϕ) n ≤ e j(v-ϕ) {f dV + δ(dd c ϕ) n } .
Thus v is a supersolution of the Dirichlet problem hence ϕ j,δ ≤ v.

Step 3. We now approximate f in L 2 by continuous densities 0 ≤ f k , with ||f kf || L 2 → 0 as k → +∞. Extracting a subsequence and relabelling, we can assume that there exists g ∈ L 2 (B) such that f k ≤ g for all k ∈ N and f k converges almost everywhere to f . Arguing as above we obtain

e -jϕ {f k dV + δ(dd c ϕ) n } ≤ (dd c v) n ,
where v := C j (U g +ϕ) is bounded, plurisubharmonic, with v = 0 in ∂B. By Theorem 2.1, there exists a unique bounded plurisubharmonic solution ϕ j,δ,k to the Dirichlet problem

(dd c ϕ j,δ,k ) n = e j(ϕ j,δ,k -ϕ) {f k dV + δ(dd c ϕ) n } in B, with zero boundary values.
The comparison principle shows that for all k ∈ N,

(3.2) C j (U g + ϕ) ≤ ϕ j,δ,k ≤ 0. Thus k -→ ϕ j,δ,k is uniformly bounded in B.
Extracting and relabelling, we can assume that it converges to a plurisubharmonic function ψ = ψ j,δ in L 1 (Ω) such that

(3.3) C j (U g + ϕ) ≤ ψ j,δ ≤ 0.
We claim that ψ j,δ = ϕ j,δ in B. To simplify notations we write u k := ϕ j,δ,k and u := ψ j,δ . From (3.2) and (3.3), it follows that u k = u = 0 in ∂B. On the other hand let ũ := (sup k≥ u k ) * for ∈ N. This is a decreasing sequence of bounded plurisubharmonic functions converging to u in B. We infer for all ,

(dd c ũ ) n ≥ e inf k≥ j(u k -ϕ) inf k≥ (f k dV + δ(dd c ϕ) n ).
Letting → +∞ yields (dd c u) n ≥ e j(u-ϕ) {f dV + δ(dd c ϕ) n } , which implies that u = ψ j,δ is a subsolution to the Dirichlet problem for the equation (3.1). Hence ψ j,δ ≤ ϕ j,δ .

By [START_REF] Ko Lodziej | The range of the complex Monge-Ampère operator II[END_REF] there exists a bounded plurisubharmonic function ρ k in B, solution to the Dirichlet problem (dd c ρ k ) n = e j(ϕ j,δ -ϕ) |f -f k |dV, with ρ k|∂B = 0, with the uniform bound

ρ k L ∞ (B) ≤ C f -f k 1/n L 2 (B) ,
where C > 0 is independent of k. In particular ρ k → 0 uniformly in B.

Since

f k ≤ f + |f -f k | and ρ k ≤ 0 it follows that w := ϕ j,δ + ρ k satisfies (dd c w) n = (dd c (ϕ j,δ + ρ k )) n ≥ e j(w-ϕ) (f k dV + δ(dd c ϕ) n ).
The comparison principle insures w ≤ ϕ j,δ,k hence ϕ j,δ ≤ ψ j,δ since ρ k → 0.

Conclusion.

We have thus shown that ψ j,δ = ϕ j,δ and ϕ j,δ,k ≥ ϕ j,δ + ρ k . Lemma 3.2 yields

j(ϕ j,δ,k -ϕ) ≥ -log(1 + δ) -jη k ,
where

η k := ρ k L ∞ (B) k→+∞ → 0. Since f k is continuous we can apply Step 1 to insure that (dd c ϕ j,δ,k χ ε ) n ≥ e -jη k δ + 1 (f 1/n k χ ε ) n dV.
We know that lim sup k→+∞ ϕ j,δ,k ≤ ϕ j,δ since ϕ j,δ,k → ϕ j,δ in L 1 (B) as k → +∞. Since ϕ j,δ,k ≥ ϕ j,δ -η k and lim k→+∞ η k = 0, it follows from Hartogs lemma that ϕ j,δ,k → ϕ j,δ in capacity. Letting k → +∞ we obtain

(dd c ϕ j,δ χ ε ) n ≥ 1 δ + 1 (f 1/n χ ε ) n dV.
By Lemma 3.2 (ϕ j,δ ) uniformly converges to ϕ as j → +∞, hence

(dd c ϕ χ ε ) n ≥ 1 δ + 1 (f 1/n χ ε ) n dV.
We let finally δ decrease to zero to obtain the desired lower bound (ii).

An extension of the main result

By approximating a given function ϕ in the Cegrell class E(Ω) by the decreasing sequence ϕ j := max(ϕ, -j) of bounded plurisubharmonic functions, we let the reader check that the main theorem holds when ϕ merely belongs to E(Ω).

Mixed inequalities

We now prove the Corollary of the introduction on mixed Monge-Ampère measures of subsolutions, providing an alternative proof of [Kol03, Lemma 1.2]: Proposition 3.3. Assume ϕ 1 , . . . , ϕ n are bounded plurisubharmonic functions in Ω, such that (dd c ϕ i ) n ≥ f i dV , where 0 ≤ f i ∈ L 1 (Ω). Then

dd c ϕ 1 ∧ • • • ∧ dd c ϕ n ≥ f 1/n 1 • • • f 1/n n dV.
Proof. The inequality is classical when the functions ϕ i are smooth, and follows from the concavity of H → log det H (see [HJ85, Corollary 7.6.9]).

To treat the general case we replace each ϕ i by its convolutions ϕ i χ ε . We can always assume that f i ∈ L ∞ (Ω). Our main result insures that

(dd c (ϕ i χ ε )) n ≥ (f 1/n i χ ε ) n dV, hence dd c (ϕ 1 χ ε ) ∧ • • • ∧ dd c (ϕ n χ ε ) ≥ (f 1/n 1 χ ε ) • • • (f 1/n n χ ε )dV.
The left hand side converges weakly to dd c ϕ 1 ∧ • • • ∧ dd c ϕ n by Bedford-Taylor's continuity results [START_REF] Bedford | The Dirichlet problem for a complex Monge-Ampère equation[END_REF][START_REF] Bedford | A new capacity for plurisubharmonic functions[END_REF], while (f 1/n i χ ε ) converges to (f i ) 1/n in L n by Lebesgue convergence Theorem. Hence

(f 1 χ ε ) 1/n • • • (f n χ ε ) 1/n converges to (f 1 ) 1/n • • • (f n ) 1/n
in L 1 . The conclusion follows.

We note conversely that these mixed inequalities yield an important implication in our main result. Assume indeed that (dd c ϕ) n ≥ f dV in the pluripotential sense. Fix f 1 = f and ϕ 2 = . . . = ϕ n = ρ H , where ρ H = h jk z j zk with H ∈ H, so that (dd c ϕ i ) n ≥ f i dV with f 2 = . . . = f n = 1. It follows from the mixed inequalities above that

∆ H ϕ = dd c ϕ ∧ dd c ϕ 2 ∧ • • • ∧ dd c ϕ n ≥ f 1/n .
One can alternatively proceed as follows : observe that

(dd c ϕ χ ε ) n (z) = dd c ϕ(z -w 1 ) ∧ • • • ∧ dd c ϕ(z -w n )χ ε (w 1 ) • • • χ ε (w n )dV (w 1 , . . . w n ) ≥ f 1/n (z -w 1 ) • • • f 1/n (z -w n )dV (z)χ ε (w 1 ) • • • χ ε (w n )dV (w 1 , . . . w n ) = (f 1/n χ ε ) n (z)dV (z).

More general right hand side

There are several ways one can extend our main observation. We note here the following: Theorem 3.4. Assume ϕ is plurisubharmonic and bounded. Fix g ∈ L 1 and h : R → R convex. The following are equivalent :

(i) (dd c ϕ) n ≥ e h(ϕ)+g dV in the pluripotential sense;

(ii) (dd c (ϕ χ ε )) n ≥ e h(ϕ χε)+g χε dV in the classical sense, for all ε > 0;

(iii) ∆ H ϕ ≥ e h(ϕ)/n+g/n in the sense of distributions, for all H ∈ H.

The proof is very close to what we have done above, using the convexity of exp and h through Jensen's inequality. We leave the details to the reader.

  another solution to (2.1) then it follows from the comparison principle [Ce98, Lemma 4.4] that {ϕ<ψ} e ψ dµ = {ϕ<ψ} (dd c ψ) n ≤ {ϕ<ψ} (dd c ϕ) n = {ϕ<ψ} e ϕ dµ ≤ {ϕ<ψ} e ψ dµ.
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