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Abstract. Existing programming models tend to tightly interleave al-
gorithm and optimization in HPC simulation codes. This requires scien-
tists to become experts in both the simulated domain and the optimiza-
tion process and makes the code difficult to maintain and port to new
architectures. This paper proposes the InKS programming model that
decouples these two concerns with distinct languages for each. The sim-
ulation algorithm is expressed in the InKSpia language with no concern
for machine-specific optimizations. Optimizations are expressed using
both a family of dedicated optimizations DSLs (InKSO) and plain C++.
InKSO relies on the InKSpia source to assist developers with common
optimizations while C++ is used for less common ones. Our evaluation
demonstrates the soundness of the approach by using it on synthetic
benchmarks and the Vlasov-Poisson equation. It shows that InKS offers
separation of concerns at no performance cost.

Keywords: programming model · separation of concerns · HPC · DSL

1 Introduction

It is more and more common to identify simulation as the third pillar of sci-
ence together with theory and experimentation. Parallel computers provide the
computing power required by the more demanding of these simulations. The
complexity and heterogeneity of these architectures do however force scientists
to write complex code (using vectorization, parallelization, accelerator specific
languages, etc.) These optimizations heavily depend on the target machine and
the whole code has to be adapted whenever it is ported to a new architecture.

As a result, scientists have to become experts in the art of computer op-
timizations in addition to their own domain of expertise. It is very difficult in
practice to maintain a code targeting multiple distinct architectures. One funda-
mental cause for this situation is the tight interleaving of two distinct concerns
imposed by most programming models. On the one hand, the algorithm comes
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from the expertise of the domain scientist and does not depend on the target
architecture. On the other hand, optimization is the expertise of optimization
specialists and has to be adapted for every new architecture.

Many approaches have been proposed to improve this situation in the form of
libraries or languages. Approaches based on automated optimization processes
typically isolate the algorithmic aspects very well but restrict their domain of
applicability and/or the range of supported optimizations. Approaches based
on optimization tools and libraries enable optimization specialists to express
common optimizations very efficiently but leave others mixed with the algorithm.

In this paper, we propose the Independent Kernel Scheduling (InKS) pro-
gramming model to separate algorithm from optimization choices in HPC sim-
ulation codes. We define the InKSpia language used to express the algorithm of
an application independently of its optimization. Such a program can be opti-
mized with the InKSO family of domain-specific languages (DSLs) for common
optimizations or C++ for less common optimizations.

This paper makes the following contributions: 1) it defines the InKS pro-
gramming model and its platform-independent algorithmic language InKSpia; 2)
it proposes an implementation of InKS with two optimization DSLs, InKSO/Loop

and InKSO/XMP; and 3) it evaluates the approach on the synthetic NAS parallel
benchmarks [3] and on the 6D Vlasov-Poisson solving with a semi-Lagrangian
method.

The remaining of the paper is organized as follows. Section 2 presents and
analyzes related work. Section 3 describes the InKS programming model and its
implementation. Section 4 presents the 6D Vlasov-Poisson problem and its imple-
mentation using InKS while Section 5 evaluates the approach. Finally, Section 6
concludes the paper and identifies some perspectives.

2 Related works

Many approaches are used to implement optimized scientific simulations. A first
widely used approach is based on imperative languages such as Fortran, C or
C++. Libraries like MPI extend this to distributed memory with message pass-
ing. Abstractions very close to the actual execution machine make fine-tuning
possible to achieve good performance on any specific architecture. It does how-
ever require encoding complex optimizations directly in the code. As there is no
language support to separate the algorithm and architecture-specific optimiza-
tions, tedious efforts have to be applied [10] to support performance portability.
Algorithm and optimizations are instead often tightly bound together in codes.

A second approach is thus offered by tools (libraries, frameworks or language
extensions) that encode classical optimizations. OpenMP [5] or Kokkos [4] sup-
port common shared-memory parallelization patterns. E.g, Kokkos offers multi-
dimensional arrays and iterators for which efficient memory mappings and iter-
ation orders are selected independently. E.g, UPC [8] or XMP [14] support the
partitioned global address space paradigm. In XMP, directives describe array
distribution and communications between nodes. These tools offer gains of pro-
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ductivity when the optimization patterns they offer fit the requirements. The
separation of optimizations from the main code base also eases porting between
architectures. Even if expressed more compactly optimizations do however re-
main mixed with the algorithm and only cover part of the requirements.

A third approach pushes this further with tools that automate the optimiza-
tion process. For example, PaRSEC [11] or StarPU [1] support the many-tasks
paradigm. In StarPU, the user expresses its code as a DAG of tasks with data
dependencies that is automatically scheduled at runtime depending on the avail-
able resources. Another examples are SkeTo [18] or Lift [16] that offer algorithmic
skeletons. Lift offers a limited set of parallel patterns whose combinations are
automatically transformed by an optimizing compiler. Automating optimization
improves productivity and clearly separate these optimizations which improves
portability. The tools do however not cover the whole range of potential op-
timizations such as the choice of work granularity inside tasks. The algorithm
remains largely interleaved with optimization choices even with this approach.

A last approach is based on DSLs that restrict optimizations, such as Pochoir
[17] or PATUS [6], DSLs for stencil problems. In Pochoir, the user only specifies
a stencil (computation kernel and access pattern), boundary conditions and a
space-time domain while all optimizations are handled by a compiler. DSLs
restrict the developer to the expression of the algorithm only, while optimizations
are handled independently. This ensures a very good separation of these aspects.
The narrower the target domain is, the more efficient domain and architecture-
specific optimizations are possible. However, it makes it less likely for the tool
to cover the needs of a whole application. Real-world applications can fall at
the frontier between the domains of distinct DSLs or not be covered by a single
one. Performance then depends on the choice of DSLs to use and the best choice
depends on the target architecture leading to new portability issues.

To summarize, one can consider a continuum of approaches from very gen-
eral approaches where the optimization process is manual to more and more
domain specific where the optimization process can be automated. The more
general approaches support a large range of optimizations and application do-
mains but yield high implementation costs and low separation of concerns and
portability. The more automated approaches reduce implementation costs and
offer good separation of concerns and portability but restrain the range of sup-
ported domains and optimizations. Ideally, one would like to combine all these
advantages: 1) the domain generality of imperative languages, 2) the ease of
optimization offered by dedicated tools and 3) the separation of concerns and
performance portability offered by DSLs. The following section describes the
InKS programming model that aims to combine these approaches to offer such
a solution.

3 The InKS programming model

This section describes the core of our contribution, the InKS programming
model. This approach is based on the use of distinct languages to express algo-
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rithm and optimization choices; thus enforcing their separation. The algorithm
of the simulation consists in the set of values computed, the formula used to pro-
duce each of them as well as the simulation inputs and outputs. We include in
optimization choices all that is not the algorithm, such as the choice of a comput-
ing unit for each computation, their ordering, the choice of a location in memory
for each value, etc. Multiple optimization choices can differ in performance but
simulation results depend on the algorithm only.

Fig. 1: The InKS model

The InKS approach is summa-
rized in Figure 1. The InKSpia lan-
guage is used to express the algo-
rithm with no concern for optimiza-
tion choices. A compiler generates
non-optimized, generic choices auto-
matically from this specification for
test purposes. The InKSO family of
DSLs is used to define common op-
timizations efficiently while C++ is
used to describe arbitrarily complex
optimizations. Many versions of the
optimization choices can be devised to
optimize for multiple targets.

The remaining of the section de-
scribes InKSpia and proposes two pre-
liminary InKSO DSLs. InKSO/XMP

handles domain decomposition and
inter-node communications while InKSO/Loop

focuses on efficient loops.

The InKSpia language. In InKSpia [2] (illustrated in Listing 1), values are stored
in infinite multidimensional arrays based on dynamic single assignment (DSA,
each coordinate can only be written once). Memory placement of each coordi-
nate is left unspecified. Computations are specified by kernel procedures that
1) take as parameters data arrays and integer coordinates; 2) specify the co-
ordinate they might read and will write in each array; and 3) define either a
C++ or InKS implementation. An InKS implementation defines kernels va-
lidity domains: coordinates where C++ kernels can generate values in arrays.
Kernel execution order is left unspecified. The simulation entry point is a kernel
marked public. This specifies a parameterized task graph (PTG) [7]. This repre-
sentation covers a large range of problems but imposes a few limitations. Mostly,
all the problem parameters must be known at launch time, it does for example
not support adaptive mesh or time-steps. It is still possible to express these con-
cerns outside InKSpia and call the InKS implementation multiple times with
different parameters.

The InKSpia compiler [2] extracts C++ functions from InKSpia kernels and
generates a function with correct but non-optimized loops and memory alloca-
tions to execute them. Arbitrarily complex versions of these can also be written
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1 kernel stencil3(x, t): ( double A(2) {in: (x-1:x+1, t) | out: (x, t+1)} )
2 #CODE(C) A(x, t+1) = 0.5*A(x, t-1) + 0.25*(A(x-1, t-1)+A(x+1, t-1)); #END
3 public kernel inks_stencil(DIM_X, N_ITER):
4 ( double A_decl(2) {in: (0:DIM_X, 0) | out: (1:DIM_X-1, N_ITER-1)} )
5 #CODE(INKS) stencil3(1:DIM_X-1, 1:N_ITER-1):(A_decl) #END

Listing 1: 1D stencil computation on a 2D domain in InKSpia

1 #pragma xmp nodes p6d[pV3][pV2][pV1][pZ][pY][pX]
2 #pragma inks decompose dynamic % f6d // dynamic allocation of f6d algorithmic array
3 (8:, 7:, 6, 5, 4, 3, 2, 1) // dimension reordering, dim 7 & 8 are folded
4 with t6d onto p6d // block decomposition mapped on the XMP topology
5 // Dynamic halo exchange on the 4th dimension, halo sizes are computed automatically
6 #pragma inks exchange periodic f6d(4, advection4) to R and L
7 /*R and L are now allocated buffers and contain the halo values: */ foo(R, L);

Listing 2: 6D decomposition and dynamic halo exchange in InKSO/XMP

1 double (f6d*)[][][][][]; // need to declare f6d global, valid in xmp
2 #pragma xmp nodes p6d[pV3][pV2][pV1][pZ][pY][pX] // xmp 6d cartesian node topology
3 #pragma xmp template t6d[:][:][:][:][:][:] // xmp 6d logical array
4 #pragma xmp distribute t6d [block][block][block][block][block][block] onto p6d
5 // map element of f6d to element of t6d
6 #pragma xmp align f6d[n][m][l][k][j][i] with t6d[n][m][l][k][j][i]
7 #pragma xmp template_fix t6d[N][M][L][K][J][I]
8 f6d = (double(*)[M][L][K][J][I]) xmp_malloc(xmp_desc_of(f6d), N, M, L, K, J, I);

Listing 3: XMP code generated for the f6D decomposition of Listing 2

manually in plain C++ and rely on existing optimization tools. These functions
can be called from any existing code whose language supports the C calling con-
vention. However, that approach requires information present in InKSpia to be
repeated. The InKSO DSLs thus interface optimization tools with InKSpia.

The InKSO/XMP optimization language. InKSO/XMP (illustrated in Listing 2)
handles distributed memory domain decomposition by combining C and direc-
tives based on XMP and adapted for InKS. The compiler replaces these direc-
tives by C and XMP code (Listing 3). The inks decompose directive supports
static or dynamic allocation of arrays from the algorithm. The domain size is
extracted from InKSpia source and the user only has to specify its mapping onto
memory. As in XMP, InKSO/XMP supports domain decomposition mapped onto
an XMP topology. In addition, it supports dimension reordering and folding
which consists in reusing the same memory address for subsequent indices in a
given dimension. This feature is important to reuse memory due to the DSA
nature of InKSpia arrays. The exchange directive supports halo exchanges. The
required halo size is automatically extracted from the algorithm and the user
only has to specify when to execute the communications and in what dimension.
While XMP requires halo values to be stored contiguously with the domain,
InKSO/XMP support a dynamic halo extension where halo values are stored in
dedicated, dynamically allocated buffers to reduce memory footprint.

The InKSO/Loop optimization language. InKSO/Loop (illustrated in Listing 4)
offers to specify manually loop nests for which the compiler generates plain
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1 /*** advec.iks InKSpia algorithmic file ***/
2 kernel advection3 (i, j, k, l, m, n, t, K, step) : (
3 double f6d { in: (i, j, 0:K, l, m, n, t, step-1) | out: (i, j, k, l, m, n, t, step) },
4 int disp {in: (n)}, double coef {in: (n, 0:4)} )
5 #CODE (C) /* ... */ #END
6
7 public kernel main_code(t, I, J, K, L, M, N, Niter): ( double coef(2), int disp(1)
8 double f6d(6) { in: (i, j, 0:K, l, m, n, t, step-1) | out: (i, j, k, l, m, n, t,

step) } )
9 #CODE(INKS)

10 /* ... */
11 advection3 (0:I, 0:J, 0:K, 0:L, 0:M, 0:N, 1:Niter, K, 2) : (f6d, disp, coef)
12 /* ... */
13 #END
14
15 /*** advec.iloop InKSo/Loop optimization choices file ***/
16 loop advection3_loops(t, I, J, K, L, M, N, Niter) : advection3 { // set "t" value
17 // "Set" not specified -> loop bounds are computed, with a fixed "t"
18 Order: n, m, l, j, i, k; // order of the loop
19 Block: 16; // blocking on the inner dimension k
20 Buffer: f6d(3); } // copy the third dimension of f6d to a 1d buffer

Listing 4: A loop nest in InKSpia optimized in InKSO/Loop

1 /* for all N, M, L, J, do */ for (int i=0; i<I; i+=blockSize){
2 for(int ci=-halo_size; ci<0; ++ci) /*Copy to buffer*/
3 for(int ii=0; ii<blockSize; ++ii) buff.buff_in[...] = left[...];
4 for(int ci=0; ci<K; ++ci)
5 for(int ii=0; ii<blockSize; ++ii) buff.buff_in[...] = f6d[...];
6 for(int ci=sizeK; ci<sizeK+halo_size; ++ci)
7 for(int ii=0; ii<blockSize; ++ii) buff.buff_in[...] = right[...];
8 for(int idb=0; idb<size_block; ++idb) /*Computation*/
9 for(int k=0; k<K; ++k) advection3(buff, idb+i, j, k, l, m, n);

10 for(int ci=0; ci<K; ++ci) /*Copy to f6d*/
11 for(int ii=0; ii<block_size; ++ii) f6d[...] = buff.buff_out[...];}

Listing 5: C++ code generated for the loop nest of Listing 4

C++ loops (Listing 5). Plain C++ is usable with InKSO/Loop. The loop keyword
introduces a nest optimization with a name, the list of parameters from the
algorithm on which the loop bounds depend and a reference to the optimized
kernel. Loop bounds can be automatically extracted from InKSpia, but the Set

keyword makes it possible to restrict these bounds. The Order keyword specifies
the iteration order on the dimensions and the Block keyword enables the user
to implement blocking. It takes as parameters the size of block for the loops
starting from the innermost one. If there are less block sizes than loops, the
remaining loops are not blocked. The Buffer keyword supports copying data in
a local buffer before computation and back after to ensure data continuity and
improve vectorization. The compiler uses data dependencies from the algorithm
to check the validity of the loops order and generate vectorization directives
where possible.

4 The 6D Vlasov/Poisson problem

The 6D Vlasov-Poisson equation, presented in (1), describes the movement of
particles in a plasma and the resulting electric field. We study its resolution for
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a single species on a 6D Cartesian mesh with periodic boundary conditions. We
solve the Poisson part using a fast Fourier transform (FFT) and rely on a Strang
splitting (order 2 in time) for the Vlasov part. This leads to 6 1D advections: 3
in the space dimensions (x1, x2, x3) and 3 in the velocity dimensions (v1, v2, v3).
Each 1D advection relies on a Lagrange interpolation of degree 4. In the space
dimensions, we use a semi-Lagrangian approach where the stencil is not applied
around the destination point but at the foot of characteristics, a coordinate
known at runtime only. This is described in more details in [15].



∂f(t, x, v)

∂t
+ v.∇xf(t, x, v)− E(t, x).∇vf(t, x, v) = 0

−∆φ(t, x) = 1− ρ(t, x)

E(t, x) = −∇φ(t, x)

ρ(t, x) =

∫
f(t, x, v)dv

(1)

The main unknown is f (f6D in the code), the distribution function of par-
ticles in 6D phase space. Due to the Strang splitting, a first half time-step of
advections is required after f6D initialization but before the main time-loop.
These advections need the electric field E as input. E is obtained through the
FFT-based Poisson solver that in turn needs the charge density ρ as input. ρ is
computed by a reduction of f6D. The main time-loop is composed of 3 steps:
advections in space dimensions, computation of the charge density (reduction)
and electric field (Poisson solver) and advections in velocity dimensions.

The 6D nature of f6D requires a lot of memory, but the regularity of the
problem means it can be distributed in blocks with good load-balancing. Halos
are required to hold values of neighbors for the advections. Connected halo zones
would increase the number of points in all dimensions and consume too much
memory. Split advections mean that halos are required in a single dimension at
a time though. We therefore use dynamic halos composed of two buffers, one
for each boundary of the advected dimension (denoted “right” and “left”) as
shown on Figure 2. Listing 2 corresponds to the InKSO/XMP implementation of
this strategy.

Advections are the main computational cost of the problem, accounting for
90% of the sequential execution time. Six loops surround the stencil compu-
tation of each advection and in a naive version, the use of a modulo to han-
dle periodicity and application along non-contiguous dimensions slow down the
computation. To enable vectorization and improve cache use, we copy f6D el-
ements into contiguous buffers along with the left and right halos. Advections
are applied on these buffers before copying them back into f6D. Blocking further
improves performance by copying 16 elements at a time. Listing 5 corresponds
to the InKSO/Loop implementation of these optimizations.
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(a) Buffers used as halo regions in the
first dimension

(b) Buffers used as halo regions in
the second dimension

Fig. 2: Dynamic halo exchange representation on a 2D domain

5 Evaluation

This section evaluates the InKS model on the NAS parallel benchmark, a simple
stencil code and the 6D Vlasov-Poisson problem. Plain C++ is used for the
synthetic benchmarks optimization while InKSO/XMP, InKSO/Loop, plain C++
and C with XMP are used for Vlasov-Poisson. All codes are compiled with Intel
18 compiler (-O3 -xHost), Intel MPI 5.0.1 and executed on the Poincare cluster
(Idris, France) with 32 GB RAM and two Sandy Bridge E5-2670 CPUs per node
and a QLogic QDR InfiniBand interconnect.

5.1 Synthetic benchmarks

We have implemented 4 out of the 5 sequential NAS benchmark kernels (IS, FT,
EP and MG) in InKSpia and optimized them with plain C++. The C++ version [9],
is used as reference. We have also implemented a 3D heat equation resolution by
finite differences (7-point stencil) with two distinct C++ optimization strategies
from a single InKSpia source. Both strategies comes from the reference [12]. One
uses double buffering (Heat/Buf) and the other implements a cache oblivious
strategy (Heat/Obl).

The NAS CG kernel relies on indirections not expressible in the PTG model
of InKSpia. Its implementation would thus have to rely on a large C++ kernel
whose optimization would be mixed with the algorithm. InKSpia can however be
used to express all other NAS kernels as well as the 3D heat equation solver. Even
if not as expressive as C or Fortran, InKSpia covers the needs of a wide range of
simulation domains and offers abstractions close to the execution machine rather
than from a specific simulation domain. Among others, it can express computa-
tions such as FFTs or stencils with input coordinates unknown at compile-time.

InKS separates the specification of algorithm and optimization in distinct
files. Multiple optimization strategies can be implemented for a single algorithm,
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Execution time (second) Complexity

Benchmark Reference InKS Rel. dev. Ref. InKS

NAS/FT 62.43 (±0.57) 62.86 (±0.71) 0.68% 6 5

NAS/IS 3.39 (±0.00) 3.44 (±0.00) 1.47% 55 52

NAS/MG 5.10 (±0.02) 4.73 (±0.06) -7.25% 20 12

NAS/EP 76.43 (±0.21) 76.47 (±0.22) 0.05% 19 19

Heat/Buf 3.05 (±0.01) 2.97 (±0.06) -2.58% 5 3

Heat/Obl 2.43 (±0.01) 2.05 (±0.02) -15.59% 22 13

Table 1: Execution time of the C++ and InKS implementations of the sequen-
tial NAS benchmark, class B - Time/iteration of the 3D heat equation (7point
stencil), size (10243) - Median and standard deviation of 10 executions - GNU
Complexity score of the implementation.

as shown for the 3D heat equation where each relies on a specific memory layout
and scheduling. It thus offers a clear separation of algorithm and optimization.

Finding the right metric to evaluate the easiness of writing a code is a difficult
question. As illustrated in Listing 4 however, algorithm expression in InKSpia is
close to the most naive C implementation where loops are replaced by InKS
validity domains with no worry for optimization. The specification of optimiza-
tion choices is close to their expression in C++. Table 1 compares the GNU
complexity score of InKS optimizations to the reference code. InKS scores are
slightly better because kernels extracted from the algorithm hide computations
and thus, part of the complexity. In addition, the use of C++ to write opti-
mizations let optimization specialists reuse their preexisting knowledge of this
language. These considerations should not hide the fact that some information
has to be specified both in the InKSpia and C++ files with this approach leading
to more code overall.

Regarding performance, the InKS approach makes it possible to express op-
timizations that do not change the algorithm. Optimizations of the four NAS
parallel benchmarks and 3D heat equation solver in InKS were trivial to imple-
ment and their performance match or improve upon the reference as presented in
Table 1. Investigation have shown that Intel ICC 18 does not vectorize properly
the reference versions of Heat/Obl and NAS/MG. The use of the Intel ivdep
directive as done on the InKS versions leads to slightly better performance.

5.2 Vlasov-Poisson

We evaluate InKSO/XMP and InKSO/Loop on Vlasov-Poisson separately as they
target different optimizations and are not usable together currently. A first ex-
periment focuses on the sequential aspects with the intra-node optimization of
the v1 advection using either InKSO/Loop or plain C++. A second experiment
focuses on the parallel aspects with the charge density computation, the Poisson
solver and a halo exchange optimized either with C/XMP or with InKSO/XMP.
The reference is the Fortran/MPI implementation from the Selalib library [13].
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Version time/advection GFLOP/s %peak core perf.

Selalib (Fortran) 4.81 s 1.12 5.36%

InKS (C++) 3.76 s 1.43 6.87%

InKS (InKSO/Loop) 3.61 s 1.49 7.16%

Table 2: Comparison between Fortran, C++ and InKSO/Loop version of the v1
advection on a 326 grid (double precision) on a single E5-2670 core with vector-
ization. Median of 12 executions

1 2 4 8 16 32 64
0.6

0.8

1

1.2

1.3

XMP weak

InKSO/XMP weak

MPI weak

XMP strong

InKSO/XMP strong

MPI strong

(a) f6D reduction

8 16 32 64

0.03

0.1

0.3

1

(b) Poisson solver

1 2 4 8 16 32 64
0.001

0.01

0.1

1

Local copies Remote copies

(c) Dynamic halo exchanges

Fig. 3: Weak and strong scaling for 3 parts of the Vlasov-Poisson solver up to 64
nodes (1 process/node) on a 326 grid divided among processes (strong scaling)
or 166 grid per process (weak scaling). Median of 10 executions.

Distinct files for both concerns in InKS makes possible to write a unique
InKSpia algorithm and multiple versions of optimization choices. Four optimiza-
tion choices are implemented based on one InKSpia source : (1) InKSO/XMP,
(2) C with XMP, (3) InKSO/Loop and (4) plain C++. This proves, to some ex-
tent, that the separation of concerns is respected. As of now, InKSO/XMP and
InKSO/Loop are not usable together since InKSO/Loop relies on C++ that XMP
does not support. We plan to address this limitation in the future.

For the v1 advection, both the C++ and InKSO/Loop optimizations of the
InKS code achieve performance similar to the reference as shown in Table 2. For
the parallel aspects, the InKSO/XMP optimization offers performance similar to
XMP as shown on Figure 3. The performance is comparable to MPI on the reduc-
tion operation but MPI is faster on the Poisson solver and the halo exchanges.
At the moment, it seems that XMP does not optimize local copies which slows
down the Poisson solver. Besides, XMP directives used for the halo exchanges
are based on MPI RMA which make the comparison with MPI Send/Receive
complex. Still, MPI is much harder to program: more than 350 lines of MPI and
Fortran are required to handle domain decomposition, remapping for FFT and
halo exchange in Selalib vs. 50 lines in XMP and 15 in InKSO/XMP.

The InKSO family of DSLs enables the developer to specify optimization
choices only while algorithmic information is extracted from InKSpia code. This
is illustrated by Listings 2, presenting the InKSO/XMP 6D domain decomposition,
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and 3, presenting the XMP version. Both are equivalent, but the InKSO/XMP ex-
pects only optimization choices parameters. Hence, one can test another mem-
ory layout, such as a different dimension ordering, by changing only a few pa-
rameters, while multiple directives must be modified in XMP. Similarly, with
InKSO/Loop (Listing 4), developers can easily test different optimization choices
that would be tedious in plain C++. Since InKSO/XMP and InKSO/Loop are
respectively usable with C and C++, InKS does not restrict the expressible op-
timization choices: one can still implement optimizations not handled by InKSO

in C/C++. Moreover, operations such as halo size computation or vectorization
capabilities detection are automatized using the algorithm. In summary, the ap-
proach enables optimization specialists to focus on their specialty which make
the development easier.

6 Conclusion and future works

In this paper, we have presented the InKS programming model to separate algo-
rithm (InKSpia) and optimization choices (InKSO & C++) and its implementa-
tion supporting two DSLs : InKSO/Loop for loop optimizations and InKSO/XMP

for domain decomposition. We have evaluated InKS on synthetic benchmarks
and on the Vlasov-Poisson solving. We have demonstrated its generality and its
advantages in terms of separation of concerns to improve maintainability and
portability while offering performance on par with existing approaches.

While this paper demonstrates the interest of the InKS approach, it still
requires some work to further develop it. We plan to apply the InKS model
on a range of different problems. We will improve the optimization DSLs; base
InKSO/Loop on existing loop optimization tools and ensure good interactions
with InKSO/XMP. We also want to target different architectures to demonstrate
the portability gains of the InKS approach.
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