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The suitable and accurate simulation of the vibrations in a coiling process is important to predict the vibrations during standard operation and for special non-steady operation conditions. In the present production process an axially moving material is coiled on a rotating drum and represents a variable mass system. Predeformation or misalignment of the shaft can be caused by production tolerances, inhomogeneous temperature distribution or maintenance errors. For a proper long time process the speed of the strip has to be controlled and the strip tension force has to be kept as constant as possible. In the mechanical model of this variable mass system bending vibrations of the rotor with the coiling drum and the transversal oscillations of the elastic strip are coupled. Many variable parameters are present and result in non-linear equations of motion. The longitudinal and transversal motion of the axially moving strip and the bending deflection of the coiling drum are considered by Rayleigh-Ritz approximations which involve the application of the extended equation of Lagrange. Simulations are performed for a rotor on a predeformed shaft and the computation results are shown. A controller is introduced to keep a defined production speed and to reduce the vibrations of the strip and the rotor.

INTRODUCTION

For the simulation of the vibrations in a coiling process a suitable mechanical model is necessary. In the coiling process an axially moving strip moves continuously towards a rotating drum where it is coiled. For instance between two successive coiling processes the strip passes through a Steckel mill where the thickness is reduced. In this paper the mechanical model starts at the exit of the Steckel mill and considers the axial motion of the strip with the transversal oscillations. Then the strip is coiled where the strip is attached on the drum, contributes to the bending stiffness and increases the mass of the drum. The resulting mechanical model is a non-linear dynamic model with varying mass and system parameters, which are defined by the variable outer radius of the drum, the variable bending stiffness of the drum and a variable eccentricity of the rotating drum. Due to the coiled material the mass of the coiling drum increases or decreases continuously. For the outer radius of the coiling drum an Archimedian Spiral is assumed, which gives a position dependent outer radius and bending stiffness. For the simulation of the coiling process with the long computation time a semi-analytic time integration method and a Runge-Kutta method was implemented.

For the derivation of the equations of motion Rayleigh-Ritz approximations are used to get a minimal number of degrees of freedom in the mechanical model. The application of the extended equations of Lagrange, see [START_REF] Irschik | The Equations of Lagrange Written for a Non-Material Volume[END_REF], is necessary as the mass in the system is not constant, which is a restriction for the well-known equations of Lagrange, see [START_REF] Ziegler | Mechanics of Solids and Fluids[END_REF]. In the extended equations of Lagrange the control volume concept with the surface integrals with partial derivatives as a kernel are present. The control volume concept for the nonlinear dynamic system takes the flow of mass through the boundary into account. For the application of this control volume concept it is important to distinguish between the material control volume and the spatial control volume. If the relative speed between the surface of the control volume and the transported material does not depend on the applied degrees of freedom and their time derivatives, it can be seen from the equations in [START_REF] Irschik | The Equations of Lagrange Written for a Non-Material Volume[END_REF] that the surface integral terms vanish and the classical form of the Lagrange equations results. In [START_REF] Irschik | Mechanics of variable-mass systems -Part 1: Balance of Mass and Linear Momentum[END_REF] additionally some literature on dynamic systems with variable mass is cited and in [START_REF] Holl | A Time-Integration Algorithm for Timevarying systems with Non-classical Damping Based on Modal Methods[END_REF], [START_REF] Holl | A Time Integration Algorithm for Nonlinear Rotordynamic Systems with Time-Varying Parameters[END_REF], [START_REF] Holl | Vibration Simulation of the Steckel Mill Strip Coiling Process[END_REF], [START_REF] Holl | Nonlinear Vibrations during the Pass in a Steckel Mill Strip Coiling Process[END_REF] and [START_REF] Holl | Simulation of a Coiling Process with Thermal Deflection of the Drum[END_REF] different mechanical models with variable parameters have been analysed. In [START_REF] Cveticanin | The influence of the reactive force on the motion of the rotor on which the strip is winding up[END_REF] and [START_REF] Cveticanin | Dynamics of Machines with Variable Mass[END_REF] an alternative approach for the influence of the variable mass is considered using reactive forces, where also some examples are discussed and the effect of the reactive force is studied for the case of winding up a band. A model for an industrial application with additional strip guiding rolls was analysed in [START_REF] Holl | Vibration Simulation of the Steckel Mill Strip Coiling Process[END_REF] and [START_REF] Holl | Nonlinear Vibrations during the Pass in a Steckel Mill Strip Coiling Process[END_REF], where the strip tension force was computed for a given entrance speed of the strip. In [START_REF] Holl | Zum Einfluss einer veränderlichen Exzentrizität auf die Schwingungen beim Wickelprozess. 10[END_REF] and [START_REF] Hammelmüller | The Effect of Variable Eccentricity onto the Oscillations in a Coiling Process[END_REF] the effect of the time variable eccentricity is considered where the time derivatives of the eccentricity are involved and it is shown that very small vibration amplitudes result.

The temperature of the coiled strip is usually not constant over the long process time, so that a thermal deflection of the shaft of the coiling drum can occur due to a certain non-homogeneous temperature distribution. The thermal deflection represents a kinematic parameter in the mechanical model and has a high influence to the strip tension force which is a critical process parameter that should be constant and at least should be positive. The effect of the thermal deflection of the coiling drum results in high vibration amplitudes which was analysed in [START_REF] Holl | Simulation of a Coiling Process with Thermal Deflection of the Drum[END_REF] for the uncoupled system where computed results are shown for the controlled system with thermal deflection. The influence of other variable parameters are analysed in [START_REF] Holl | Rotor Vibrations in a Coiling Process[END_REF] and the computation results of the system with and without controller are shown in [START_REF] Holl | Vibration Control for a Coiling Process[END_REF]. In this paper the coupled vibrations are analysed and numerical studies are performed in order to increase the knowledge about the complicated variable mass non-linear dynamic system of the coiling drum and the axially moving strip. For the dynamic system the initial and boundary conditions are defined and with the defined operation conditions a time-integration algorithm computes the solution. An algorithm was used which has been presented in [START_REF] Holl | A Time-Integration Algorithm for Timevarying systems with Non-classical Damping Based on Modal Methods[END_REF] and has been extended in [START_REF] Holl | A Modal-Based Substructure Method Applied to Nonlinear Rotordynamic Systems[END_REF]. For the simulation of a suitable production process a control algorithm is implemented.

In the present paper the equations of motion are derived for a mechanical model with variable mass and they are applied to a long-term coiling process. As the exact description of the coiling process is very complicated, it is assumed that the coiled strip is fixed on the coiling drum when it touches the drum so that the stiffness of the drum increases with the rotation angle. The accumulation of the mass on the coiling drum has a certain influence on the vibrations of the total system during operation. The thermal deflection represents a kinematic parameter and has a high influence to the strip tension force which is a critical process parameter that should be as constant as possible. 

MECHANICAL MODELLING OF THE COILING PROCESS

The mechanical model of the coiling process includes the coiling drum on elastic bearings and the moving strip, see Fig. 1.

Rayleigh-Ritz approximations and the extended equations of Lagrange have been used for the derivation of the mechanical model. The resulting mechanical model has five degrees of freedom, the horizontal and vertical deflection x, y and the rotation angle ϕ of the coiling drum, the transversal deflection of the moving strip q and the entrance speed of the strip ṡL . The strip tension force F B is given as a predefined value at the entrance of the system. The torque at the coiling drum M T is controlled to maintain a suitable process.

For the derivation of the equations of motion it is important to distinguish between the material control volume and the spatial control volume. The spatial control volume is an arbitrary moving non-material volume with a surface that has a speed w which is different from the velocity of the material at the surface v. The transport of kinetic energy and mass can be determined and is related to the spatial derivative of the total kinetic energy at the boundary of the control volume so that the extended equation of Lagrange, see [START_REF] Irschik | The Equations of Lagrange Written for a Non-Material Volume[END_REF], can be written in the form

d dt ∂T ∂ qi - ∂T ∂q i + 1 2 ∂V i ∂ v 2 ∂ qi ρ v -w ndS - ∂V i ρ v 2 2 ∂ v -w ∂ qi ndS = Q i , (1) 
where n is the outward normal vector at the boundary of the control volume. The surface integral terms vanish if the velocity at the boundary of the control volume are prescribed and independent of the degrees of freedom q i of the system.

Model of the Coiling Drum

The coiling drum is modeled as a beam with varying stiffness in longitudinal direction. The outer radius of the drum increases in accordance to an Archimedian spiral

r = r 0 + hϕ 2π , (2) 
with h as the thickness of the strip. For the actual bending stiffness of the rotating shaft it is assumed that the coiled strip is attached to the drum and contributes to the stiffness. The mass of the coiling drum is m C = m 0 + ρAs R and its time derivative is ṁC = ρAṡ R , where ρ is the density of the strip material, A is the cross section of the strip and s R is the coiled length of the strip.

The mechanical system of the coiling drum, which is considered in this paper, is shown in Fig. 1. The equations of motion are written in the coordinates of the center of the shaft. The exact position of the center of gravity of the coiling drum including the strip and changes during the coiling process, as shown in [START_REF] Holl | Computation of a Variable Mass Rotordynamic System with Variable Eccentricity[END_REF] and [START_REF] Hammelmüller | Reduction of the bending Vibrations due to eccentricity in a coiling process[END_REF]. Because of the symmetry in the mechanical model we consider vibrations of the coiling drum in the x-y-plane only. At the coiling drum the torsion moment M T is applied, b is the width of the strip and h is the strip thickness. ṡL is the entrance speed of the strip and ṡR is the absolute speed of the strip when attaching the coiling drum. The coiling drum rests on rigid bearings, so that only the stiffness of the shaft is taken into account. It is assumed that the thermal deflection is caused by a non-homogeneous temperature distribution within the coiling drum and results in a total deflection a which is measured in the mid-plane of the drum. The actual coordinates of the center of gravity of the drum are denoted by x S and y S , whereas for the center of the shaft we use the coordinates denoted by x W and y W . Due to the thermal deflection we have to define the position of the center of the undeformed shaft given by x W 0 and y W 0 . In the following computations we can distinguish two mechanical models. The first model has a prescribed speed ṡL at the left boundary, so that only four degrees of freedom x W , y W , ϕ and q i are present. In the second model the strip tension force F B (t) is predefined and the model has five degrees of freedom x W , y W , ϕ, q i and s L . In this paper only the mechanical model with five degrees of freedom is analyzed.

The kinetic energy of the coiling drum is computed by

T C = m C ẋ2 S + ẏ2 S 2 + J C φ2 2 (3) 
with the momentum of inertia defined by

J C = m C 2 r 2 + r2 0 ( 4 
)
where r0 is the inner radius of the coiling drum and r is the outer radius given in Eq. ( 2). The potential energy is

V C = c C 2 (x W -x W 0 ) 2 + (y W -y W 0 ) 2 -m C gy S , (5) 
where c C is the computed bending stiffness of the coiling drum. The controlled torque applied at the coiling drum is given by

M T = M 0 + α C ṡL,D -ṡL + β C s L, D -s L + χ C ( ẋW D -ẋW ) + δ C (x W D -x W ) , (6) 
where s L, D , ṡL,D , x W D and ẋW D are the target values and α C , β C , χ C and δ C are defined parameters of the controller.

Model of the Moving Strip

With the axial speed of the strip on the left entry position ṡL the longitudinal motion of the strip is defined by

u * (ξ,t) = s L + (s R -s L ) ξ l 0 , u * (ξ,t) = ṡL + ( ṡR -ṡL ) ξ l 0 , (7) 
where l 0 is the free length of the strip between the entry position and the drum, see Fig. 1, and ξ is the longitudinal coordinate. s R and ṡR are the kinematic variables for the coiled strip length at the point on the coiling drum. For the transversal direction a Rayleigh-Ritz approximation

w * B (ξ,t) = ψ(ξ)q(t) (8) 
is used where the shape function

ψ(ξ) = 16 ξ l 0 2       1 -2 ξ l 0 + ξ l 0 2      (9) 
is considered. The strip moves into the control volume at a fixed vertical position on the left boundary and the position where it attaches the drum is defined by the actual radius r and the vertical deflection y W of the drum, so that the total deflection results in

w * (ξ,t) = w * B (ξ,t) + (y W -r) ξ l 0 , (10) 
where w * B (ξ,t) is the bending deflection of the strip. The total velocity of the moving strip is

ẇ * (ξ,t) = ẇ * B (ξ,t) + dw * B (ξ,t) dξ u * (ξ,t) + ( ẏW -ṙ) ξ l 0 . (11) 
The kinetic energy of the moving strip is computed by

T S = 1 2 l 0 0 ρA u * (ξ,t) 2 dξ + 1 2 l 0 0 ρA ẇ * (ξ,t) 2 dξ (12)
resulting in

T S = m S 6 ṡ2 R + ṡL ( ṡL + ṡR ) + 2 ( ẏW -ṙ) 2
+ 8m S q 15l 0 8 21 q ( ṡL -ṡR ) -ṡR ( ẏWṙ)

+ 4m S q 15 16 21 q + ẏW -ṙ + 256m S q 2 315l 2 0 ṡ2 L + ṡL ṡR +s 2 R . (13) 
With the strain in the strip ε S = ε x xzw + 1 2 w 2 the potential energy is given by

V S = 1 2 l 0 0       E A ∂u * (ξ,t) ∂ξ 2 + E J S ∂ 2 w * (ξ,t) ∂ξ 2 2      dξ + 1 2 l 0 0 F B ∂w * B (ξ,t) ∂ξ 2 dξ (14) 
with the Youngs modulus E and the bending stiffness of the strip J S = bh 3 12 . Inserting the Rayleigh-Ritz approximations from eq. ( 8) and ( 9) we get

V S = c C 2 (s R -s L ) 2 + 512E J S 5l 3 0 q 2 + 256F B 105l 0 q 2 . ( 15 
)
The horizontal motion of the strip in longitudinal direction at the right position where it touches the coiling drum is defined by

s R = t 0 r φdt + x W - 512 105l 0 q 2 2 + a sin (ϕ + δ) ṡR = r φ + ẋW - 512 105l 0 q q + a φ cos (ϕ + δ) (16) 
for the Rayleigh-Ritz approximations and homogeneous initial conditions for s R . ϕ is the rotation angle, a is the thermal deflection in the middle of the coiling drum and x W is the horizontal deflection of the center of the rotating drum. For the Archimedian spiral of eq. ( 2) the coiled length can be integrated to get

s R = r 0 ϕ + hϕ 2 4π + x W - 256q 2 105l 0 + a sin (ϕ + δ) . ( 17 
)

Extended Equations of Lagrange

The extended Equation of Lagrange for a non-material reference volume, which has been given in Eq. ( 1) has to be used. In order to evaluate the surface integral terms we have to define the related velocities. As some mass is transported into the mechanical system under consideration, we have to distinguish a material-fixed control volume (in this case a control surface) with the velocity vector

w (t) =        0 ẏW - ṙ 0        (18)
and some material flowing through the boundary with the actual velocity vector of the mass

v (t) =        ṡL ẏW - ṙ 0        . ( 19 
)
Now surface integral terms for these areas can be computed, where material flows through the surface with a constant speed within the surface. With these kinematic assumptions the integral terms can be computed which result from the extended Lagrange Equation (Eq. ( 1)) for each degree of freedom and they are given by:

P x = 1 2 ∂V 0 ṡL ρ(-1)dS - ∂V ρ0(-1)dS = 0 (20) P y = 1 2 ∂V 2 ( ẏW -ṙ) ρ ṡL (-1)dS - ∂V ρ0(-1)dS = -( ẏW -ṙ) ρ ṡL A (21) 
P ϕ = 1 2 ∂V ( ẏW -ṙ) h π ρ ṡL (-1)dS - ∂V ρ0(-1)dS = -( ẏW -ṙ) h 2π ρ ṡL A (22) P s L = 1 2 ∂V 2 ṡL ρ ṡL (-1)dS - ∂V ṡ2 L + ( ẏW -ṙ) 2 2 ρ0(-1)dS = ( ẏW -ṙ) 2 -ṡ2 L 2 ρA (23) 
P q = 1 2 ∂V 0ρ ṡL (-1)dS - ∂V ρ0(-1)dS = 0 (24)
Finally the generalized forces which will be needed also in the extended Lagrange Equation (eq. ( 1)) are given by

Q x = ∂V ∂x W -d x ẋW (25) Q y = ∂V ∂y W -d y ẏW (26) 
Q ϕ = ∂V ∂ϕ + M D (27) 
Q s L = ∂V ∂s L -F B (28) 
Q q = ∂V ∂q -d q q -κF B q (29) 
It can be seen in the equations for the generalized forces, that some damping factors have been introduced with respect to the transversal motion of the coiling drum and the strip. In Eq. ( 29) the factor κ depends on the Ritz approximation shape function and considers the coupling by involving theory of second order and is results from eq. ( 16) to κ = 512 105l 0 .

Equations of motion for the total model

The derivation of the equations of motion based on the above equations for the kinetic and potential energy as well as the additional equations considering the flow through the boundary of the control volume the equations for the degrees of freedom of motion result. As they are lengthly equations they are not given here explicitly and the time integration is performed with a suitable time step in order to guarantee converged solutions.

COMPUTED RESULTS

For the derived mechanical model the solution was computed for different operation conditions and parametric studies have been performed. The parameters of the coiling drum for the computations presented in this contribution are l 0 = 5m, For a first example a constant strip tension force of F B = 100kN is applied as shown in Fig. 2. The load is increased within 1 second and is kept constant afterwards. With the given control parameters the torque at the drum results, see Fig. 3, so that a steady operation is performed, where the torque increases proportional with the increasing outer radius of the coiling drum. The coiled strip length and the strip speed are given in Fig. 4. The corresponding outer radius of the coiling drum is shown in Fig. 5. The results for the horizontal position of the center of the coiling drum show small vibra-tions, see Fig. 6 and the mean value of the deflection results from the constant strip tension force. For the vertical position small vibrations are present as the drum is rotating and the gravity of the increasing mass results in an increasing weight of the drum which causes an increasing vertical delection y W in Fig. 7. The small vibration amplitudes correspond to the non-homogeneous initial conditions and to the linear increase of the outer radius. It is mentioned that for the assumption of a step function of the outer radius high vibration amplitudes occur as there is a discontinuity after every rotation. The corresponding computational results are not given in this contribution but will be demonstrated in a further work. rameters are kept unchanged. The computation is carried out and the controlled torque at the drum is shown in Fig. 8. From the results of the transversal strip vibrations in Fig. 9 the coupling effect with the varying frequency and amplitude is shown. In Fig. 10 to 12 the results for the motion of the center of gravity of the coiling drum are drawn for the horizontal and vertical direction as well as the perpendicular xyplane. The horizontal motion is caused by the varying strip tension force and the vertical motion is induced by the variation of the strip tension force. In the vertical position it can be seen that the influence to the weight is not considered in this example.

For the third example the parameters for the mechanical model of Fig. 1 are the same except r0 = 0.4 m and F B = 50 kN is kept constant. The computed results are shown for two different thermal deflections of a=0.1mm and a=0.23 mm. Fig. 13 shows the computed torque and in Fig. 14 the strip tension force is shown. If a=0.23 mm the minimum strip tension force is computed to be F B = 0 N. The transversal deflection of the moving strip is given in Fig. 15 which results due to the variable F B and the motion of the coiling drum with the thermal deflection a. For the higher excitation amplitude of the thermal deflection the transversal oscillations of the strip are higher. The excitation frequency and the frequency of vibration are very different. In Fig. 16 the axial speed of the strip is shown as there is a constant F B maintained at the left boundary. This result is similar to that for the first example, see Fig. 4, but with a much smaller strip tension force and a thermal deflection of the shaft of the coiling drum. Different fluctuations in the axial strip speed can be seen which are caused by the two different thermal deflection values.

CONCLUSION

A mechanical model with a variable mass and varying parameters of a coiling process was derived. The simulation results for three different examples show that for a steady state production process with a constant axial speed the vibration amplitudes are very small. For the non-linear dynamic system with variable mass vibrations are computed for given forces at the left entrance boundary and a controlled torque. For a defined variation of the strip tension force at the entrance the amplitudes are higher for a constant strip tension and the frequency and amplitude for the transversal strip depend on the strip tension force. The influence of the process parameters are studied to reduce the vibrations and results are given for two different thermal deflection values.
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 1 Figure 1. Mechanical model of the rotating drum with the axially moving strip

r0 = 0

 0 .45m, h = 10mm, b = 0.5m, E = 105kN/mm 2 , c C = 10 7 kN/m, ρ = 7800kg/m 3 , m 0 = 1200kg. The controller parameters are given by α C = 15kNs, β C = 10kN, χ C = 10MNs and δ C = 10kN. The target parameters are s L, D = ṡL,D t, ṡL,D = 5, 25m/s, x W D = 0m and ẋW D = 0m/s. In all computed examples it is guaranteed that there is a converged solution based on a suitable time step.
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 2 Figure 2. First example: Strip tension force
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 3 Figure 3. First example: Computed Torque at the coiling drum
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 4 Figure 4. First example: Coiled strip length and strip speed
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 5 Figure 5. First example: Outer radius of the coiling drum
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 6 Figure 6. First example: Horizontal position of the center of the coiling drum

Figure 7 .

 7 Figure 7. First example: Vertical position of the center of the coiling drum
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 8 Figure 8. Second example: Torque at the coiling drum
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 910 Figure 9. Second example: Amplitude and velocity of transversal motion of the strip
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 11 Figure 11. Second example: Vertical position of the center of the coiling drum
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 1213141516 Figure 12. Second example: Position of the center of the coiling drum
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