Laveena Sharma 
  
Dhiman Chatterjee 
email: dhiman@iitm.ac.in
  
Numerical prediction and optimization of the performance of axial-flow hydrokinetic turbine in an array

Keywords: 

Array of hydrokinetic turbines can be used to produce power from flowing rivers akin to the wind turbine farms. However, arriving at optimum configuration (location and number) of turbines through experimental or numerical routes is not easy. Hence in the present work, attempts have been made to utilize computationally less intensive model-based multivariate optimization techniques coupled with some numerical simulations to arrive at suitable turbine configurations in an array. In this work, we have modeled the complex functions, such as turbine power, non-linear interaction of turbines with wakes of preceding turbines and the area utilized by the turbines, by means of simplified mathematical treatment of response surface methodology. The present work has identified three turbine array geometries as potential configurations and based on numerical simulations and optimization techniques has arrived at pareto-domain and has ranked these pareto-solutions. Further simulations were carried out for the best configurations and the numerical results were compared with the optimization results as a part of the validation of the latter. Flow physics was analyzed and final recommendation of turbine array configuration is made.

INTRODUCTION

Hydrokinetic turbine utilizes kinetic energy of flowing water from rivers and seas and converts into this energy into useful mechanical power. The efficiency of this type of "net-zero head" turbine is lower than that of a conventional high head hydraulic turbine; but it is more suited from the perspective of minimum adverse effect on environment and population displacement. This has led to a growth in activities in this research topic in recent times. [START_REF] Khan | Hydrokinetic energy conversion systems and assessment of horizontal and vertical axis turbines for river and tidal applications: a technology status review[END_REF]. Though this technology is an emerging alternative, yet it suffers from low energy conversion coefficient. Thus, akin to wind farms, it may be more desirable to install an array of these turbines rather than a single turbine. However, this nascent technology faces uncertainties and challenges not only for extracting more energy per unit of rotor swept area, but also to extract the maximum energy when such turbines are coupled together at a particular site. One of the reasons that the total power produced is simply not the product of power output from one isolated turbine and the number of turbines is because the turbines which are in the wakes of upstream turbines suffer from loss of power. Thus, efforts have been made to arrange turbines in arrays (rows and columns) or in discrete, optimum locations [START_REF] Chowdhury | Optimizing the arrangement and the selection of turbines for wind farms subject to varying wind conditions[END_REF]. However, it is not easy to arrive at an optimum configuration through experimental or direct numerical simulations of turbine arrays [START_REF] Funke | Tidal turbine array optimsation using the adjoint approach[END_REF]. This paper attempts to use computational fluid dynamics techniques coupled with rigorous optimization algorithm to arrive at optimum turbine array configurations of unidirectional, axial flow hydrokinetic turbine.

NUMERICAL METHODOLOGY

Computational fluid dynamics simulations were carried out for isolated (2.9 million elements) as well as unit (described in the next section) of array of turbines (12.7 million elements) using commercial software, ANSYS. A typical computational domain with boundary conditions is shown in Fig. 1. Performance of isolated turbine was validated against experimental results and the same is reported in one of our earlier works and it was found that there is a deviation of less than 10% between experimental maximum power output and that of numerical, both at a tip speed ratio of 3.5 [START_REF] Chandras | Numerical prediction of the performance of axial flow hydrokinetic turbine[END_REF][START_REF] Chatterjee | Design and development of hydrokinetic turbine suited for Indian condition[END_REF]. It may be mentioned here that the turbine designed and numerically simulated had a hub diameter of 300 mm, a tip diameter of 1600 mm and design speed of 40 rpm. These results as well as numerical methodology are not reproduced here for brevity. 

STEPS ADOPTED FOR OPTIMIZATION OF TURBINE ARRAY

Figure 2 gives a summary of the steps adopted in arriving at an optimum turbine array for a given choice of configuration (Fig. 3). The first step involves setting up the objective criteria and is defined as: 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑃𝑃𝑀𝑀𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑀𝑀𝑀𝑀𝑃𝑃𝑃𝑃𝑀𝑀 = ∅ � 𝑀𝑀𝑀𝑀𝑀𝑀. 𝑃𝑃 𝑑𝑑 (𝑀𝑀 1 , 𝑀𝑀 2 ,
𝑃𝑃 2 𝑃𝑃 1 = � 𝑉𝑉 2 𝑉𝑉 1 � 3 � 𝑃𝑃 1 , 𝑉𝑉 1 -𝑅𝑅𝑃𝑃𝑇𝑇𝑃𝑃𝑃𝑃 1 𝑃𝑃 2 , 𝑉𝑉 2 -𝑅𝑅𝑃𝑃𝑇𝑇𝑃𝑃𝑃𝑃 2
ub denotes the upper limit of spacing between two turbines such that full power (same as that of the preceding turbine) is obtained from a succeeding turbine. lb is the lower limit of spacing such the succeeding turbine gets completely immersed in the wake of the preceding turbine [START_REF] Frandsen | The necessary distance between large wind farms offshore[END_REF]. V 2 is obtained numerically at the location of the second rotor. Power density (P d ) is defined as the power output per unit area. Power loss (P l ) for the second turbine due to the wake created by the first one is defined as the difference in the ideal power (P 2 ) predicted on the basis of the local velocity at the second turbine location and the actual power (P 2 ') obtained from the turbine. When the incoming flow with a velocity of 1m/s encounters first rotor it loses its kinetic energy which is regained at the downstream of the first rotor. The velocity follows the trend as shown in Fig. 9. Hence, at a distance of 2.5 m from the rotor, the flow should regain the velocity of 0.75 m/s. If a second rotor is placed at this location, it should deliver a power of 0.42 P 1 , but in actual practice the power delivered by the second rotor is less than 0.42 P 1 . This loss is accounted as the power loss due to the wake. Area utilization ratio (A u ) is defined as the ratio of the total area actually occupied by the turbine units in a pattern to the sum of given array area (50 m X 50 m) and virtual area created to avoid degeneracy (area reducing to line at the inline edge when breadth becomes zero). While arranging the rotor units in the above geometric patterns of varying dimensions, and varying spacing between them, it has been found out that it is not possible to accommodate the complete pattern in few cases. For these cases, in order to utilize the space as much as possible, a virtual row of turbines is added and a virtual area is created (Fig. 4). The role of these virtual turbines is to avoid degeneracy during the calculation of the area occupied by the rotor patterns. These virtual units do not contribute to the power density.

Fig. 4. Schematic showing concept of virtual area and spacing between pattern for turbine arrays

A meta-model of the significant functions is developed based on the data obtained through numerical simulations. Random samples (space filling designs, equidistant grids for arrays 1 and 2 and nested designs for Array 3) are taken to capture the feasible domain effectively [START_REF] Jurecka | Robust design optimization based on metamodeling techniques[END_REF]. The model is then validated using Predicted Residual Square Sum of Errors (PRESS) that accounts for the predictive capability of the model. Each observation is removed and the model is refitted using the remaining observations. That refitted model is then used to predict the left-out-sample. This strategy is repeated for each observation and the square sum of errors is then computed, known as PRESS. The model with a least PRESS is then adopted.

The problem is unconstrained and contains a feasible set which is closed and bounded, with the functions being continuous within those bounds. Genetic algorithm is used to circumscribe the pareto-domain which contains solutions (Sol) that are better for at least one of the objectives than all the other solutions that are the also part of the domain. For ranking the obtained pareto-domain, Net Flow Method (NFM) [START_REF] Rangaiah | Multi-Objective Optimization Techniques and Applications in Chemical Engineering[END_REF] is used. The relative weight, and the three parameters, an indifference threshold (Q), a preference threshold (P) and a veto threshold (V) for each function is set according to the understanding of the physical problem. Since the prime objective of a turbine array is to maximize the power density, function f 1 is given a preference over the second and the third functions defined in the objective criteria. NFM suggests that instead of arriving at one best solution corresponding to the highest rank, it is advisable to categorize the solutions into different categories [START_REF] Rangaiah | Multi-Objective Optimization Techniques and Applications in Chemical Engineering[END_REF]. Here, looking at the solution, a decision was made to categorize the solutions into two categories. The solutions with a negative score are eliminated and thus categorized under non-preferred set (NP), whereas the positive score solutions are incorporated under preferred set (P). Overall recommendation is given based on the results obtained for different simulations.

RESULTS AND DISCUSSION

In this section, we shall discuss the performance of turbine arrays for each of the three patterns shown in Fig. 3.

Results of Array 1

Array 1 (Fig. 3a) is essentially an in-line arrangement of turbines. Thus it is expected that the position of the second turbine is very crucial. Figure 5 shows the variation of velocity deficit calculated in the wake of a turbine where U is taken as velocity of the flow after it is disturbed by rotor 1, and U ∞ is the incoming water velocity of 1m/s. This wake has a significant effect on power loss in the second turbine [START_REF] Milborrow | The performance of arrays of wind turbines[END_REF]. This power loss, calculated using the relationship mentioned earlier.

The profile of velocity approaching the second rotor is not uniform. In this work, instead of choosing an average velocity, the velocity is computed at the midspan in the flow passage between two rotor blades. This choice of velocity could have resulted in the peak loss observed in Fig. 6. Inset figure brings out the extent of the wake with the distance between two in-line rotors. With a distance of 2.5 m rotor 2 completely lies in the wake regime of rotor 1, resulting in poor power ratio, whereas as the distance increases rotor 2 has no interaction with the wake regime of the previous rotor, thereby resulting in an efficient power ratio as can be seen at the distance of 8.5 m. As observed from Fig. 7, power ratio i.e. P 2 /P 1 is not sensitive to lateral spacing (x) as compared to in-line spacing (z), where P 1 and P 2 are the power extracted by rotor 1 and rotor 2 respectively. Hence, for Array 1, lateral variation is not considered as a significant factor. 

Results of Array 2

Array 2 has a pattern of equilateral triangle of side a and arranged in such a way that each of the 3 turbines face the incoming flow with minimum disturbance from others (Fig. 3b) . This fact is borne by the fact that incoming velocities faced by each turbine is same (Fig. 9) and hence the power produced by these turbines is similar. Thus, for this configuration, the power loss term is almost negligible.

Figure 10 shows the variation of normalized power density and normalized area utilization ratio for Array 2 as functions of the side of equilateral triangle.

𝑃𝑃𝑃𝑃𝑃𝑃𝑀𝑀. 𝑃𝑃𝑢𝑢𝑃𝑃𝑃𝑃𝑇𝑇𝑀𝑀𝑃𝑃𝑃𝑃 𝑃𝑃 𝑃𝑃 = 𝑃𝑃 -𝑃𝑃 min 𝑃𝑃 max -𝑃𝑃 min Points indicate velocities at rotor locations.

It has been observed that power density reduces with increase in length, yet area utilization increases. Hence a pareto-domain gives a solution an acceptable set of feasible solutions. In order to achieve this, a meta-modeling is done using three out of four models -linear, quadratic, power, and exponential. It can be observed here that the models interpolate the values in a close proximity (Fig. 11).

On the basis of the coefficient of determination (R 2 ) value for different models, the ones with highest value are chosen and final selection is made on the basis of PRESS, a statistical measure used for cross validation of model. Figure 12 shows the pareto-domain for the above two functions generated using genetic algorithm in Matlab®. The solutions are found to get converged after 133 generations. Table 2 gives details of parameters used to rank pareto-domains based on NFM. The ranking using NFM is shown in Table 3. This ranking is indicative of the scores obtained as shown in Table 3. It may be added here that these rankings given in Table 3 were arrived at after studying the sensitivity of different weights and thresholds as stated earlier. 

Results of Array 3

A unit cell of Array 3 (Fig. 3c) comprises of turbines arranged in the form of an isosceles triangle such that there is a alternating row of turbines in line with the previous one. Thus, it is clear that both in-line and lateral spacing play important roles for such an array. This was verified in our work. Thus for this array, x-and z-separations and all three functions (P d , P l and A u ) become important.

Figure 13 shows the variation of power as functions of inline and lateral spacing. From this figure it is seen that though turbine 2 does not differ significantly with x-or zseparations, turbine 3 does depend on the separation distances. Figure 14 shows the predictive errors for the three functions (power density, area utilization ratio and power loss terms) when calculated using different polynomial functions. The solid line in each of these plots (Fig. 14 a-c) indicates the one function which has been chosen for each of these cases. It may further be mentioned here that though area utilization ratio is a convex function, the other two functions are concave and so we have used genetic algorithm [START_REF] Arora | Introduction to Optimum Design[END_REF]. The fitted curves for each of the functions are given as:

Fig. 14. Predictive capability of four polynomial metamodels used for each of the three functions

Figure 15 shows response surface and contour plots of different metamodels used. Figure 16 shows the pareto-front for Array 3 obtained using genetic algorithm and this result confirms that non-convex part is also captured using the genetic algorithm approach in 169 generations. It shows the conflicting relationship between the three functions. The 3d points represent the relationship between all the three functions, whereas 2d points projected on the planes gives the relationship between the functions taken two at a time. It can be observed that when area utilization increases power density decreases and power loss increases. The units of the functions are mentioned in the earlier section.

The rankings of pareto-solutions were arrived at based on parameters shown in Table 4. Table 5 gives the preferred or non-preferred rankings for different pareto-optimal solutions for Array 3 similar to what was done for Array 2. Based on the optimizations carried out for the three arrays, ranking 1 (in case of Arrays 2 and 3) and upper bound in case of Array 1 has been selected for validation studies. In order to compare the performance of these optimized turbines with that of any configuration, an initial configuration has been chosen. This initial configuration has been chosen such that there is no spacing between the unit patterns as shown in Fig. 3(a-c). These comparisons are reported in the next section on validation. 

Validation and comparison of optimized solutions

Detailed CFD simulations were carried out for both optimized solutions and general arrays and Table 6 gives a validation of optimization results against numerical simulations. Thus it is seen that optimization results are in reasonably good agreement with that obtained from numerical simulations. These flow interactions are crucial in achieving the improved performance of optimized configurations as shown in Table 7. In particular attention is drawn to the fact that for each of the cases depicted in Table 7, different numbers of turbines are used and hence from practical point of view of deployment of turbines, it is ideal if fewer number of turbines can produce similar or higher power outputs. It is noted that of all the three configurations chosen, Array 2 produces the maximum output. Array 3, deploying fewer number of turbines, is capable of producing similar power output as Array 2 with similar number of turbines but would require larger space and hence may be problematic for other users of the water passage. Thus, it can be concluded that the optimization approach to arrive at suitable turbine arrays is validated and such an approach can improve the performance of the hydrokinetic power production. 

CONCLUSIONS

Hydrokinetic turbines are less efficient and hence in order to produce significant power arrays are essential. The power output from these turbines as well as the area occupied by the turbines determine the successful installation and operation of these turbines. However, carrying out full-fledged computational and/or experimental work is difficult, time consuming and expensive. Hence, in this work, we have used multivariate optimization aided by selective numerical simulations. Significant conclusions are listed below: 1. It is observed here that all the geometries do not respond to the functions in a similar way. For instance for Array 1 geometry, variation of power loss and area utilization with in-line spacing were of similar nature while for Array 3 they were conflicting. Thus, i.

𝐴𝐴𝑃𝑃𝑃𝑃𝑀𝑀𝐴𝐴 1 𝑃𝑃𝑀𝑀𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑀𝑀𝑀𝑀𝑃𝑃𝑃𝑃𝑀𝑀 = ∅{𝑀𝑀𝑀𝑀𝑃𝑃. 𝑃𝑃 𝑙𝑙 (𝑀𝑀), 𝑀𝑀𝑀𝑀𝑀𝑀. 𝐴𝐴 𝑢𝑢 (𝑀𝑀)}𝐴𝐴 ii.

𝐴𝐴𝑃𝑃𝑃𝑃𝑀𝑀𝐴𝐴 2 𝑃𝑃𝑀𝑀𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑀𝑀𝑀𝑀𝑃𝑃𝑃𝑃𝑀𝑀 = ∅{𝑀𝑀𝑀𝑀𝑀𝑀. 𝑃𝑃 𝑑𝑑 (𝑀𝑀), 𝑀𝑀𝑀𝑀𝑀𝑀. 𝐴𝐴 𝑢𝑢 (𝑀𝑀)} iii.

𝐴𝐴𝑃𝑃𝑃𝑃𝑀𝑀𝐴𝐴 3 𝑃𝑃𝑀𝑀𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑀𝑀𝑀𝑀𝑃𝑃𝑃𝑃𝑀𝑀 = ∅{𝑀𝑀𝑀𝑀𝑀𝑀. 𝑃𝑃 𝑑𝑑 (𝑀𝑀, 𝑀𝑀), 𝑀𝑀𝑀𝑀𝑃𝑃. 𝑃𝑃 𝑙𝑙 (𝑀𝑀, 𝑀𝑀), 𝑀𝑀𝑀𝑀𝑀𝑀. 𝐴𝐴 𝑢𝑢 (𝑀𝑀, 𝑀𝑀)} In all these arrays, inter-pattern spacing is held constant. 2. The performance of Array 1 is found to be dependent on two out of three functions  power loss and area utilization  dependent on single variable, in-line spacing. Array 2 performance was found to be univariate parameterized in terms of two significant functions -power density and power loss. Array 3 performance was a multi-variable relation involving all the three functions studied. 3. The mathematical models were found to be in close proximity to the simulated values as shown in the validation, but, the model is strictly valid for the feasible domain set for the work. 4. It is found that for maximum power requirement Array 2 is advantageous while in terms of power per rotor unit, Array 3 is beneficial. Array I is not beneficial in either way. 5. It has been observed that when compared to the arrays without any spacing between patterns, arrays with inter-spacing performs better in terms of power per rotor units.

Fig. 1 .

 1 Fig. 1. Typical computational domain showing turbines, velocity inlet, pressure outlet as well as rotorstator interface.

Fig. 2 .Fig. 3 .

 23 Fig. 2. Steps adopted to arrive at optimum turbine array

Table 1 :

 1 Definition of different parameters given in objective criteria. Spacing is shown in Fig.3.

Fig. 5 .

 5 Fig. 5. Variation of velocity deficit with increasing distance from a turbine Figure 8 (a and b) shows the variation of A u and P d with z. A u , as defined earlier, incorporates three variables -spacing, number of patterns and virtual area. As the spacing increases, number of patterns and virtual area values change. With increase in the spacing between the in-line turbines, the length of the rectangular pattern increases and hence this function increases. But after a certain value (4.5 m) the spacing reduces the number of patterns that can be accommodated in the array, this accounts for a jump as observed in Fig. 8(a). Fig. 8(b) shows the variation of power density for array 1 with in-line spacing, which is found to be negligible, hence this function is ignored safely.

Fig. 6 .

 6 Fig. 6.Variation of power loss with in-line spacing. Inset shows the position of the second turbine in the wake of the first for different separating distance.

Fig. 7 .Fig. 8 .

 78 Fig. 7. Comparative study of the effect of in-line (zdirection) and lateral (x-direction) separation distances on the power produced by a second turbine

Fig. 9 .

 9 Fig. 9. Flow velocities of three rotors for Array 2.Points indicate velocities at rotor locations.

Fig. 10 .

 10 Fig. 10. Variation of normalized power density and area utilization ratio with side of the triangular pattern.Figure12shows the pareto-domain for the above two functions generated using genetic algorithm in Matlab®. The solutions are found to get converged after 133 generations. Table2gives details of parameters used to rank pareto-domains based on NFM. The ranking using NFM is shown in Table3. This ranking is indicative of the scores obtained as shown in Table3. It may be added here that these rankings given in Table3were arrived at after studying the sensitivity of different weights and thresholds as stated earlier.

Fig. 11 .

 11 Fig. 11. Different curve fitting functions used to fit numerical data obtained for Array 2 for two functions  power density (a-c) and area utilization ratio (d-f).

Fig. 12 .

 12 Fig. 12. Pareto optimal domain for two functions of power density (f 1 ) and area utilization ratio (f 2 ).

Fig. 13 .

 13 Fig. 13. Variation of power of rotor 2 and rotor 3 with respect to in-line and transverse spacings

Fig. 15 .

 15 Fig. 15. Response surfaces and contour plots of metamodels adopted.

Fig. 16 .

 16 Fig. 16. Pareto-domain for Array 3 obtained using genetic algorithm.

Fig. 17 .

 17 Fig. 17. Comparison of pressure contours for general configuration for Array 1 (left figures) and optimized configuration (right figures).

Fig. 18 .

 18 Fig. 18. Comparison of pressure contours for general configuration for Array 2 (left figures) and optimized configuration (right figures).

Fig. 19 .

 19 Fig. 19. Comparison of pressure contours for general configuration for Array 3 (left figures) and optimized configuration (right figures).

Table 1 .

 1 Area utilization ratio P l -Power loss due to wake [W] x 1 , x 2 -geometrical dimensions of a pattern corresponding in-line spacing and transverse spacing s -spacing between the patterns as defined in

		𝑃𝑃 𝑑𝑑 =	𝑇𝑇𝑃𝑃𝑇𝑇𝑀𝑀𝑙𝑙 𝐴𝐴𝑃𝑃𝑃𝑃𝑀𝑀𝐴𝐴 𝑃𝑃𝑃𝑃𝑃𝑃𝑀𝑀𝑃𝑃 𝐴𝐴𝑃𝑃𝑃𝑃𝑀𝑀𝐴𝐴 𝑀𝑀𝑃𝑃𝑀𝑀𝑀𝑀
	𝐴𝐴 𝑢𝑢 =	𝑃𝑃𝑀𝑀𝑇𝑇𝑇𝑇𝑀𝑀𝑃𝑃𝑃𝑃 𝐴𝐴𝑃𝑃𝑀𝑀𝑀𝑀 * 𝑁𝑁𝑃𝑃. 𝑃𝑃𝑃𝑃 𝑝𝑝𝑀𝑀𝑇𝑇𝑇𝑇𝑀𝑀𝑃𝑃𝑃𝑃𝑠𝑠 𝐴𝐴𝑃𝑃𝑃𝑃𝑀𝑀𝐴𝐴 𝐴𝐴𝑃𝑃𝑀𝑀𝑀𝑀 + 𝑉𝑉𝑀𝑀𝑃𝑃𝑇𝑇𝑢𝑢𝑀𝑀𝑙𝑙 𝐴𝐴𝑃𝑃𝑀𝑀𝑀𝑀
	𝑃𝑃 𝑙𝑙 = 𝑃𝑃 2 -𝑃𝑃 2 ′ P 2 is obtained using the power velocity relation,

𝑙𝑙𝑙𝑙 ≤ 𝑀𝑀

1 , 𝑀𝑀 2 , 𝑠𝑠 ≤ 𝑢𝑢𝑙𝑙 𝑀𝑀 1 , 𝑀𝑀 2 , 𝑠𝑠 ≥ 0, where, P d -Power density [W/m 2 ] A u -

Table 2 :

 2 Parameters used to rank pareto-solutions using Net Flow Method for Array 2

	Array 2	Weight	Q	P	V
	Power density	0.8	5	12	20
	Area utilization ratio	0.20	0.05	0.15	0.20

Table 3 :

 3 List of pareto-optimal solutions for Array 2 and their ranking using NFM method

	Sol	Objectives	Scoring/Ranking	
	a	F1	F2	Score	P/NP	Rank
	8.50	13.22	0.44	3.51	P	4
	2.99	35.50	0.15	7.16	P	2
	3.87	28.13	0.20	1.81	P	7
	6.25	17.96	0.32	-3.17	NP	15
	4.18	26.23	0.21	0.54	P	8
	5.94	18.86	0.31	-3.62	NP	17
	7.36	15.29	0.38	0.42	P	10
	6.91	16.29	0.36	-0.47	NP	11
	5.25	21.2	0.27	-2.13	NP	14
	8.02	14.03	0.42	2.87	P	5
	5.68	19.69	0.29	-3.26	NP	16
	5.54	24.32	0.23	-0.97	NP	12
	4.19	26.17	0.22	0.49	P	9
	3.44	31.29	0.18	3.79	P	3
	2.83	37.29	0.14	8.33	P	1
	4.99	22.27	0.26	-1.67	NP	13
	3.87	28.16	0.20	1.83	P	6

Table 4 :

 4 Parameters used to rank pareto solutions using NFM for Array 3

	Array 3	Weight	Q	P	V
	Power density	0.4	3	4	5
	Power loss	0.4	30	40	50
	Area utilization ratio	0.2	0.03	0.05	0.07

Table 5 :

 5 List of pareto-optimal solutions for Array 3 and their ranking using NFM

	Sol		Objectives		Scoring/Ranking
	x	z	F1	F2	F3	Score P/NP Rank
	2.5	4	11.04	247.37	0.06	4.4	P	5
	2.63	4	11.06	249.4	0.06	4.65	P	3
	5.5	8.49	4.85	420.27	0.16	-8.31	NP	18
	2.99	4.42	10.25	287.82	0.08	-1	NP	13
	3.52	5.87	9.67	320.74	0.11	-0.02	NP	12
	5.41	8.47	4.86	420.83	0.16	-8.39	NP	20
	5.02	7.37	7.9	331.02	0.15	5.88	P	1
	2.68	4.06	10.93	255.89	0.07	4.41	P	4
	5.18	7.91	6.87	361.44	0.15	2.3	P	9
	5.5	8.18	6.11	379.81	0.16	-3.73	NP	15
	2.98	4.61	10.08	297.04	0.08	-4.11	NP	16
	2.92	4.23	10.54	274.46	0.08	2.87	P	6
	5.5	8.49	4.85	420.27	0.16	-8.31	NP	19
	3.88	6.76	9.43	323.36	0.12	1.9	P	10
	5.5	8.36	5.43	401.85	0.16	-6.88	NP	17
	3.36	5.2	9.6	317.57	0.1	-2.45	NP	14
	5.43	7.72	7.27	341.51	0.15	5.3	P	2
	4.03	7.23	8.94	333.68	0.13	2.62	P	7
	4.15	6.23	9	322.33	0.12	1.86	P	11
	5.5	7.99	6.69	360.31	0.16	2.62	P	8

Table 6 :

 6 Validation of models adopted from optimized results with rank 1 of respective arrays In order to appreciate the superior performance of the optimized solutions, flow structures in different turbine arrays are compared and shown in Figs. 17-19. Figure17shows the comparative flow pictures for an initial configuration and an optimized array of turbines. It is seen that downstream turbines, in case of general array (left figures), are immersed in the wake of the upstream turbines. This not only reduces the approaching velocities for these subsequent turbines but, because of non-uniform velocities, produces a further reduction in the output power. The optimized turbine array produces wake which nominally influences the subsequent turbines. Similar results are presented for other two configurations in Figs. 18 and 19.

	Array	functions	model actual variation
	2	Power density	37.22	32.41	14.84%
		Area utilization	0.142	0.147	3.4%
		ratio			
	3	functions	model actual	
		Power density	7.38	7.93	6.93%
		Power loss	363	361.29	0.47%
		Area utilization	0.154	0.157	1.91%
		ratio			

Table 7 :

 7 Comparison of the performance of initial and optimized solutions for turbine array geometry

	Array	Parameters	Initial	Optimized
	1	Rotor units	10	4
		Total Power (W)	257.81	360.18
	2	Rotor units	9	6
		Power	1903.70	1986.65
	3	Rotor units	5	3
		Power	1125.99	1026.33