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Abstract
Experiments and simulations were performed on surface-piercing struts constructed of aluminum and
PVC to investigate the effects of partial-immersion and multi-phase flow on the modes of free-vibration.
Experiments were conducted with the struts suspended in a water-filled drum and excited with hammer-
strikes. A shape-sensing methodology was used to experimentally infer mode shapes of the PVC strut.
The finite element method (FEM) model used acoustic elements to simulate the fluid domain. Resonant
frequencies generally decreased as immersion depth increased as a result of increasing hydrodynamic
added mass. The percentage-change in resonant frequencies varied between modes. The first bending
mode was the most strongly affected by partial immersion, while the first lead-lag mode was almost
unaffected. The second and third resonant frequencies were observed to coalesce or change order for the
aluminum and PVC struts, respectively; both cases highlight the possibility of dangerous energy-exchange
between modes. Atmospheric ventilation was simulated in the FEM model by using acoustic air elements
to represent a ventilated cavity along the suction-surface of each strut. Ventilation reduced the added mass,
causing resonant frequencies to increase to values between the fully-wetted and in-vacuo frequencies.
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INTRODUCTION
Many high-lift devices operate in a surface-piercing con-
figuration, including surface-piercing propellers, hydrofoils,
rudders, and control surfaces. Other systems, like supercavi-
tating propellers, dynamic positing thrusters, and submerged
hydrofoils operate in close proximity to the free surface. Both
cases present an increased risk of atmospheric ventilation (the
entrainment of an air-filled cavity).

Additionally, recent moves toward flexible marine struc-
tures - both in research and in industry - have revealed the
potential for hydro-elastic instabilities that are not adequately
predicted by classical aero-elastic theory [1, 2, 3, 4]. Ventilated
flow around a flexible hydrofoil/strut presents an extremely
complicated hydro-elastic problem. The interface between
a very light fluid (air) and a very dense fluid (water) creates
dramatic spatial and temporal variations in the pressure and
density fields surrounding a surface-piercing body. The ramifi-
cations on the effective system added mass, damping, stiffness,
and resonant properties are unknown. In this work, combined
experimental and numerical studies are performed to measure
the hydro-elastic response of surface-piercing struts in wetted
and ventilated flows.

BACKGROUND
The issue of atmospheric ventilation on surface-piercing bodies
has been investigated by [5, 6], among others. Recently, [7, 8]
performed towing-tank experiments on a surface-piercing
strut constructed of aluminum. They established charac-
teristic flow regimes, which include fully-wetted (FW) and
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Figure 1. (a) Fully-wetted (FW) regime, where the suction
surface of the yawed strut (pictured) is completely wetted. (b)
Fully-ventilated (FV) flow, where a cavity of atmospheric air
is entrained around the suction surface of the yawed strut.

fully-ventilated (FV) flows, depicted in Figure 1. The flows
present dramatically-different distributions of high- and low-
density fluid surrounding the body; the transitions between
flow regimes can be violent, inducing large load-fluctuations.

Past research on the partial-immersion of elastic structures
have been mostly limited to fully-wetted flows around bodies
with simple circular or rectangular cross sections. [9] used a
combined finite-element-method-boundary-element-method
(FEM-BEM) model to investigate the natural and resonant
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modes of a flat surface-piercing plate. For partially-immersed,
fully-wetted cases, a boundary-value problem was established
on the fluid-domain to emulate a linear free surface and infinite
fluid field, and the plate was discretized with singularity panel
distribution. The in-vacuo mode shapes were determined
with the FEM model and used to decouple the equations of
motion. Using the pre-computed mode shapes as effective
basis functions, the solution to the generalized equation of
motion allowed resonant frequencies, ω, principal (modal)
coordinates, and modal added mass and damping coefficients
to be obtained. They found that the free surface induced a
frequency-dependence into themodal addedmass and damping
– a consequence of the radiation potential. The frequency-
dependence vanished quickly with both increasing immersion
depth and increasing modal frequency. Variations in the
added mass, in particular, were only appreciable for values
of ω
√

S/g < 5, where S is the span of the plate and g is
gravitational acceleration.

[10] presented an analysis of metallic and composite can-
tilevered plates, both in-water and in-vacuum, using combined
numerical and analytical methods. The work showed good
agreement with experimental measurements of a cantilevered
surface-piercing steel plate provided in [11]. The wetted fre-
quencies were found to be much lower than the dry frequencies
as a result of fluid inertial effects (addedmass). The percentage
reduction in resonant frequencies (compared to the dry state)
varied between modes. Moreover, the changes in wet-to-dry
frequency ratios were more severe for lightweight models than
for heavier models. Results showed that added mass, and
therefore wetted frequency, were strongly dependent on the
respective mode shapes, which in turn are determined by the
body shape, support-type, physical properties, and material
anisotropy. Similarly, [12] used finite element analysis to show
that there is a significant reduction in resonance frequency
as the immersion-depth of the plates increased, due to larger
fluid added mass, and that these effects are dependent on the
particular shape of the resonance mode. The results showed
that as the submergence increased, the resonance frequencies
decreased, asymptotically approaching the frequencies for a
fully-submerged plate.

Objectives
The objective of this work is to improve the understanding of
the hydro-elastic behavior of surface-piercing struts to assist
in future design and control of struts and hydrofoils across a
variety of operating conditions. Specifically, this study seeks
to investigate the effects of partial immersion and ventilated
flow on the resonant frequencies, added mass, and associated
mode shapes of surface-piercing struts through combined
experimental and numerical analyses. Moreover, this study
aims to develop and validate a numerical approach for the
simulation of wetted and ventilated surface-piercing bodies.

1. EXPERIMENTAL APPROACH
Geometrically-identical struts were constructed from alu-
minum and PVC, using the geometry of [7, 8]. The design
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Figure 2. The geometry of the struts. The aluminum and
PVC struts both possess a semi-ogival section. The aluminum
strut is solid. The PVC strut includes two interior channels,
into which are installed shape-sensing spars (Figure 3).

possesses a semi-ogival section with a circular-arc fore-body
and rectangular after-body, as shown in Figure 2. The alu-
minum strut was machined with a solid section. The PVC
strut was constructed from two symmetric halves, which were
affixed by a chemical bond and plastic-welding. Along the cen-
terline of the PVC strut, two interior channels were machined,
into which custom-built shape-sensing spars were installed.

Inferring motions of flexible structures typically requires
accelerometry and/or optical methods. The former poses
problems for non-harmonic motions, while the latter cannot
operate in environments where fluid interfaces cause refraction
(such as in the case of a ventilated cavity). A non-optical
means of tracking structural deflections was developed in the
form of shape-sensing spars, pictured in Figure 3.

The shape-sensing methodology invokes the beam bending
equation,

εz ≈
−t
2
∂2Y
∂Z
, (1)

where εz is the surface bending strain on a beam of thickness t,
Y is the coordinate in the direction of lateral beam deflection

Strain Gauge Half-Bridges

Figure 3. A schematic illustration of the shape-sensing spar.
Strain gauges permit the distribution of strain along the beam
to be approximated via polynomial, from which the deflection
may be inferred. Two identical spars were constructed and
inserted into the PVC strut at locations indicated by the blue
and red regions in Figure 2.
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Figure 4. (a) The loading condition under which errors were measured (single concentrated loads at varying spanwise locations)
and the maximum percentage error for the individual spars (A and B). The errors are significantly reduced by the calibration
step, and are bounded below by the propagated uncertainty in the optically-measured deflections. (b) The (post-calibration)
tip-deflection and the leading edge deflection inferred from the pair of shape-sensing spars are overlaid as green dashed lines
onto photos of the strut subjected to a combined bending/twisting load. A compliance factor of κ = 8 was used to relax the root
boundary conditions. White solid lines indicate the initial undeformed geometry of the strut’s tip and leading edge.

and Z is the coordinate along the initial (undeformed) length
of the beam. The slim aluminum spar is instrumented with N
strain gauges in a half-cosine spacing. The boundary condition,
εz |Z=L = 0, permits an N th-order polynomial may be fitted to
the measured strains.

ε̂z (Z ) =
N∑
i=0

aiZ i . (2)

EQ 2 may be substituted into EQ 1 and twice-integrated to
yield a polynomial approximation of the lateral deflection.

Ŷ (Z ) =
N+2∑

0
AiZ i . (3)

The integration yields two additional coefficients, A0 and
A1, which must be determined from the beam’s boundary
conditions. For an ideal cantilever, A0 = A1 = 0, giving

Ai =




0, j = 0, 1
ai ( j − 2)!

j!
, j = 1, 2, . . . , N + 2

Two spars were constructed, denoted “A" and “B". In-
dependent optical calibrations were carried out to correct
for small differences in the strain-gauge mounting, such as
orientation, adhesive thickness, and other linearizable sources
of variation. The root of the spar was clamped and point loads
were applied to the beam to achieve various static deflections.

A calibrated camera was used to measure the lengthwise de-
flections with an estimated uncertainty of 1/32 in (0.79 mm),
from which the surface strains were calculated via EQ 1. A
calibration matrix, unique to each spar, was fitted to minimize
the squared error between the strain values measured optically
and those measured by the strain gauges. The error of the pre-
and post-calibration deformations is plotted in Figure 4a. The
plotted symbols, and the linear trends fitted to them, make it
clear that the calibration significantly reduced both the mean
error and the variance of the error.

Under the assumption that bending along the chord is
negligible (chord-wise rigidity), the deflections along the
two spars – respectively ŶA(Z ) and ŶB (Z ) – may be used
to reconstruct the deformed centerline plane of the strut. It
is convenient to recast the deformations into the decoupled
angular and lateral deflection of each spanwise section along
the elastic axis.

θ̂(Z ) = arctan
(
ŶA(Z ) − ŶB (Z )

XA − XB

)
(4a)

ˆYEA(Z ) = ŶA(Z ) + (XEA − XA) tan(θ(Z )), (4b)

where XA and XB respectively denote the chordwise positions
of the spars inside of the strut and XEA denotes the chordwise
location of the elastic axis.

In practice, the root of each spar was judged to be imper-
fectly clamped as a result of the compliance of the surrounding
PVC, such that Y (Z ) = 0 but Y ′(Z ) � 0 at Z = 0. The
coefficient A1 in EQ 3 was changed to A1 = −κε̂z |Z=0, where
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Figure 5. Experimental setup used to measure vibratory
response of struts. A large steel structure holds the
surface-piercing strut in a vertically-cantilevered
configuration, suspended either in air or in a 65-gallon (246
liter) drum with the free tip immersed to depth h.

κ represents a dimensionless compliance factor, allowing the
root of each spar to take on a non-zero slope proportional to
the applied moment at Z = 0, and which must be determined
in-situ. An example of the inferred bending/twisting deforma-
tion of the strut under the relaxed boundary condition (κ = 8)
is shown in Figure 4b. The inferred deflections are overlaid
onto calibrated photos of the strut’s tip and leading edge in
green dashed lines. Good agreement between the inferred and
true deformations may be observed.

To collect vibration data, each strut was suspended from a
steel carrier in a vertical cantilevered configuration. The root
of the strut was clamped and coupled to the steel structure via
a six-degree-of-freedom load cell. The free tip of the strut
was lowered into a 65-gallon (246 liter drum). The drum was
filled with freshwater until the desired depth of immersion (h)
was achieved. Immersed aspect ratios (ARh = h/c) of 0, 0.5,
1.0, and 1.5 were assessed, with ARh = 0 corresponding to
the dry configuration. The motions of the strut were measured
via a Polytec OFV-353 single-point laser doppler velocimeter
(LDV) and – in the case of the PVC strut only – the internal
shape-sensing spars. Finally, a three-axis accelerometer was
attached to sub-frame to measure the vibratory response of the
test structure. The strut was excited by hammer strikes, after
which the decaying free-vibration response was recorded as a
time-series of length M . Sampling rates of Fs = 1 kHz and 5
kHz were used for the aluminum and PVC struts, respectively.
The experimental setup is illustrated in Figure 5.

Discrete Fourier transforms (DFT) were used to generate
frequency spectra for each recorded channel,

X̄ = D (X ), (5)

Figure 6. The magnitude and imaginary parts of the
strain-gauge signals in the frequency domain. The first
resonant mode is shown ( f ∗1 = 8 Hz), indicated by the peaked
response magnitude. The operating deflection shape (ODS)
strains are obtained from the crossing of imaginary parts of
the strain-gauge signals with f ∗1 . The legend entries are the
numbered strain gauges on spars A and B (NA,B = 4; N = 8).

where X is the time-series of of sampled data at times
t = {tn, n = 1, 2, . . . ,M }. X̄ is a complex-valued vector cor-
responding to frequencies f = { fn, n = 1, 2, . . . ,M }. The
magnitudes of the frequency response |X̄ | were plotted for
each collected data channel, denoted by index j, and the col-
lective frequency distributions were used to locate peaks in
the frequency spectra corresponding to resonant modes (see
Figure 6). The location of the peak on each channel was taken
as the j th estimate of the resonant frequency, f ∗i, j , where i is
the ordered mode number.

Taking the imaginary part of X̄n at a frequency yields the
operating deflection shape (ODS) for frequency fn. When
the sampled strain-gauge signals are considered, the ODS is
an estimate of the strain distribution, ε z =

{
ε z j , j = 1 . . . N

}
,

that oscillates sinusoidally at that frequency.

ε̃ z ≈ X̃n = Im(X̄n), (6)

The ODS strains for each resonant condition were translated
into a surface ODS (Ỹ ) via EQs 2-4. For resonant peaks
that are well-separated, the surface ODS is dominated by the
underlying normal mode shape, Φ [13].

Ỹ n ≈ Φi when fn = f ∗i, j (7)

The strain-gauge channels ( j = 1 . . . N) were each considered,
yielding N estimates of each resonant frequency and associated
ODS. Moreover, eight-to-twelve trials were conducted per
value of ARh , permitting the mean and standard deviations of
the resonant frequencies and ODSs to be estimated. Figure 6
shows the averaged frequency response of the strain-gauge
signals at ARh = 0 in the neighborhood of the first resonant
frequency. The top plot shows the magnitude of the frequency
response, with a vertical line indicating the resonant peak.
The imaginary part of the frequency-response is shown in the
lower plot; the ODS strains are recorded as the set of values
intersecting the vertical bar.
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Table 1. The geometric properties of the strut, which are identical for the PVC and aluminum struts, and the masses, which vary
with the strut material. Quantities exclude the root-portion of each strut.

Property Ixx in4 (m4) Iyy in4 (m4) J in4 (m4) mAL slugs (kg) mPVC slugs (kg)
Value 0.92 (3.829 × 10−7) 86.99 (3.621 × 10−5) 87.9 (3.659 × 10−5) 1.14 (16.61) 0.56 (8.19)

Table 2. The material properties of the PVC and aluminum struts and the fluid used in the FEM analysis.

Material Mass Density Young’s Modulus Poisson Ratio Bulk Modulus
lbf s2/in4 (kg/m3 ) psi (GPa) psi (GPa)

Aluminum 2.53 × 10−4 (2700) 1.00 × 107 (8.94) 0.33 9.80 × 106 (67.57)
PVC 1.22 × 10−4 ( 1330) 4.00 × 105 (2.76) 0.4 6.67 × 105 (3.91)
Water 9.36 × 10−5 (1000) - - 3.19 × 105 (2.20)

Air 1.15 × 10−7 (1.23) - - 20.59 (1.42 × 10−4)

1.1 Numerical Approach
The commercial finite element software, Abaqus, was used to
analyze the first five resonant frequencies of the strut structure
in the frequency domain. The Lanczos solver was used to
extract the coupled structural-acoustic resonant frequencies
[14].

The geometric properties of the struts (excluding the
clamped root) are listed in Table 1 and material properties
of the two different struts and the acoustically modeled fluid
domain are listed in Table 2. The second moments of area,
Ixx , Iyy , and J (Z-axis Rotation), are shown in the table as well
as the mass m of the aluminum (AL) and PVC struts.

The strut was meshed using 3-D reduced integration, first
order continuum shell elements (SC8R) [14] following the
success shown in [10]. The meshed strut is shown in Figure
7a with (nx , ny , nz) indicating the number of elements in each
coordinate direction. The origin of the strut is specified at
the intersection of the mid-chord plane, centerline plane, and
strut root (Z = 0) plane. The fluid domain was modeled as
a radial projection of the strut cross section. 3-D first-order,
reduced integration acoustic elements (AC3D8R) [14] were
chosen for the fluid, again based on the findings of [10]. To
simulate ventilation, air properties were applied to a region of
the acoustic fluid domain (shown in Figure 7b).

Convergence studies were performed sequentially, first
refining the solid mesh and then determining the fluid domain
size. The solid mesh was considered converged when further
refinement on nz,y,z yielded changes in the first resonant
frequency of less than 0.5%. The dimensions of the fluid
domain were varied next (the fluid mesh size is defined by the
converged solid mesh), and the first resonant frequency was
again judged to be converged when further increases to the
domain size yielded changes of less than 0.5%. The converged
solid mesh parameters and fluid domain size are given in
table 3.

1.2 Boundary Conditions
All degrees of freedom were fixed on the nodes of the strut’s
root to simulate the cantilevered test configuration. The kine-
matic/dynamic free surface boundary condition for potential

(a) Strut mesh

Solid elements

Acoustic elements (air)
Acoustic elements (water)

(b) Domain size

Figure 7. (a) The FEM mesh parameters of the
surface-piercing strut. (b) The dimensional parameters of the
fluid domain. FW and FV flows were simulated by
respectively specifying the green region as water or air
acoustic elements.

(inviscid and irrotational) flow is,

∂2φ/∂t2 + g∂φ/∂z = 0 (8)

with the velocity potential, φ, defined as,

φ(x, y, z, t) = φo · e(i(kr−ωt)) (9)

where φo is the complex amplitude, k is the wave-vector, ω
is the angular frequency, and r is the position vector (x, y, z).

Table 3. Converged parameters of solid mesh and fluid
domain, as defined in Figure 7 (strut dimensions are shown in
Figure 2).

Solid Mesh Fluid Domain

nx 24 L f , in (m) 37.5 (0.953)
ny 10 W f , in (m) 25.85 (0.657)
nz 72 H f , in (m) 28.88 (0.734)

# Elements 21,600 # Elements 406,428
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When EQ 9 is evaluated at very high frequencies it can be
reduced to show that

lim
ω→∞

φ(x, y, z, t) = 0. (10)

This approximation is only strictly valid at high frequencies,
as ω → ∞. However, as shown in [9], the boundary condition
was found to be approximately valid for ω

√
S/g > 5. In the

present work, dimensionless modal frequencies were found
to satisfy this condition in all cases, so EQ 10 was judged to
be a suitable boundary condition. Non-reflecting boundary
conditions were imposed on the bottom and sides of the fluid
domain to minimize reflection of energy back into the system.
Finally, the contacting surfaces of the strut and fluid domain
were constrained with a kinematic boundary condition.

Representing the fluid domain as an acoustic medium
required the assumptions of inviscid and irrotational flow, as
well as linear fluid compressibility. These assumptions lead
to an equilibrium equation resembling,

∂p/∂x + ρ f ü f = 0, (11)

where ρ f is the fluid density, x is the nodal displacement vector,
p is the fluid pressure and ü f is the fluid nodal acceleration
vector. The constitutive behavior of acoustic fluid is,

p = −K f∇ · u f (12)

where K f is the bulk modulus of the fluid, ∇ is the gradient
vector operator, and u f is the fluid nodal displacement vector.

The generalized finite element equation of motion in
the frequency domain for a free vibration problem without
damping can be expressed as,
[

Ks STf s
0 K f

] {
u
p

}
−ω2

[
Ms 0
−Sf s Mf

] {
u
p

}
= 0 (13)

where Ks and K f are the structure and fluid stiffness, re-
spectively, Sf s represents the fluid-structure interaction term
through enforcing the kinematic and dynamic conditions at
the fluid-solid interface, and Ms and Mf are the structure and
fluid added mass, respectively. u describes the displacement
of the structure and the p describes the pressure throughout
the acoustic medium. EQ 13 can be symmetrized and solved
iteratively to yield eigenvalues (ω2), and eigenvectors (Φ).
This method does not yield explicit values of the added mass
acting on the structure but it does provide an indirect method
by which to infer the effects of fluid and cavity interactions on
the frequencies and shape of the resonant modes.

In the current simulations, the air above the free surface
was not modeled. Work by [10] showed that the low density
and high compressibility of air led to a negligible difference
between simulations with and without acoustically-modeled
air domains. Hence, fluid above the free surface was neglected
to significantly decrease the computational cost.

2. RESULTS AND DISCUSSION
2.1 Numerically Predicted Mode Shapes
Mode shapes were identified using the eigen-analysis of the
FEM model. The naming convention used throughout the

discussion is: [Primary axis] - [Motion type] - [# Node lines].
For example, the first mode (X-Bend-1) is primarily bending
about the X-axis with a single node line. The first five ordered
mode shapes for the struts in air are shown in Figure 8.
Higher-order X-bending modes (X-Bend-2 and X-Bend-3)
demonstrate some twisting about the Z-axis induced by the
chordwise asymmetry of the section shape. Note that the
mode shapes shown are indentical for both struts and in any
homogenous fluid (i.e. in-air or fully-submerged in water).

2.2 Experimentally Estimated Mode Shapes
The measured operating deflection shapes (ODSs) and corre-
sponding resonant frequencies ( f ∗) of the PVC strut are shown
in Figure 9. The rows correspond to values of the immersion
ratio ARh, and the columns are ordered from left to right by
ascending resonant frequencies within each row. Note that the
Y-Bend-1 mode (also known as the “lead-lag" mode) is not
captured in the experiments because the half-bridges installed
on the interior spars reject axial strains. The X-Bend-1 and
X-Bend-3 modes are clearly represented in the ODSs. As the
immersion depth is increased, these modes appear to change
only slightly (some induced twist appears in the X-Bend-3
mode), but remain recognizable. The X-Bend-2 and Z-Twist-1
modes, however, are located relatively close to one another
in the frequency domain, and both underlying normal modes
contribute to the ODS at nearby frequencies. As a result,
the underlying modes cannot be extricated from the ODS;
rather, the ODS must be regarded as weighted blend of the
underlying modes. As the immersion depth is increased to
ARh = 0.5, the second and third resonant modes become
so closely-coupled (less than 2 Hz of separation), that the
ODSs are almost indistinguishable. At ARh = 1.0, the second
and third resonant ODSs are re-ordered, relative to the dry
ordering, such that Z-Twist-1 actually occurs at a slightly lower
frequency than does X-Bend-2. At ARh = 1.5, the original
order is restored. Resonant mode shapes predicted by FEM for
the cases where re-ordering occurs are shown at the bottom of
the figure, corroborating the result of mode re-ordering.

2.3 Effects of Partial-Immersion on Resonance
Figure 10 depicts a comparison between the numerical and ex-
perimental resonant frequencies for both struts. The resonant
frequencies of the aluminum and PVC struts are respectively
shown in Figure 10a and Figure 10b. The resonance fre-
quencies, nondimensionalized by the dry modal frequencies,
f ∗i / f ∗

i,dry
are shown for the aluminum and PVC struts in

Figure 10c and Figure 10d, respectively. In the case of the
aluminum strut, experimental data are available for the first
three modes (X-Bend-1, X-Bend-2, and Z-Twist-3). For the
PVC strut, experimental data are available for all of the modes
pictured in the Figure 8 except Y-Bend-1.

The agreement between the numerical results and the
experiments are good in most cases. A notable exception
is the X-Bend-2 mode of the aluminum strut, where the
FEM-predicted frequencies are consistently higher than the
experimentally-observed ones. A likely explanation for the
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discrepancy is the root boundary condition. In the FEM
model, the root of the strut was perfectly clamped, while
the experimental setup may have been influenced by the
compliance of the load cell, reducing the stiffness of the
system. The large curvature at the root in the X-Bend-2 mode
induces a large bending moment at the root, which would
exacerbate the issue of an imperfect clamp. The numerical and
experimental results are in close agreement for the remaining
resonant modes, both for the aluminum and for the PVC struts.

In general, with increasing immersion-ratio, the resonant
frequencies in Figure 10a and Figure 10b decrease, with
the exception of the Y-Bend-1 mode. As Figure 10c and
Figure 10d demonstrate, the reduction is more-severe for
the PVC strut than the aluminum strut. Both effects are
attributed to the inertial resistance of the water to the strut’s
motion. Added mass is the integrated inertial resistance
to the local accelerations of the body, which as the name
implies, may be modeled by additional mass distributed on
the structure. The distribution of the added mass is purely
a function of the body’s motion (if free-surface waves are
neglected). The resonant frequencies of the PVC strut are
more-strongly reduced than the aluminum resonant frequencies
because the solid-to-fluid density ratio is much smaller in the
case of the PVC strut. For similar mode shapes, the fluid added
mass will be nearly identical for the two struts, but will make
up a greater percentage of the total system mass in the case of
the PVC strut. As a result, the lighter structure is influenced
to a much greater degree by the immersion into a dense fluid.

Mode shapes where deflection occurs in a direction with
a large projected area (e.g. X-Bend-1) are necessarily more-
strongly affected by the surrounding fluid’s added mass than
are mode shapes that present minimal projected area in the
direction of primary motion (Y-Bend-1). This is demonstrated
in Figure 10c and Figure 10d by the fact that, as the struts are
immersed, the reductions to the resonant frequencies are not
uniform. Namely, the first-order resonant modes (X-Bend-1
and Z-Twist-1) are affectedmore-severely than the higher-order
modes. Moreover, note that inflections occur in the resonant
frequencies of the higher-order modes. This occurs when
a nodal line of the respective resonant mode is submerged.
Motion along the node lines is identically zero, and so induces
very little acceleration in the surrounding fluid; the result is a
near-zero change in the hydrodynamic added mass.

As observed in the preceding section, the second and third
modes approach one another (frequency coalescence) between
ARh = 0.5 and ARh = 1.5. This occurs because the node
line of the X-Bend-2 becomes submerged at approximately
ARh = 1, causing the added mass component to plateau. The
added mass effect is proportionally severe enough to cause
a re-ordering of modes at ARh only in the case of the PVC
strut. With the aluminum strut, the modes coalesce but do
not re-order. Frequency coalescence is a practical concern
because it signifies the sharing of energy between two modes;
in extreme cases, one mode can feed energy into another
in an unbounded fashion, resulting in a dynamic instability
known as flutter, which can cause accelerated fatigue and/or

catastrophic structural failure.

2.4 Effects of Ventilation
The dashed lines in figs 10 denote the numerical resonant
frequencies when the air-filled cavity (Figure 7b) was included
in the fluid domain. In all cases, the resonance frequencies
increase from their fully-wetted values. In the fully-ventilated
configuration, nearly half of the previously-wetted area is sur-
rounded by air, which presents a negligible inertial opposition
to motion, thus reducing the added mass. As a result, the
resonant frequencies increase to a value somewhere between
those in the corresponding fully-wetted condition and the dry
condition.

CONCLUSIONS
Experimental and numerical investigations of the resonant be-
havior of aluminum and PVC struts partially immersed in water
have been conducted. A simple shape-sensing methodology
has been developed around an aluminum spar instrumented
with strain gauges, which permits bending and twisting defor-
mations of the PVC strut to be inferred with good accuracy.
The close agreement between experimental and numerical
resonant modes and frequencies validate the accuracy of the
FEM model, which uses acoustic elements to simulate the
air/water fluid domain.

Partial immersion in water causes the resonant frequencies
of both struts to decrease, though the effect is more pronounced
for the PVC strut because hydrodynamic added mass makes
up a greater proportion of the effective system mass. The
modal-dependence of the fluid added mass causes the second
bending and first twisting frequencies to approach one another
for the aluminum strut and to change order for the PVC strut.
The re-ordering of modes has been shown by the numerical
mode shapes and by the operating deflection shapes (ODSs)
measured in the experiments. This frequency coalescence
leads to concerns about coupled dynamic instability (flutter)
during operation. The formation of a fully-ventilated (FV)
cavity causes the resonant frequencies to increase again, as air
replaces some of the water surrounding the strut, reducing the
fluid added-mass.

Future Work
Future experiments will focus on the creation of single/multi-
input-multi-output (SIMO/MIMO) frequency response func-
tions matrix. An electrodynamic shaker will be used to excite
the strut in in FW and FV flow conditions. It is hoped that
from these data, quantitative values of modal added mass and
damping, as well as improved estimates of mode shapes, will
be inferred.
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 Mode 1 "X-Bend-1":
Single-node bending about X

Mode 2 "X-Bend-2":
Two-node bending about X with induced twist about Z

Mode 3 "Z-Twist-1":
Single-node twist about Z

Mode 4 "Y-Bend-1": Single-node "lead-lag" bending about Y Mode 5 "X-Bend-3": Three-node bending about X

Figure 8. The first five dry (ARh = 0) mode shapes identified by FEM (identical for PVC and aluminum struts).
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Figure 9. Resonant Operating Deflection Shapes (ODSs) measured in experiments for the PVC strut. The undeformed surface
is indicated by the grey patch. Vertical bars indicate ± one standard deviation in the ODS. The second and third resonant modes
coalesce and “flip" order between ARh = 0.5 and ARh = 1.0. Numerically-predicted modes, shown at the bottom of the figure,
also indicate a flipping of the second and third modes at ARh = 0.5 and ARh = 1.0.
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Figure 10. Dimensional resonant frequencies of (a) aluminum and (b) PVC struts and the wet-to-dry frequency ratios of (c)
aluminum and (d) PVC struts with varying immersed aspect ratio. Symbols denote mean experimental resonant frequencies,
with bars indicating ± one standard deviation. Solid lines indicate the FEM results with a fully-wetted fluid domain and dashed
lines indicate the FEM results with a simulated fully-ventilated cavity.




