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Abstract

In this paper we focus on a certain self-distributive multiplication on
coalgebras, which leads to so-called rack bialgebra. We construct canon-
ical rack bialgebras (some kind of enveloping algebras) for any Leibniz
algebra.

Our motivation is deformation quantization of Leibniz algebras in the
sense of [6]. Namely, the canonical rack bialgebras we have constructed
for any Leibniz algebra lead to a simple explicit formula of the rack-
star-product on the dual of a Leibniz algebra recently constructed by
Dherin and Wagemann in [6]. We clarify this framework setting up a
general deformation theory for rack bialgebras and show that the rack-
star-product turns out to be a deformation of the trivial rack bialgebra
product.

Introduction

The algebraic structures involved in Leibniz deformation
quantization

Recall that a pointed rack (see [8]) is a pointed set (X, e) together with a binary
operation ⊲ : X×X → X such that for all x ∈ X , the map y 7→ x⊲y is bijective
and such that for all x, y, z ∈ X , the self-distributivity and unit relations

x⊲ (y ⊲ z) = (x⊲ y)⊲ (x ⊲ z), e ⊲ x = x, and x ⊲ e = e
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are satisfied. Observe that racks are not algebras over an operad, but the correct
algebraic structure is that of a properad. Therefore the standard deformation
theory of algebras over an operad does not apply. Imitating the notion of a Lie
group, the smooth version of a pointed rack is called a Lie rack.

An important class of examples of racks are the so-called augmented racks,
see [8]. An augmented rack is the data of a group G, a G-set X and a map
p : X → G such that for all x ∈ X and all g ∈ G,

p(g · x) = gp(x)g−1.

The set X becomes then a rack by setting x⊲ y := p(x) · y. In fact, augmented
racks are the Drinfeld center (or the Yetter-Drinfeld modules) in the monoidal
category of G-sets over the (set-theoretical) Hopf algebra G, see for example
[11]. Any rack may be augmented in many ways, for example by using the
canonical morphism to its associated group (see [8]) or to its group of bijections
or to its group of automorphisms.

In order to formalize the notion of a rack, one needs the diagonal map
diagX : X → X ×X given by x 7→ (x, x). Then the self-distributivity relation
reads in terms of maps

m ◦ (idM ×m)

= m ◦ (m×m) ◦ (idM × τM,M × idM ) ◦ (diagM × idM × idM ).

Axiomatizing this kind of structure, one may start with a coalgebra C and look
for rack operations on this fixed coalgebra, see [4] and [12]. A natural framework
where this kind of structure arises is by taking point-distributions over (resp.
to) the pointed manifold given by a Lie rack, see [20], [2], [15] or [1]. We dub
the arising structure a rack bialgebra, see Definition 1.1. We carry out some
structure theory for rack bialgebras based on semigroup theory in the article
[1].

Lie racks are intimately related to Leibniz algebras h, i.e. a vector space h

with a bilinear bracket [, ] : h ⊗ h → h such that for all X,Y, Z ∈ h, [X,−] acts
as a derivation:

[X, [Y, Z]] = [[X,Y ], Z] + [Y, [X,Z]]. (1)

Indeed, Kinyon showed in [10] that the tangent space at e ∈ H of a Lie rack H
carries a natural structure of a Leibniz algebra, generalizing the relation between
a Lie group and its tangent Lie algebra. Conversely, every (finite dimensional
real or complex) Leibniz algebra h may be integrated into a Lie rack Rh (with
underlying manifold h) using the rack product

X ◮ Y := eadX (Y ), (2)

noting that the exponential of the inner derivation adX for each X ∈ h is an
automorphism.
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Leibniz deformation quantization

Given a finite-dimensional real Lie algebra (g, [, ]), its dual vector space g∗ is a
smooth manifold which carries a Poisson bracket on its space of smooth func-
tions, defined for all f, g ∈ C∞(g∗) and all ξ ∈ g∗ by the Kostant-Kirillov-
Souriau formula

{f, g}(ξ) := 〈ξ, [df(ξ), dg(ξ)]〉.

Here df(ξ) and dg(ξ) are linear functionals on g∗, identified with elements of g.
In the same way, a general finite dimensional Leibniz algebra h gives rise

to a smooth manifold h∗, which carries now some kind of generalized Poisson
bracket, namely

{f, g}(ξ) := −〈ξ, [df(0), dg(ξ)]〉,

see [6] for an explanation why we believe that this is the correct bracket to
consider. In particular, this generalized Poisson bracket need not be skew-
symmetric.

The quantization procedure of this generalized Poisson bracket proposed in
[6] works as follows: The cotangent lift of the above rack product

X ◮ Y = eadX (Y )

is interpreted as a symplectic micromorphism. The generating function of this
micromorphism serves then as a phase function in a Fourier integral operator,
whose asymptotic expansion gives rise to a star-product.

One main goal of the present article is to set up a purely algebraic framework
in which one may deformation quantize the dual of a Leibniz algebra. The main
feature will be to recover –in a rather explicit algebraic manner– the star-product
which has been constructed in [6] by analytic methods, see Corollary 2.5. The
explicit formula reads:

Let f, g ∈ C∞(h∗).

(f ⊲~ g)(α) =

∞∑

r=0

~r

r!

n∑

i1,...,ir=1

∂rf

∂αi1 . . . ∂αir

(0)
(
(ãdi1 ◦ . . . ◦ ãdir )(g)

)
(α), (3)

where we have chosen a basis in the finite dimensional Leibniz algebra h and
the first order differential operators adi1 are defined by

(ãdi(f))(α) =

n∑

j,k=1

αk c
k
ij

∂f

∂αj

(α),

where ckij are the structure constants of h w.r.t. this basis. Our first main result
is thus Corollary 2.5 where we show that the above ⊲~ is indeed a rack product
and that it is equal (up to a sign) to the one constructed in [6] by analytic
methods.

In the remaining part of the paper, we answer the natural question in which
cohomology theory the first term of the above deformation quantization appears
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as a 2-cocycle. For this, we set up a general deformation theory framework in
which the above star-product appears as a formal deformation, its infinitesimal
term defining a 2-cocycle and thus a second cohomology class. The main result
is here Theorem 2.12 where we show that a natural differential d on the adjoint
rack bialgebra complex satisfies indeed d2 = 0. This is a combinatorially in-
volved computation. Observe that this cohomology theory is thus well-defined
in all degrees, in contrast to the related cohomology theory in [4] for which only
degrees up to 3 exist for the moment. One main point in this part of the paper
is that our deformation complex for rack bialgebras replaces the (non existing)
rack cohomology complex with adjoint coefficients (cf the case of group coho-
mology for a group G where cohomology with adjoint coefficients in G does not
exist, while the Hochschild cohomology of the group algebra K[G] with values
in K[G] may play this role).

Acknowledgements: F.W. thanks Université de Haute Alsace for an invi-
tation during which the shape of this research project was defined. Some part
of the results of this paper constitute the master thesis of C.A.. We all thank
the referee for useful remarks leading to an improvement of the manuscript.

1 Preliminaries

1.1 Rack bialgebras

In the following, let K be an associative commutative unital ring containing all
the rational numbers. In the main part of this paper, we will assume K = R
or C. The symbol ⊗ will always denote the tensor product of K-modules over
K. For any coalgebra (C,∆) over K, we shall use Sweedler’s notation ∆(a) =∑

(a) a
(1) ⊗ a(2) for any a ∈ A. We will feel free to suppress the sum-sign in

Sweedler’s notation in complicated formulas for typographical reasons.
The following sections will all deal with the following type of nonassociative

bialgebra: Let (B,∆, ǫ,1, µ) be a K-module such that (B,∆, ǫ,1) is a coassocia-
tive counital coaugmented coalgebra (a C3-coalgebra), and such that the linear
map µ : B⊗B → B (the multiplication) is a morphism of C3-coalgebras (it sat-
isfies in particular µ(1 ⊗ 1) = 1). We shall call this situation a nonassociative
C3I-bialgebra (where I stands for 1 being an idempotent for the multiplica-
tion µ). For another nonassociative C3I-bialgebra (B′,∆′, ǫ′,1′, µ′) a K-linear
map φ : B → B′ will be called a morphism of nonassociative C3I-bialgebras
iff it is a morphism of C3-coalgebras and is multiplicative in the usual sense
φ
(
µ(a⊗ b)

)
= µ′

(
φ(a)⊗ φ(b)

)
for all a, b ∈ B.

Definition 1.1. A rack bialgebra (B,∆, ǫ,1, µ) is a nonassociative C3I-
bialgebra (where we write for all a, b ∈ B µ(a ⊗ b) =: a ⊲ b) such that the
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following identities hold for all a, b, c ∈ B

1 ⊲ a = a, (4)

a ⊲ 1 = ǫ(a)1, (5)

a ⊲ (b ⊲ c) =
∑

(a)

(a(1) ⊲ b) ⊲ (a(2) ⊲ c). (6)

The last condition (6) is called the self-distributivity condition.

Note that we do not demand that the C3-coalgebra B should be cocom-
mutative nor connected. Similar definitions have been proposed in [4] and in
[12].

Example 1.1.

Any C3 coalgebra (C,∆, ǫ,1) carries a trivial rack bialgebra structure defined
by the left-trivial multiplicaton

a ⊲0 b := ǫ(a)b (7)

which in addition is easily seen to be associative and left-unital, but in general
not unital. ♦

Another method of constructing rack bialgebras is gauging: Let (B,∆, ǫ,1, µ)
a rack bialgebra –where we write µ(a ⊗ b) = a ⊲ b for all a, b ∈ B–, and let
f : B → B a morphism of C3-coalgebras such that for all a, b ∈ B

f(a ⊲ b) = a ⊲
(
f(b)

)
, (8)

i.e. f is µ-equivariant. It is a routine check that (B,∆, ǫ,1, µf ) is a rack
bialgebra where for all a, b ∈ B the multiplication is defined by

µf (a⊗ b) := a ⊲f b :=
(
f(a)

)
⊲ b. (9)

We shall call (B,∆, ǫ,1, µf ) the f -gauge of (B,∆, ǫ,1, µ).

Example 1.2.

Let (H,∆H , ǫH , µH ,1H , S) be a cocommutative Hopf algebra over K. Then it
is easy to see (cf. also the particular case B = H and Φ = idH of Proposition
1.4 for a detailed proof) that the new multiplication µ : H ⊗H → H , written
µ(h⊗ h′) = h ⊲ h′, defined by the usual adjoint representation

h ⊲ h′ := adh(h
′) :=

∑

(h)

h(1)h′
(
S(h(2))

)
, (10)

equips the C4-coalgebra (H,∆H , ǫH ,1H) with a rack bialgebra structure. ♦

In general, the adjoint representation does not seem to preserve the coalgebra
structure if no cocommutativity is assumed.
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Example 1.3.

Recall that a pointed set (X, e) is a pointed rack in case there is a binary oper-
ation ⊲ : X ×X → X such that for all x ∈ X , the map y 7→ x ⊲ y is bijective
and such that for all x, y, z ∈ X , the self-distributivity and unit relations

x⊲ (y ⊲ z) = (x⊲ y)⊲ (x ⊲ z), e ⊲ x = x, and x ⊲ e = e

are satisfied. Then there is a natural rack bialgebra structure on the vector space
K[X ] which has the elements of X as a basis. K[X ] carries the usual coalgebra
structure such that all x ∈ X are set-like: △(x) = x ⊗ x for all x ∈ X . The
product µ is then induced by the rack product. By functoriality, µ is compatible
with △ and e.

Observe that this construction differs slightly from the construction in [4],
Section 3.1. ♦

Remark 1.2. It is shown in Theorem 4.3 of [4] that for a C4-coalgebra B with
a self-distributive map ⊳ = q : B ⊗B → B which is a morphism of coalgebras,
the map

Rq = (idB ⊗ q) ◦ (τ ⊗ idB) ◦ (idB ⊗∆)

is a solution of the Yang-Baxter equation. We draw our reader’s attention to
the fact that Carter-Crans-Elhamdadi-Saito work in [4] with right racks, while
we work here with left racks. The statement of their theorem works also for left
racks, but then one has to take

R̃q = (idB ⊗ q) ◦ (∆⊗ idB) ◦ τ.

In particular for any rack bialgebra, R̃q is a solution of the Yang-Baxter equa-
tion.

Example 1.4.

Here we suppose K = R or C. Another general construction mechanism for rack
bialgebras is exhibited in [1]. Namely, let (M, e,⊲) be a Lie rack. In particular,
(M, e) is a pointed manifold and it makes sense to associate to it the vector
space E ′

e(M) of distributions on M which have their support in {e}. There
is a corresponding functor F : Mf∗ → KVect from the category of pointed
manifolds Mf∗ with values in the category of K-vector spaces KVect. Observe
that J.-P. Serre [20] used it to define the universal enveloping algebra of a Lie
group, see also [2], [15] or [1].

In fact, this framework is a special case of a local multiplication where 0×0 =
0. Such a multiplication gives rise to a bialgebra of distributions supported at
0. If the multiplication satisfies a certain identity, the bialgebra satisfies the
linearized identity. In our case, the rack identity (i.e. self-distributivity) leads
to the linearized self-distributivity relation, i.e. condition (6). The general
framework is described in [15] Section 3, see also [16].

In our case, the pointed manifold given by a Lie rack yields a rack bialgebra,
see [1] where this functor is studied in detail. ♦

We will also need the following structure:
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Definition 1.3. An augmented rack bialgebra overK is a quadruple (B,Φ, H, ℓ)
consisting of a C3-coalgebra (B,∆, ǫ,1), of a cocommutative (!) Hopf algebra
(H,∆H , ǫH ,1H , µH , S), of a morphism of C3-coalgebras Φ : B → H , and of a
left action ℓ : H⊗B → B of H on B which is a morphism of C3-coalgebras (i.e.
B is a H-module-coalgebra) such that for all h ∈ H and a ∈ B

h.1 = ǫH(h)1 (11)

Φ(h.a) = adh
(
Φ(a)

)
. (12)

where ad denotes the usual adjoint representation for Hopf algebras, see e.g.
eqn (10).
We shall define a morphism (B,Φ, H, ℓ) → (B′,Φ′, H ′, ℓ′) of augmented

rack bialgebras to be a pair (φ, ψ) of K-linear maps where φ : (B,∆, ǫ,1) →
(B′,∆′, ǫ′,1′) is a morphism of C3-coalgebras, and ψ : H → H ′ is a morphism
of Hopf algebras such that the obvious diagrams commute:

Φ′ ◦ φ = ψ ◦ Φ, and ℓ′ ◦ (ψ ⊗ φ) = φ ◦ ℓ (13)

An immediate consequence of this definition is the following

Proposition 1.4. Let (B,Φ, H, ℓ) be an augmented rack bialgebra. Then the
C3-coalgebra (B, ǫ,1) will become a rack bialgebra by means of the multiplica-
tion

a ⊲ b := Φ(a).b (14)

for all a, b ∈ B. In particular, each Hopf algebra H becomes an augmented rack
bialgebra via (H, idH , H, ad). In general, for each augmented rack bialgebra the
map Φ : B → H is a morphism of rack bialgebras.

Proof. We check first that ⊲ is a morphism of C3-coalgebras B ⊗ B → B: Let
a, b ∈ B, then –thanks to the fact that the action ℓ and the maps Φ are coalgebra
morphisms–

∆
(
µ(a⊗ b)

)
= ∆(a ⊲ b) = ∆

(
Φ(a).b

)
=

∑

(Φ(a)),(b)

((
Φ(a)(1)

)
.b(1)

)
⊗
((

Φ(a)(2)
)
.b(2)

)

=
∑

(a),(b)

((
Φ(a(1))

)
.b(1)

)
⊗
((

Φ(a(2))
)
.b(2)

)

=
∑

(a),(b)

(
a(1) ⊲ b(1)

)
⊗
(
a(2) ⊲ b(2)

)

whence µ is a morphism of coalgebras. Clearly

ǫ(a ⊲ b) = ǫ
(
Φ(a).b

)
= ǫH

(
Φ(a)

)
ǫ(b) = ǫ(a)ǫ(b)

whence µ preserves counits.
We shall next compute both sides of the self-distributivity identity (6) to get
an idea: For all a, b, c ∈ B

a ⊲ (b ⊲ c) = Φ(a).
(
Φ(b).c

)
=

(
Φ(a)Φ(b)

)
.c,

7



and

∑

(a)

(a(1) ⊲ b) ⊲ (a(2) ⊲ c) =
∑

(a)

(
Φ(a(1)).b

)
⊲
(
Φ(a(2)).c

)

=
∑

(a)

(
Φ
(
Φ(a(1)).b

))
.
(
Φ(a(2)).c

)

=
∑

(a)

(
Φ
(
Φ(a(1)).b

)
Φ(a(2))

)
.c,

and we compute, using the fact that Φ is a morphism of C3-coalgebras,

∑

(a)

Φ
(
Φ(a(1)).b

)
Φ(a(2)) =

∑

(a)

Φ
(
(Φ(a)(1)).b

)
(Φ(a)(2))

(12)
=

∑

(a)

(
adΦ(a)(1)

(
Φ(b)

))
(Φ(a)(2))

=
∑

(a)

(
Φ(a)(1)

)
Φ(b)

(
S
(
Φ(a)(2)

))
(Φ(a)(3))

=
∑

(a)

(
Φ(a)(1)

)
Φ(b)1HǫH

(
Φ(a)(2)

)

= Φ(a)Φ(b),

which proves the self-distributivity identity. Moreover we have

1B ⊲ a = Φ(1).a = 1H .a = a,

and

a ⊲ 1 = Φ(a).1
(11)
= ǫH

(
Φ(a)

)
1 = ǫB(a)1,

whence the C3-coalgebra becomes a rack bialgebra.

Example 1.5.

Exactly in the same way as a pointed rack gives rise to a rack bialgebra K[X ],
an augmented pointed rack p : X → G gives rise to an augmented rack bialgebra
p : K[X ] → K[G]. ♦

Remark 1.5. Motivated by the fact that the augmented racks p : X → G are
exactly the Yetter-Drinfeld modules over the (set-theoretical) Hopf algebra G,
we may ask whether augmented rack bialgebras are Yetter-Drinfeld modules.

In fact, any cocommutative augmented rack bialgebra (B,Φ, H, ℓ) gives rise
to a Yetter-Drinfeld module over the Hopf algebra H . Indeed, B is a left H-
module via ℓ, and becomes a left H-comodule via

ρ : B
△B

→ B ⊗B
Φ⊗idB→ H ⊗B.

8



Now, in Sweedler notation, the coaction is denoted for all b ∈ B by

ρ(b) =
∑

(b)

b(−1) ⊗ b(0) ∈ H ⊗B.

Then the Yetter-Drinfeld compatibility relation reads

∑

(h.b)

(h.b)(−1) ⊗ (h.b)(0) =
∑

(b),(h)

h(1)b(−1)S(h
(3))⊗ h(2).b(0).

This relation is true in our case, because ℓ is a morphism of coalgebras and is
sent to the adjoint action via Φ.

Conversely, given a Yetter-Drinfeld module C over a Hopf algebra H , to-
gether with a linear form ǫC : C → K satisfying ǫC(h.c) = ǫH(h)ǫC(c), then
define a map Φ : C → H by

Φ := (idH ⊗ ǫC) ◦ ρ.

The map Φ intertwines the left action on C and the adjoint action on H thanks
to the Yetter-Drinfeld condition.

Now define a rack product for all x, y ∈ C by

x⊲ y = Φ(x).y,

then we obtain a Yetter-Drinfeld version of self-distributivity

x⊲ (y ⊲ z) =
∑

(x)

(x(−1).y)⊲ (x(0) ⊲ z),

as there is no comultiplication on C.
The fact that Φ is a morphism of coalgebras is then replaced by the identity

(idH ⊗ Φ) ◦ ρ = ∆H ◦ Φ,

which one needs to demand.
Finally, one needs a unit 1C ∈ C such that for all h ∈ H , h.1C = ǫH(h)1C ,

ǫC(1C) = 1K , ρ(1C) = 1H ⊗ 1C , and Φ(1C) = 1H . This is somehow the
closest one can get to a rack bialgebra without having a compatible C3 coalgebra
structure on C.

1.2 (Augmented) rack bialgebras for any Leibniz algebra

In this subsection, we will suppose Q ⊂ K. Let (h, [ , ]) be a Leibniz algebra
over K, i.e. h is a K-module equipped with a K-linear map [ , ] : h ⊗ h → h

satisfying the (left) Leibniz identity (1).
Recall first that each Lie algebra over K is a Leibniz algebra giving rise to

a functor from the category of all Lie algebras to the category of all Leibniz
algebras.

9



Furthermore, recall that each Leibniz algebra has two canonical K-submod-
ules

Q(h) :=
{
x ∈ h | ∃ N ∈ N \ {0}, ∃ λ1, . . . , λN ∈ K, ∃ x1, . . . , xN

such that x =
N∑

r=1

λr[xr, xr]
}
, (15)

z(h) :=
{
x ∈ h | ∀ y ∈ h : [x, y] = 0

}
. (16)

It is well-known and not hard to deduce from the Leibniz identity that both
Q(h) and z(h) are two-sided abelian ideals of (h, [ , ]), that Q(h) ⊂ z(h), and
that the quotient Leibniz algebras

h := h/Q(h) and g(h) := h/z(h) (17)

are Lie algebras. Since the ideal Q(h) is clearly mapped into the ideal Q(h′) by
any morphism of Leibniz algebras h → h′ (which is a priori not the case for z(h)
!), there is an obvious functor h → h from the category of all Leibniz algebras
to the category of all Lie algebras.

In order to perform the following constructions of rack bialgebras for any
given Leibniz algebra (h, [ , ]), choose first a two-sided ideal z ⊂ h such that

Q(h) ⊂ z ⊂ z(h), (18)

let g denote the quotient Lie algebra h/z, and let p : h → g be the natural
projection. The data of z ⊂ h, i.e. of a Leibniz algebra h together with an ideal
z such that Q(h) ⊂ z ⊂ z(h), could be called an augmented Leibniz algebra. Thus
we are actually associating an augmented rack bialgebra to every augmented
Leibniz algebra. In fact, we will see that this augmented rack bialgebra does
not depend on the choice of the ideal z and therefore refrain from introducing
augmented Leibniz algebras in a more formal way.

The Lie algebra g naturally acts as derivations on h by means of (for all
x, y ∈ h)

p(x).y := [x, y] =: adx(y) (19)

because z ⊂ z(h). Note that

h/z(h) ∼=
{
adx ∈ HomK(h, h) | x ∈ h

}
. (20)

as Lie algebras.
Consider now the C5-coalgebra (B = S(h),∆, ǫ,1). Here S(h) is the sym-

metric algebra and coalgebra on the vector space h, and S(h) is actually a
commutative cocommutative Hopf algebra over K with respect to the symmet-
ric multiplication •. The linear map p : h → g induces a unique morphism of
Hopf algebras

Φ̃ = S(p) : S(h) → S(g) (21)

satisfying
Φ̃(x1 • · · · • xk) = p(x1) • · · · • p(xk) (22)
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for any nonnegative integer k and x1, . . . , xk ∈ h. In other words, the association
S : V → S(V ) is a functor from the category of all K-modules to the category of
all commutative unital C5-coalgebras. Consider now the universal enveloping
algebra U(g) of the Lie algebra g. Since Q ⊂ K by assumption, the Poincaré-
Birkhoff-Witt Theorem (in short: PBW) holds (see e.g. [17, Appendix]). More
precisely, the symmetrisation map ω : S(g) → U(g), defined by

ω(1S(g)) = 1U(g), and ω(ξ1 • · · · • ξk) =
1

k!

∑

σ∈Sk

ξσ(1) · · · ξσ(k), (23)

see e.g. [7, p.80, eqn (3)], is an isomorphism of C5-coalgebras (in general not
of associative algebras). We now need an action of the Hopf algebra H = U(g)
on B, and an intertwining map Φ : B → U(g). In order to get this, we first
look at g-modules: The K-module h is a g-module by means of eqn (19), the
Lie algebra g is a g-module via its adjoint representation, and the linear map
p : h → g is a morphism of g-modules since p is a morphism of Leibniz algebras.
Now S(h) and S(g) are g-modules in the usual way, i.e. for all k ∈ N \ {0},
ξ, ξ1, . . . , ξk ∈ g, and x1 . . . , xk ∈ h

ξ.(x1 • · · · • xk) :=
k∑

r=1

x1 • · · · • (ξ.xr) • · · · • xk, (24)

ξ.(ξ1 • · · · • ξk) :=
k∑

r=1

ξ1 • · · · • [ξ.ξr ] • · · · • ξk, (25)

and of course ξ.1S(h) = 0 and ξ.1S(g) = 0. Recall that U(g) is a g-module via the
adjoint representation adξ(u) = ξ.u = ξu− uξ (for all ξ ∈ g and all u ∈ U(g)).

It is easy to see that the map Φ̃ (22) is a morphism of g-modules, and it is well-
known that the symmetrization map ω (23) is also a morphism of g-modules,
see e.g. [7, p.82, Prop. 2.4.10]. Define the K-linear map Φ : S(h) → U(g) by
the composition

Φ := ω ◦ Φ̃. (26)

Then Φ is a map of C5-coalgebras and a map of g-modules. Thanks to the
universal property of the universal enveloping algebra, it follows that S(h) and
U(g) are left U(g)-modules, via (for all ξ1, . . . , ξk ∈ g, and for all a ∈ S(h))

(ξ1 · · · ξk).a = ξ1.(ξ2.(· · · ξk.a) · · · ) (27)

and the usual adjoint representation (10) (for all u ∈ U(g))

adξ1···ξk(u) =
(
adξ1 ◦ · · · ◦ adξk

)
(u), (28)

and that Φ intertwines the U(g)-action on C = S(h) with the adjoint action of
U(g) on itself.
Finally it is a routine check using the above identities (24) and (10) that S(h)
becomes a module coalgebra.
We can resume the preceding considerations in the following
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Theorem 1.6. Let (h, [ , ]) be a Leibniz algebra over K, let z be a two-sided
ideal of h such that Q(h) ⊂ z ⊂ z(h), let g denote the quotient Lie algebra h/z
by g, and let p : h → g be the canonical projection.

1. Then there is a canonical U(g)-action ℓ on the C5-coalgebra B := S(h)
(making it into a module coalgebra leaving invariant 1) and a canonical
lift of p to a map of C5-coalgebras, Φ : S(h) → U(g) such that eqn (12)
holds.
Hence the quadruple (S(h),Φ,U(g), ℓ) is an augmented rack bialgebra whose
associated Leibniz algebra is equal to (h, [ , ]) (independently of the choice
of z).
The resulting rack multiplication µ of S(h) (written µ(a ⊗ b) = a ⊲ b) is
also independent on the choice of z and is explicitly given as follows for
all positive integers k, l and x1, . . . , xk, y1, . . . , yl ∈ h:

(
x1•· · ·•xk)⊲

(
y1•· · ·•yl) =

1

k!

∑

σ∈Sk

(
adsxσ(1)

◦· · ·◦adsxσ(k)

)(
y1•· · ·•yl) (29)

where adsx denotes the action of the Lie algebra h/z(h) (see eqn (20)) on
S(h) according to eqn (24).

2. In case z = Q(h), the construction mentioned in 1. is a functor h →
UAR∞(h) from the category of all Leibniz algebras to the category of all
augmented rack bialgebras associating to h the rack bialgebra

UAR∞(h) := (S(h),Φ,U(g), ℓ)

and to each morphism f of Leibniz algebras the pair
(
S(f),U(f)

)
where f

is the induced Lie algebra morphism.

3. For each nonnegative integer k, the above construction restricts to each
subcoalgebra of order k, S(h)(k) = ⊕k

r=0S
r(h), to define an augmented rack

bialgebra (S(h)(k),Φ(k),U(g), ℓ|U(g)⊗S(h)(k)
) which in case z = Q(h) defines

a functor h → UAR(k)(h) :=
(
UAR∞(h)

)
(k)

from the category of all Leibniz

algebras to the category of all augmented rack bialgebras.

Proof. 1. All the statements except the last two ones have already been proven.
Note that for all x, y ∈ h we have by definition

[x, y] = p(x).y = x ⊲ y,

independently of the chosen ideal z. Moreover we compute

(
x1 • · · · • xk) ⊲

(
y1 • · · · • yl)

=
(
(ω ◦ Φ̃)(x1 • · · · • xk)

)
.
(
y1 • · · · • yl)

=
1

k!

∑

σ∈Sk

(
p(xσ(1)) · · · p(xσ(k))

)
.
(
y1 • · · · • yl),

12



which gives the desired formula since for all x ∈ h and a ∈ S(h), we have

p(x).a = adsx(a).

2. Let f : h → h′ be a morphism of Leibniz algebras, and let f : h → h′ be the
induced morphism of Lie algebras. Hence we get

p′ ◦ f = f ◦ p (30)

where p′ : h′ → h′ denotes the corresponding projection modulo Q(h′). Let
S(f) : S(h) → S(h′), S(f) : S(h) → S(h′), and U(f) : U(h) → U(h′) the induced
maps of Hopf algebras, i.e. S(f) (resp. S(f)) satisfies eqn (22) (with p replaced
by f (resp. by f)), and U(f) satisfies

U(f)
(
ξ1 · · · ξk

)
= f(ξ1) · · · f(ξk)

for all positive integers k and ξ1, . . . , ξk ∈ h. If ω : S(h) → U(h) and ω′ : S(h′) →
U(h′) denote the corresponding symmetrisation maps (23) then it is easy to see
from the definitions that

ω′ ◦ S(f) = U(f) ◦ ω.

Equation (30) implies

Φ̃′ ◦ S(f) = S(p′) ◦ S(f) = S(f) ◦ S(p) = S(f) ◦ Φ̃,

and composing from the left with ω′ yields the equation

Φ′ ◦ S(f) = U(f) ◦Φ. (31)

Moreover for all x, y ∈ h we have, since f is a morphism of Leibniz algebras,

f
(
p(x).y

)
= f

(
[x, y]

)
=

[
f(x), f(y)

]′
= p′

(
f(x)

)
.f(y) = f

(
p(x)

)
.f(y),

hence for all ξ ∈ h
f(ξ.y) =

(
f(ξ)

)
.
(
f(y)

)
,

and upon using eqn (24) we get for all a ∈ S(h)

S(f)
(
ξ.a

)
=

(
f(ξ)

)
.
(
S(f)

(
a
))
,

showing finally for all u ∈ U(h) and all a ∈ S(h)

S(f)
(
u.a

)
=

(
U(f)(u)

)
.
(
S(f)

(
a
))
. (32)

Associating to every Leibniz algebra (h, [ , ]) the above defined augmented rack
bialgebra (S(h),Φ,U(h), ℓ), and to every morphism ψ : h → h′ of Leibniz al-
gebras the pair of K-linear maps

(
Ψ = S(ψ),Ψ = U(ψ)

)
, we can easily check

that Ψ is a morphism of C5-coalgebras, Ψ is a morphism of Hopf algebras, such

13



that the two relevant diagrams (13) commute which easily follows from (31) and
(32). The rest of the functorial properties is a routine check.
3. By definition, the U(g)-action on S(h) (cf. eqs (24) and (27)) leaves invari-
ant each K-submodule Sr(h) for each nonnegative integer r whence it leaves
invariant each subcoalgebra of order k, S(h)(k). It follows that the construction
restricts well.

Definition 1.7. The rack bialgebra UAR∞(h) which is by the above theorem
canonically associated to each Leibniz algebra h is called the universal aug-
mented rack bialgebra.

Remark 1.8. This theorem should be compared to Proposition 3.5 in [4]. In
[4], the authors work with the vector space N := K ⊕ h, while we work with
the whole symmetric algebra on the Leibniz algebra. In some sense, we extend
their Proposition 3.5 “to all orders”, hence the name UAR∞(h). The subset
N = K ⊕ h becomes a sub rack bialgebra denoted by UAR(h). It turns out that
UAR(h) is already enough to obtain a left-adjoint to the functor of primitives
and hence universality, see [1].

The above rack bialgebra UAR∞(h) associated to a Leibniz algebra h can be
seen as one version of an enveloping algebra of the Leibniz algebra h. The link
to the universal enveloping algebra of h, h ⊗ U(h), as a dialgebra (in the sense
of of Loday-Pirashvili) has been elucidated in [1].

We shall close the subsection with a geometric explanation of some of the
structures appearing here: Let

(
h, [ , ]

)
be a real finite-dimensional Leibniz

algebra. Then for any real number ~, there is the following Lie rack structure
on the manifold h defined by

x ◮~ y := e~adx(y) (33)

For later use we note that on the space h[[~]] of all formal power series the above
formula makes sense if x, y are also formal power series.
Moreover, pick a two-sided ideal z ⊂ h with Q(h) ⊂ z ⊂ z(h) so that the quotient
algebra g := h/z is a Lie algebra. Let p : h → g be the canonical projection. Let
G be the connected simply connnected Lie group having Lie algebra g. Since
g acts on h as derivations, there is a unique Lie group action ℓ of G on h by
automorphisms of Leibniz algebras. Consider the smooth map

φ : h → G : x 7→ exp
(
p(x)

)
. (34)

Clearly φ(g.x) = gφ(x)g−1 for all x ∈ h and g ∈ G whence (h, φ,G, ℓ) is an
augmented Lie rack, and it is not hard to see that the Lie rack structure coincides
with (33) for ~ = 1. The following theorem is shown in [1]:

Theorem 1.9. The C5-rack bialgebra associated to the augmented Lie rack
(h, φ,G, ℓ) by means of the functor F , described in Example 1.4, is isomorphic
to the universal envelopping algebra of infinite order, UAR∞(h) (Definition 1.7).

14



1.3 Quantum racks

In the article [6], the authors are interested in the generalized Poisson manifold
given by the linear dual h∗ of a finite-dimensional Leibniz algebra h. Recall that
the dual g∗ of a Lie algebra g is a Poisson manifold with the Kostant-Kirillov-
Souriau bracket, given for f, g ∈ C∞(g∗) by

{f, g}(ξ) := 〈ξ, [df, dg]〉 =
∑

i,j,k

ckij
∂f

∂xi
(ξ)

∂g

∂xj
(ξ)Xk,

where df and dg are seen as linear functions on g∗, i.e. elements of g. The ckij
are the structure constants of the Lie bracket with respect to a certain basis of
(Xk). In the same manner, the dual of a Leibniz algebra h∗ carries a bracket
given for f, g ∈ C∞(h∗) by

{f, g}(ξ) := −〈ξ, [df(0), dg]〉 = −
∑

i,j,k

ckij
∂f

∂xi
(0)

∂g

∂xj
(ξ)Xk,

i.e. with respect to the above formula, the bracket is here evaluated in 0 ∈ h∗.
The bracket is neither antisymmetric, nor a biderivation, nor does it satisfy
some Jacobi/Leibniz identity in general. Nevertheless, [6] shows that this is
the natural bracket one encounters when following the standard deformation
quantization procedure for the dual of Lie algebras.

Going into details, a finite dimensional Lie algebra g admits a local Lie group
G giving rise to a (local) multiplication µ : G×G→ G. The cotangent lift T ∗µ
can be interpreted as a Lagrangian submanifold of the triple product T ∗G ×
T ∗G× T ∗G. It constitutes thus a symplectic micromorphism between germs of
symplectic manifolds, see [3]. When such a symplectic micromorphism is given
by a generating function S, the function S can be taken as an “action” in some
oscillatory integral giving the deformation quantization of the corresponding
Poisson manifold by Fourier Integral Operators. In [6], this quantization scheme
is adapted to the dual of Leibniz algebras. The key ingredient is the integration
of h into a Lie rack where for x, y ∈ h, the rack product is given by

X ◮ Y = eadX (Y ).

We take then S⊲(X,Y, ξ) = 〈ξ, eadX (Y )〉 as a generating function, and the
oscillatory integral is written

Q⊲(f ⊗ g)(ξ) =

∫

g×g

f̂(X)ĝ(Y )e
i

~
S⊲(X,Y,ξ) dXdY

(2π~)n
.

Here n is the dimension of h and f̂ , ĝ are the asymptotic Fourier transforms
of f and g. The stationary phase series expansion of this integral gives then
the corresponding star product. Its first term is the above generalized Poisson
bracket.

The main theorem of [6] reads:
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Theorem 1.10. The operation

⊲~ : C∞(h∗)[[ǫ]]⊗ C∞(h∗)[[ǫ]] → C∞(h∗)[[ǫ]]

defined by
f ⊲~ g := Q⊲(f ⊗ g)

is a quantum rack, i.e.
(1) ⊲~ restricted to Uh = {EX := e

i

~
X |X ∈ h} is a rack structure and

e
i

~
X ⊲~ e

i

~
Y = e

i

~
conj

∗
(X,Y ),

(2) ⊲~ restricted to ⊲~ : Uh × C∞(h∗) → C∞(h∗) is a rack action and

(e
i

~
X ⊲~ f)(ξ) = (Ad∗

−Xf)(ξ).

2 Deformation quantization of rack bialgebras

2.1 Algebraic deformation quantization of Leibniz alge-
bras

In this subsection, K denotes the field of real numbers R or the field of complex
numbers C.

Let (h, [ , ]) be a finite dimensional Leibniz algebra of dimension n, and
denote by h∗ its linear dual. In order to make computations more elementary
we shall use a fixed basis e1, . . . , en of h, but it is a routine check that all the
relevant formulas are invariant under a change of basis. Let e1, . . . , en be the
corresponding dual basis of h∗, i.e. by definition

ei(ej) = δij ,

for all i, j = 1, . . . , n. Furthermore, let ckij for i, j, k = 1, . . . , n be the structure
constants of the Leibniz algebra h with respect to the basis e1, . . . , en, i.e.

cijk = ei([ej , ek])

for all i, j, k = 1, . . . , n. We will denote by x, y, z, . . . elements of h, while
α, β, γ, . . . will denote elements of h∗. Denote by α1, . . . , αn the coordinates
of α ∈ h∗ with respect to the basis e1, . . . , en. For all x ∈ h, denote by x̂ ∈
C∞(h∗,K) the linear function given by

x̂(α) := α(x),

for all α ∈ h∗. In the same vein, let ex̂ be the exponential function given by

ex̂(α) := eα(x) = ex̂(α),
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for all α ∈ h∗. For all integers i = 1, . . . , n, define a first order differential

operator ãdi on smooth functions f : h∗ → K by

(ãdi(f))(α) :=

n∑

j,k=1

αk c
k
ij

∂f

∂αj

(α).

The following star-product formula, where ~ is a formal parameter (which may
be replaced by a real number in situations where the formula is convergent),
will render h∗ a quantum rack in the sense of Theorem 1.10, see also [6].

Let f, g ∈ C∞(h∗,K).

(f ⊲~ g)(α) :=

∞∑

r=0

~r

r!

n∑

i1,...,ir=1

∂rf

∂αi1 . . . ∂αir

(0)
(
(ãdi1 ◦ . . .◦ ãdir )(g)

)
(α). (35)

Theorem 2.1. For all x, y ∈ h, we have

ex̂ ⊲~ e
ŷ = ex̂◮~y,

where ◮~: h×h → h is the Lie rack structure (33) defined by exponentiating the
adjoint action of the Leibniz algebra:

x ◮~ y = e~ adx(y).

Proof. The proof of the theorem relies on the rack bialgebra structure on S(h)
given by Definition 1.7 and is performed in the following lemmas:

Lemma 2.2. The map “hat” ̂: h → C∞(h∗,K) which sends x ∈ h to the linear
function x̂ extends to an injective morphism of commutative associative unital
algebras Ψ : S(h) → C∞(h∗,K) such that

Ψ(x1 • . . . • xk) = x̂1 . . . x̂k

for all integers k and all x1, . . . , xk ∈ h.

Proof. This follows immediately from the freeness property of the algebra S(h).

Lemma 2.3. The morphism Ψ intertwines the adjoint actions ãdi and adsei (see
eqn (29)), i.e. for all i = 1, . . . , n, we have

ãdi(Ψ(a)) = Ψ(adsei(a))

for all a ∈ S(h).

Proof. Indeed, it is enough to show this for x ∈ h ⊂ S(h) as both adjoint actions
are derivations. Now we have for α ∈ h∗:

Ψ(adsei(x))(α) = [̂ei, x](α) = α([ei, x]) =

n∑

j,k=1

αk e
k([ei, ej ])xj

=
n∑

j,k=1

ckij αk

∂x̂

∂αj

(α) = ãdi(Ψ(a))(α)
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Lemma 2.4. For all b ∈ S(h) and all x1, . . . , xr ∈ h, we have

Ψ(x1 • . . . • xr)⊲~ Ψ(b) = ~r Ψ((x1 • . . . • xr)⊲ b),

where the left-hand ⊲ is the rack multiplication in the rack bialgebra S(h).

Proof. First of all, note that by linearity it is enough to show this for x1, . . . , xr =
ei1 , . . . , eir with i1, . . . , ir ∈ {1, . . . , n}. By eqn (29), we have

(ei1 • . . . • eir)⊲ b =
1

k!

∑

σ∈Sk

(adsiσ(1)
◦ . . . ◦ adsiσ(r)

)(b).

Applying Ψ gives then

Ψ((ei1 • . . . • eir )⊲ b) =
1

k!

∑

σ∈Sk

Ψ((adsiσ(1)
◦ . . . ◦ adsiσ(r)

)(b))

=
1

k!

∑

σ∈Sk

ãdiσ(1)
◦ . . . ◦ ãdiσ(r)

(Ψ(b)),

by the previous lemma. Now compute

∂k
(
Ψ(ei1 • . . . • eir)

)

∂αj1 . . . ∂αjk

(0).

This expression is non zero only if k = r and {i1, . . . , ik} = {j1, . . . , jk}. In this
case, the result is 1. One deduces the asserted formula.

Now we come back to the proof of the theorem. The assertion of the theorem
is the equality:

ex̂ ⊲~ e
ŷ = ex̂◮~y.

Summing up the assertion of the previous lemma (taking x1 = . . . = xr = x),
we obtain:

∞∑

r=0

1

r!
Ψ(x • . . . • x︸ ︷︷ ︸

r times

)⊲~ Ψ(b) = Ψ



( ∞∑

r=0

~r

r!
(x • . . . • x︸ ︷︷ ︸

r times

)
)
⊲ b


 ,

and thus (as the rack product in S(h) is given by the adjoint action, using also
that Ψ is multiplicative)

ex̂ ⊲~ Ψ(b) = Ψ(e~ adx(b)). (36)

This extends then to the asserted formula using that e~ adx is an automorphism
of S(h) (because it is the exponential of a derivation).
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Corollary 2.5. The above defined star-product induces the structure of a rack
with respect to the product ⊲~ on the set of exponential functions Uh = {EX :=

e
i

~
X |X ∈ h} on h∗, and this star-product is equal (up to a sign) to the star-

product in Theorem 1.10, see also [6].

Proof. Via the formula of the theorem, the self-distributivity property of the
rack product ◮ in the rack bialgebra S(h) translates into the self-distributivity
property of ⊲~ on the set of exponential functions. Since the star-product
defined in [6] is a series of bidifferential operators, and since such a series is
uniquely determined by its values on exponential functions, the present star-
product coincides with the one found in [6] thanks to the statement of the
preceding theorem.

Remark 2.6. Observe that the proof of the above theorem contains also an
isomorphism of commutative associative unital algebras between S(h) and the
image of Ψ, i.e. the polynomial algebra generated by the x̂i, i = 1, . . . , n. Up to
factors ~r, Ψ is by construction an isomorphism of rack bialgebras. This mirrors
the relation between the universal enveloping algebra U(g) and the deformation
quantization of S(g∗) for a Lie algebra g, i.e. between U(g) and the Gutt star
product on g∗, see [9], [6].

Remark 2.7. We would like to thank the referee for asking the interesting
question of comparing the above star-product formula with the theory of Loday-
Pirashvili, see [14] and [15]: recall that they work in the so-called linear category

LM whose objects are diagramsM
φ
→ N of vector spaces and linear maps with

the obvious commuting squares of linear maps as morphisms. It can be seen
as the category of complexes concentrated in degree 1 (M) and 0 (N) with
differential φ. There is the obvious tensor product of complexes (truncated in
degree ≥ 2) equipping LM with the structure of a symmetric monoidal category
(with 0 → K as unit object and a signless flip as symmetric braiding). In this
category, associative algebra objects will be dialgebras, and Lie objects can
be seen as Leibniz algebras h → h = g, see [14] and [15] for more details. The
symmetric algebra generated by h → h will be h⊗S(g) → S(g), and the universal
enveloping algebra of h → h will be h⊗ U(g) → U(g) where the linear maps are
given by x⊗ g 7→ p(x) • g and x⊗ u 7→ p(x)u, respectively.
For a possible rack-like star-product formula motivated by this category it seems
to us not unreasonable to base it on the ‘underlying augmented rack-bialgebras’
since this worked already well for the above rack-star-product (35) on smooth
functions on h∗. In a slightly more general fashion, let (B,ΦB, U(g), ℓ) be an
augmented rack bialgebra for a given Lie algebra g. We shall later specialize B
to S(h) or its rack sub-bialgebra S(h)(1) = K1 ⊕ h mentioned in Theorem 1.6,
part 3. Now, U(g) clearly acts ‘diagonally’ (i.e. using its comultiplication) on
the K-module B⊗U(g) via ℓ on the first factor B and via the adjoint action on
the second factor U(g). Calling this action ℓ⊗, and defining Φ : B⊗U(g) → U(g)
by Φ(b⊗u) = ΦB(b)u we easily see that (B⊗U(g),Φ,U(g), ℓ⊗) is an augmented
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rack bialgebra whose rack multiplication ⊲′ reads

(b⊗ u) ⊲′ (c⊗ v) =
∑

(b),(u)

ℓΦB(b(1))u(1)(c)⊗ adΦB(b(2))u(2)(v) (37)

where b, c ∈ B and u, v ∈ U(g).
The interesting cases are B = S(h) and its subcoalgebra B = S(h)(1) = K1 ⊕
h for a Leibniz algebra h. The latter is important since (K1 ⊕ h) ⊗ U(g) is
the universal enveloping algebra of h as the left adjoint functor to the functor
associating to any bar-unital dialgebra its ‘commutator’-Leibniz algebra, see
e.g. [1, Thm.2.8]. Note that the classical universal enveloping algebra of h in the
sense of Loday-Pirashvili is just the submodule h⊗U(g) of (K1⊕h)⊗U(g), and
this is easily seen to be a rack-subalgebra (NOT a subcoalgebra) of S(h)⊗U(g)
with respect to the multiplication ⊲′ in the above eqn (37). The primitive
part of S(h) ⊗ U(g) is known to be Leibniz algebra isomorphic to the hemi-
semidirect product h⊕g, see [1, Thm.2.7,4.], hence the rack bialgebra S(h)⊗U(g)
is isomorphic to the rack bialgebra S(h ⊕ g). In the finite-dimensional case
over K = R or K = C we can apply formula (35) to this hemi-semidirect
product situation thus giving a star-product formula on the function algebra
C∞(h∗ × g∗,K) reflecting the above multiplication (37), and clearly rack star-
products on the subspaces of functions (at most) linear in h∗ which will then
be rack star-product versions corresponding to the universal enveloping algebra
h⊗ U(g) in the sense of Loday-Pirashvili.
Surprisingly, there is a morphism of rack algebras Γ : S(h) → B ⊗U(g) for B =
K1⊕h, cf the constructions in [18], [19]: firstly, the following general statement
is very easy to check: given any two augmented rack bialgebras (B,ΦB, H, ℓ)
and (C,ΦC , H, ℓ

′) over the same cocommutative Hopf algebra H , then any K-
linear map Γ : B → C intertwining the H-actions which satisfies ΦC ◦ Γ = ΦB

will give a morphism of rack-algebras, i.e. Γ(b⊲b′) = Γ(b)⊲Γ(b′) for all b, b′ ∈ B.
Note that Γ does not have to be a morphism of coalgebras, and will in general
NOT be a morphism of rack bialgebras. More concretely, for Γ : B = S(h) →
C = (K1⊕ h)⊗ U(g) we make the following ansatz:

Γ =
(
(1ǫ+ pr)⊗ (F∗(e

(1)) ◦ Φ)
)
◦∆. (38)

Here the maps ∆, ǫ,1 give the usual augmented coalgebra structure of S(h),
pr : S(h) → h is the canonical projection, and Φ : S(h) → U(g) is the above
map ω ◦ S(p), see eqn (26). Next, ∗ denotes the convolution multiplication on
HomK(U(g),U(g)), and e(1) : U(g) → g ⊂ U(g) is the eulerian idempotent of the
cocommutative bialgebra U(g), i.e. e(1) = ln∗

(
1U(g)ǫU(g) + (idU(g) − 1U(g)ǫU(g))

)
,

see e.g. [13, Ch.4, p.139-141]. Finally, F (s) is a formal series with rational
coefficients, and F∗(e

(1)) ∈ HomK(U(g),U(g)) denotes the convolution series
where s is replaced by e(1). Observe that the bialgebra structures of S(h) and of
U(g) are U(g)-module maps (recall that it is the adjoint action on U(g)) whence
all convolutions of these structures are U(g)-module maps, hence also e(1) and
its convolution series. It follows that Γ is a U(g)-module map. Moreover, since

e(1) ◦ ω = prg we get e(1) ◦ Φ = p ◦ pr, and since e∗e
(1)

= idU(g), the second

20



condition ΦC ◦ Γ = ΦB gives –using the surjectivity of Φ–

(
1U(g)ǫU(g) + e(1)

)
∗ F∗(e

(1)) = idU(g) = e∗e
(1)

hence with F (s) = es

1+s
we get the morphism of rack-algebras. Moreover there

is a morphism Ψ : S(h)+ → h ⊗ U(g) given by a similar ansatz: in the above
eqn (38) we just replace the expression (1ǫ+ pr) by pr and the series F by the
series G(s) = es−1

s
.

2.2 General deformation theory for rack bialgebras

In this section, (R,∆, ǫ, µ,1) is a cocommutative rack-bialgebra over a general
commutative ring K, and we use the notation r⊲ s to denote the rack product
µ(r ⊗ s) of two elements r and s of R. In this subsection, we will often drop
the symbol Σ in Sweedler’s notation of (iterated) comultiplications, so that the
n-iterated comultiplication of r in R reads

r(1) ⊗ · · · ⊗ r(n) := (∆⊗ Id⊗n−1) ◦ · · · ◦∆(r)

Let K~ = K[[~]] denote the K-algebra of formal power series in the inde-
terminate ~ with coefficients in K. If V is a vector space over K, V~ stands
for V[[~]]. Recall that if W is a K-module, a K~-linear morphism from V~ to
W~ is the same as a power series in ~ with coefficients in HomK(V,W ) via the
canonical map

HomK~
(V~,W~) ∼= HomK(V,W )~.

This identification will be used without extra mention in the following.

Definition 2.8. A formal deformation of the rack product µ is a formal
power series µ~

µ~ :=
∑

n≥0

~nµn

in HomK(R⊗R,R)~, such that

1. µ0 = µ,

2. (R~,∆, ǫ, µ~,1) is a rack bialgebra over K~.

Example 2.1.

For a Leibniz algebra h, we have introduced in Definition 1.7 a cocommutative
augmented rack bialgebra UAR∞(h). Furthermore, the rack star product defined
in eqn (35), restricted to S(h)~, is a deformation of the trivial rack product of
S(h) given for all r, s ∈ S(h) by

r ⊲ s := ǫ(r)s

The self-distributivity relation is shown in a way very similar to the proof of
Theorem 2.1, see eqn (36). ♦
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As in the classical setting of deformation theory of associatice products, we
will relate our deformation theory of rack products to cohomology. For this, let
us first examine an introductory example:

Example 2.2.

Let (R,⊲) be a rack bialgebra, and suppose there exists a deformation ⊲~ =
⊲ + ~ω of ⊲. The new rack product ⊲~ should satisfy the self-distributivity
identity, i.e. for all a, b, c ∈ R

a⊲~ (b⊲~ c) = (a(1) ⊲~ b)⊲~ (a
(2) ⊲~ c)

To the order ~0, this is only the self-distributivity relation for ⊲. But to order
~1 (neglecting order ~2 and higher), we obtain:

ω(a, b⊲c)+a⊲ω(b, c) = ω(a(1)⊲b, a(2)⊲c)+ω(a(1), b)⊲(a(2)⊲c)+(a(1)⊲b)⊲ω(a(2), c).

It will turn out that this is the cocycle condition for ω in the deformation
complex which we are going to define. More precisely, we will have

1. d2,0ω(a, b, c) = ω(a, b⊲ c),

2. d1,1ω(a, b, c) = a⊲ ω(b, c),

3. d1,0ω(a, b, c) = ω(a(1) ⊲ b, a(2) ⊲ c),

4. d23ω(a, b, c) = ω(a(1), b)⊲ (a(2) ⊲ c),

5. d2,1ω(a, b, c) = (a(1) ⊲ b)⊲ ω((a(2), c).

This may perhaps help to understand the general definition of the operators dni,µ
for i = 1, . . . , n and µ ∈ {0, 1} further down.

On the other hand, the requirement that ⊲~ should be a morphism of coal-
gebras (with respect to the undeformed coproduct △ of R) means

△ ◦⊲~ = (⊲~ ⊗⊲~) ◦ △
[2].

This reads for a, b ∈ R to the order ~ (neglecting higher powers of ~) as

ω(a, b)(1) ⊗ ω(a, b)(2) = ω(a(1), b(1))⊗ (a(2) ⊲ b(2)) + (a(1) ⊲ b(1))⊗ ω(a(2), b(2)).

This is exactly the requirement that ω is a coderivation along ⊲ = µ, to be
defined below. ♦

Recall that R being a rack bialgebra means in particular that µ : R⊗2 → R
is a morphism of coassociative coalgebras. For all positive integer n, let µn :
R⊗n → R be the linear map defined inductively by setting

• µ1 := Id : R→ R,

• µ2 := µ : R⊗2 → R,

• µn := µ ◦ (µ1 ⊗ µn−1), n ≥ 3,
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so that
µn(r1, · · · , rn) = r1 ⊲ (r2 ⊲ (· · ·⊲ (rn−1 ⊲ rn) · · · ))

for all r1, . . . , rn in R.

Proposition 2.9. For all n ≥ 1, the map µn is a morphism of coalgebras
satisfying

µi(r
(1)
1 ,· · ·, r

(1)
i−1, ri)⊲ µn−1(r

(2)
1 ,· · ·, r

(2)
i−1, ri+1,· · ·, rn) = µn(r1,· · ·, rn), (39)

µn(r1, · · · , ri−1, r
(1)
i ⊲ ri+1, · · · , r

(n+1−i)
i ⊲ rn+1) = µn+1(r1, · · · , rn+1)

(40)

for all positive integers i and n such that 1 ≤ i < n and for all r1, ..., rn in R.

Proof. • eqn (39): Let us show that the assertion of eqn (39) is true for all
n and i with 1 ≤ i < n by induction over i. Suppose that the induction
hypothesis is true and compute

µi(r
(1)
1 ,· · ·, r

(1)
i , ri+1)⊲ µn−1(r

(2)
1 ,· · ·, r

(2)
i , ri+2,· · ·, rn)(

r
(1)
1 ⊲ µi(r

(1)
2 ,· · ·, r

(1)
i , ri+1)

)
⊲

(
r
(2)
1 ⊲ µn−2(r

(2)
2 ,· · ·, r

(2)
i , ri+2,· · ·, rn)

)
,

which gives, thanks to the self-distributivity relation in the rack algebra
R,

r1 ⊲
(
µi(r

(1)
2 ,· · ·, r

(1)
i , ri+1)⊲ µn−2(r

(2)
2 ,· · ·, r

(2)
i , ri+2,· · ·, rn)

)

= r1 ⊲ µn−1(r2,· · ·, rn) = µn(r1, · · · , rn),

where we have used the induction hypothesis. This proves the assertion.

• eqn (40): The assertion follows here again from an easy induction using
the self-distributivity relation.

If (C,∆C) and (D,∆D) are two coassociative coalgebras and φ : C → D
is a morphism of coalgebras, we denote by Coder(C, V, φ) the vector space of
coderivations from C to V along φ, i.e. the vector space of linear maps f : C →
D such that

∆D ◦ f = (f ⊗ φ+ φ⊗ f) ◦∆C

Let us note the following permanence property of coderivations along a map
under partial convolution which will be useful in the proof of the following
theorem. For a coalgebra A, maps f : A ⊗ B → V and g : A ⊗ C → V and
some product ⊲ : V ⊗ V → V , the partial convolution of f and g is the map
f ⋆part g : A⊗B ⊗ C → V defined for all a ∈ A, b ∈ B and c ∈ C by

(f ⋆part g)(a⊗ b⊗ c) := f(a(1) ⊗ b)⊲ g(a(2) ⊗ c).
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Lemma 2.10. Let A, B, C and V be coalgebras, V carrying a product ⊲

which is supposed to be a coalgebra morphism. Let f : A ⊗ B → V be a
coderivation along φ and g : A ⊗ C → V be a coalgebra morphism. Then the
partial convolution f ⋆part g is a coderivation along φ ⋆part g.

Proof. We compute for all a ∈ A, b ∈ B and c ∈ C

△V ◦ (f ⋆part g)(a⊗ b⊗ c) = △V (f(a
(1) ⊗ b)⊲ g(a(2) ⊗ c))

= (f(a(1) ⊗ b))(1) ⊲ (g(a(2) ⊗ c))(1) ⊗ (f(a(1) ⊗ b))(2) ⊲ (g(a(2) ⊗ c))(2)

= (f(a(1) ⊗ b))(1) ⊲ g(a(2) ⊗ c(1))⊗ (f(a(1) ⊗ b))(2) ⊲ g(a(3) ⊗ c(2))

= φ(a(1) ⊗ b(1))⊲ g(a(2) ⊗ c(1))⊗ f(a(3) ⊗ b(2))⊲ g(a(4) ⊗ c(2)) +

+f(a(1) ⊗ b(1))⊲ g(a(2) ⊗ c(1))⊗ φ(a(3) ⊗ b(2))⊲ g(a(4) ⊗ c(2))

= (φ ⋆part g)(a
(1) ⊗ b(1) ⊗ c(1))⊗ (f ⋆part g)(a

(2) ⊗ b(2) ⊗ c(2)) +

+(f ⋆part g)(a
(1) ⊗ b(1) ⊗ c(1))⊗ (φ ⋆part g)(a

(2) ⊗ b(2) ⊗ c(2))

=
(
(φ ⋆part g)⊗ (f ⋆part g) + (f ⋆part g)⊗ (φ ⋆part g)

)
◦ △A⊗B⊗C(a⊗ b⊗ c).

Definition 2.11. The deformation complex of R is the graded vector space
C∗(R;R) defined in degree n by

Cn(R;R) := Coder(R⊗n, R, µn)

endowed with the differential dR : C∗(R;R) → C∗+1(R;R) defined in degree n
by

dnR :=

n∑

i=1

(−1)i+1(dni,1 − dni,0) : +: (−1)n+1dnn+1

where the maps dni,1 and dni,0 are defined respectively by

dni,1ω(r1, · · · , rn+1) :=
∑

(r1),··· ,(ri)

µi(r
(1)
1 , · · · , r

(1)
i−1, ri)⊲ω(r

(2)
1 , · · · , r

(2)
i−1, ri+1, · · · , rn+1)

and

dni,0ω(r1, · · · , rn+1) :=
∑

(ri)

ω(r1, · · · , ri−1, r
(1)
i ⊲ ri+1, · · · , r

(n+1−i)
i ⊲ rn+1)

and dnn+1 by

dnn+1ω(r1, · · · , rn+1)

:=
∑

(r1),··· ,(rn−1)

ω(r
(1)
1 , · · · , r

(1)
n−1, rn)⊲ µn(r

(2)
1 , · · · , r

(2)
n−1, rn+1)

for all ω in Cn(R;R) and r1, . . . , rn+1 in R.

Theorem 2.12. dR is a well defined differential.
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Proof. That dR is well defined means that it sends coderivations to coderiva-
tions. It suffices to show that this is already true for all maps dni,1, d

n
i,0 and dnn+1,

which is the case. For this, we use Lemma 2.10. Indeed, a cochain ω ∈ Cn(R;R)
is a coderivation along µn. By Proposition 2.9, µn is a coalgebra morphism. On
the other hand, it is clear from the formula for dni,1 that dni,1 is a partial con-

volution with respect to the first i − 1 tensor labels of µi and ω. Therefore
the Lemma applies to give that the result is a coderivation along the partial
convolution of µi and µn, which is just µn+1 again by Proposition 2.9. This
shows that dni,1ω belongs to Coder(R⊗n, R, µn+1) as expected. The maps dni,0
and dnn+1 can be treated in a similar way.

The fact that dR squares to zero is related to the so-called cubical identities
satisfied by the maps di,1 and the maps di,0, namely

dn+1
j,µ ◦ dni,ν = dn+1

i+1,ν ◦ dnj,µ for j ≤ i and µ, ν ∈ {0, 1},

and auxiliary identities which express the compatibility of the maps di,1 and
di,0 with dnn+1, and an identity involving dnn+1 and dn+1

n+2. One could call this
kind of object an augmented cubical vector space.

We will not show the usual cubical relations, i.e. those which do not refer
to the auxiliary coboundary map dnn+1, because these are well-known to hold
for rack cohomology, see [5], Corollary 3.12, and our case is easily adapted
from there. One possibility of adaptation (in case one works over the real or
complex numbers) is to take a Lie rack, write its rack homology complex (with
trivial coefficients in the real or complex numbers), and to apply the functor of
point-distributions.

Let us show that the two following extra relations involving the extra face
dnn+1 hold:

dn+1
i,µ ◦ dnn+1 = dn+1

n+2 ◦ d
n
i,µ (41)

for all 1 ≤ i ≤ n and µ in {0, 1} and

dn+1
n+1,0 ◦ d

n
n+1 = dn+1

n+2 ◦ d
n
n+1 + dn+1

n+1,1 ◦ d
n
n+1 (42)

Indeed, if ω is a n-cochain and r1, ..., rn+2 are elements in R, then

(dn+1
i,1 ◦ dnn+1ω)(r1,· · ·, rn+2)

=µi(r
(1)
1 ,· · ·, r

(1)
i−1, ri)⊲ dnn+1ω(r

(2)
1 ,· · ·, r

(2)
i−1, ri+1, ,· · ·, rn+2)

=µi(r
(1)
1 ,· · ·, r

(1)
i−1, ri)⊲

(
ω(r

(2)
1 ,· · ·, r

(2)
i−1, r

(1)
i+1, ,· · ·, r

(1)
n , rn+1)⊲

⊲ µn(r
(3)
1 ,· · ·, r

(3)
i−1, r

(2)
i+1, ,· · ·, r

(2)
n , rn+2)

)

By Proposition 2.9 and thanks to the self-distributivity of the rack product, this
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equality can be rewritten as

(dn+1
i,1 ◦ dnn+1ω)(r1,· · ·, rn+2)

=
(
µi(r

(1)
1 ,· · ·, r

(1)
i−1, r

(1)
i )⊲ ω(r

(2)
1 ,· · ·, r

(2)
i−1, r

(1)
i+1, ,· · ·, r

(1)
n , rn+1)

)
⊲

⊲
(
µi(r

(3)
1 ,· · ·, r

(3)
i−1, r

(2)
i )⊲ µn(r

(4)
1 ,· · ·, r

(4)
i−1, r

(2)
i+1, ,· · ·, r

(2)
n , rn+2)

)

= dni,1ω(r
(1)
1 ,· · ·, r(1)n , rn+1)⊲ µn(r

(2)
1 ,· · ·, r(2)n , rn+2)

= (dn+1
n+2 ◦ d

n
i,1ω)(r1, · · · , rn+2),

which proves that Relation (41) holds when µ = 1. The case µ = 0 goes as
follows:

(dn+1
i,0 ◦dnn+1ω)(r1, · · · , rn+2) = dnn+1ω(r1, · · · , ri−1, r

(1)
i ⊲ ri+1, · · · , r

(n+2−i)
i ⊲ rn+2)

=ω(r
(1)
1 ,· · ·, r

(1)
i−1, r

(1)
i ⊲ r

(1)
i+1,· · ·, r

(n−i)
i ⊲ r(1)n , r

(n+1−i)
i ⊲ rn+1) : ⊲

⊲ µn(r
(2)
1 ,· · ·, r

(2)
i−1, r

(n+2−i)
i ⊲ r

(2)
i+1,· · ·, r

(2n−2i+1)
i ⊲ r(2)n , r

(2n−2i+2)
i ⊲ rn+2)

where we have used that the rack product is a morphism of coalgebras. Recall
the following equation from Proposition 2.9:

µn(s1, · · · , si−1, s
(1)
i ⊲ si+1, · · · , s

(n+1−i)
i ⊲ sn+1) = µn+1(s1, · · · , sn+1)

for all s1, ..., sn+1 in R and 1 ≤ i ≤ n. This allows to rewrite the preceeding
equality as

(dn+1
i,0 ◦dnn+1ω)(r1, · · · , rn+2)

=ω(r
(1)
1 ,· · ·, r

(1)
i−1, r

(1)
i ⊲ r

(1)
i+1,· · ·, r

(n−i)
i ⊲ r(1)n , r

(n+1−i)
i ⊲ rn+1) : ⊲

⊲ µn+1(r
(2)
1 ,· · ·, r

(2)
i−1, r

(n+2−i)
i , r

(2)
i+1,· · ·, r

(2)
n , rn+2)

= dni,0 : ω(r
(1)
1 ,· · ·, r(1)n , rn+1) : ⊲ : µn+1(r

(2)
1 ,· · ·, r(2)n , rn+2)

= (dn+1
n+2 ◦ d

n
i,0)(r1, · · · , rn+2)

which proves that (41) holds when µ = 0. Relation (42) relies on the fact that
cochains are coderivations. Indeed,

(dn+1
n+1,0◦d

n
n+1ω)(r1, · · · , rn+2) = dnn+1ω(r1, · · · , rn, rn+1 ⊲ rn+2)

=ω(r
(1)
1 , · · · , r

(1)
n−1, rn)⊲ µn(r

(2)
1 , · · · , r

(2)
n−1, rn+1 ⊲ rn+2)

=ω(r
(1)
1 , · · · , r

(1)
n−1, rn)⊲ µn+1(r

(2)
1 , · · · , r

(2)
n−1, rn+1, rn+2)

=ω(r
(1)
1 , · · · , r

(1)
n−1, rn)⊲

(
µn(r

(2)
1 , · · · , r

(2)
n−1, rn+1)⊲ µn(r

(3)
1 , · · · , r

(3)
n−1, rn+2)

)

where we have used Proposition 2.9 in the last equality. By self-distributivity
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of ⊲ and because ω is a coderivation, this gives

(dn+1
n+1,0◦ d

n
n+1ω)(r1,· · ·, rn+2) =

(
ω(r

(1)
1 ,· · ·, r

(1)
n−1, rn)

(1) ⊲ µn(r
(2)
1 ,· · ·, r

(2)
n−1, rn+1)

)
⊲

(
ω(r

(1)
1 ,· · ·, r

(1)
n−1, rn)

(2) ⊲ µn(r
(3)
1 ,· · ·, r

(3)
n−1, rn+2)

)

=
(
ω(r

(1)
1 ,· · ·, r

(1)
n−1, r

(1)
n )⊲ µn(r

(2)
1 ,· · ·, r

(2)
n−1, rn+1)

)
⊲

(
µn(r

(3)
1 ,· · ·, r

(3)
n−1, r

(2)
n )⊲ µn(r

(4)
1 ,· · ·, r

(4)
n−1, rn+2)

)

+
(
µn(r

(1)
1 ,· · ·, r

(1)
n−1, r

(1)
n )⊲ µn(r

(2)
1 ,· · ·, r

(2)
n−1, rn+1)

)
⊲

(
ω(r

(3)
1 ,· · ·, r

(3)
n−1, r

(2)
n )⊲ µn(r

(4)
1 ,· · ·, r

(4)
n−1, rn+2)

)

Applying Proposition 2.9 again enables us to rewrite this last equality as

(dn+1
n+1,0◦ d

n
n+1ω)(r1,· · ·, rn+2)

=
(
ω(r

(1)
1 ,· · ·, r(1)n )⊲ µn(r

(2)
1 ,· · ·, r

(2)
n−1, rn+1)

)
⊲ µn+1(r

(3)
1 ,· · ·, r

(3)
n−1, r

(2)
n , rn+2)

+ µn+1(r
(1)
1 ,· · ·, r(1)n , rn+1)⊲

(
ω(r

(2)
1 ,· · ·, r(2)n )⊲ µn(r

(3)
1 ,· · ·, r

(3)
n−1, rn+2)

)

= dnn+1ω(r
(1)
1 , · · · , r(1)n , rn+1)⊲ µn+1(r

(2)
1 ,· · ·, r(2)n , rn+2)

+ µn+1(r
(1)
1 ,· · ·, r(1)n , rn+1)⊲ dnn+1ω(r

(2)
1 ,· · ·, r(2)n , rn+2)

=
(
(dn+1

n+2 ◦ d
n
n+1 + dn+1

n+1,1 ◦ d
n
n+1) : ω

)
(r1, · · · , rn+2)

which proves (42).
Let us show now how dR ◦ dR = 0 can be deduced from (41), (42) and from

the cubical relations. In degree n, we have

dR ◦ dR =
( n+1∑

i=1

(−1)i+1(dn+1
i,1 − dn+1

i,0 ) + (−1)n+2dn+1
n+2

)
◦
( n∑

i=1

(−1)i+1(dni,1− dni,0)

+ (−1)n+1dnn+1

)

=

n+1∑

i=1

n∑

j=1

(−1)i+j(dn+1
i,1 ◦ dnj,1 − dn+1

i,1 ◦ dnj,0 − dn+1
i,0 ◦ dnj,1 + dn+1

i,0 ◦ dnj,0)

+

n∑

i=1

(−1)n+i+1(dn+1
n+2 ◦ d

n
i,1 − dn+1

n+2 ◦ d
n
i,0 − dn+1

i,1 ◦ dnn+1 + dn+1
i,0 ◦ dnn+1)

− dn+1
n+2 ◦ d

n
n+1 − dn+1

n+1,1 ◦ d
n
n+1 + dn+1

n+1,0 ◦ d
n
n+1

The first double sum is equal to zero thanks to the cubical relations, the second
sum is zero thanks to relation (41). Relation (42) implies that the last one
vanishes. This shows that dR is indeed a differential and concludes the proof of
the proposition.

Definition 2.13. The cohomology of the deformation complex (C∗(R;R), dR)
is called the adjoint cohomology of the rack bialgebra R and is denoted by
H∗(R;R).
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Definition 2.14. An infinitesimal deformation of the rack product is a
deformation of the rack product over the K-algebra of dual numbers K̄~ :=
K~/(~2), i.e. a linear map µ1 : R⊗2 → R such that R̄~ := R ⊗ K̄~ is a rack

bialgebra over K̄~ when equipped with µ0 + ~µ1.
Two infinitesimal deformations µ0+~µ1 and µ0+~µ′

1 are said to be equivalent
if there exists an automorphism φ : R̄~ → R̄~ of the coalgebra of (R̄~,∆, ǫ) of
the form φ := idR + ~α such that

φ ◦ (µ0 + ~µ1) = (µ0 + ~µ′
1) ◦ φ.

As usual, being equivalent is an equivalence relation and one has the follow-
ing cohomological interpretation of the set of equivalence classes of infinitesimal
deformations, denoted Def(µ0, K̄~):

Proposition 2.15.

Def(µ0, K̄~) = H2(R;R)

The identificaton is obtained by sending each equivalence class [µ0 + ~µ1] in
Def(µ0, K̄~) to the cohomology class [µ1] in H

2(R;R).

Proof. One checks easily that the correspondence is well defined (if µ0 + ~µ1 is
an infinitesimal deformation, then µ1 is a 2-cocycle, see Example 2.2) and that
it is bijective when restricted to equivalence classes.

Remark 2.16. (a) The choice of taking coderivations in the deformation
complex is explained as follows: The rack product µ is a morphism of
coalgebras, and we want to deform it as a morphism of coalgebras with
respect to the fixed coalgebra structure we started with. Tangent vectors
to µ in Homcoalg(C ⊗C,C) are exactly coderivations along µ. This is the
first step: Deformations as morphisms of coalgebras. Then as a second
step, we look for 1-cocycles, meaning that we determine those morphisms
of coalgebras which give rise to rack bialgebra structures. The deforma-
tion complex in [4] takes into account also the possibility of deforming the
coalgebra structure, and we recover our complex by restriction.

(b) Given a Leibniz algebra h, there is a natural restriction map from the coho-
mology complex with adjoint coefficients of h to the deformation complex
of its augmented enveloping rack bialgebra UAR(h). The induced map in
cohomology is not necessarily an isomorphism, as the abelian case shows.
Observe that the deformation complex of the rack bialgebra K[R] for a
rack R does not contain the complex of rack cohomology for two reasons:
First, this latter complex is ill-defined for adjoint coefficients, and second,
there are not enough coderivations as all elements are set-like. A way out
for this last problem would be to pass to completions.
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