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Abstract

We study the interaction of surface water waves with a floating solid constraint to move
only in the vertical direction. The first novelty we bring in is that we propose a new model
for this interaction, taking into consideration the viscosity of the fluid. This is done supposing
that the flow obeys a shallow water regime (modeled by the viscous Saint-Venant equations
in one space dimension) and using a Hamiltonian formalism. Another contribution of this
work is establishing the well-posedness of the obtained PDEs/ODEs system in function spaces
similar to the standard ones for strong solutions of viscous shallow water equations. Our well-
posedness results are local in time for every initial data and global in time if the initial data are
close (in appropriate norms) to an equilibrium state. Moreover, we show that the linearization
of our system around an equilibrium state can be described, at least for some initial data,
by an integro-fractional differential equation related to the classical Cummins equation and
which reduces to the Cummins equation when the viscosity vanishes and the fluid is supposed
to fill the whole space. Finally, we describe some numerical tests, performed on the original
nonlinear system, which illustrate the return to equilibrium and the influence of the viscosity
coefficient.
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1 Introduction

The motion of rigid bodies in a fluid is a widely studied subject in both engineering and mathe-
matical literature. This is due to important applications (naval and aerospace engineering, biology,
medicine, . . . ) and to the mathematical challenges, namely the existence of free boundaries, raised
by the corresponding mathematical models. The study of the case in which the rigid bodies are
completely immersed in the fluid goes back to Euler, Kelvin and Kirchhoff. Due to the important
number of works (namely in the last two decades) devoted to this subject, the corresponding math-
ematical questions may be considered by now well understood, for various types of fluids (ideal,
viscous incompressible, compressible, . . . ). We refer, for instance, to [4] and references therein for
a concise description of recent progress in this field. The case when the solids are floating, thus
only partially immersed and interacting with the water waves, has been much less studied in the
literature, essentially in the case of an ideal fluid. We refer to the classical work of John [11, 12]
or to the monograph Falnes [7] for the linearized theory and to the review paper of Lannes [14] for
the description of recent progress in the field. As far as we know, the case of a viscous fluid has
not been tackled, at least from a mathematical view point. The aim of this work is to partially
fill this gap by considering a PDE system modeling the coupled motion of a free surface viscous
fluid and of a solid, constrained to move in the vertical direction only, which is floating on this free
surface. The main contributions of this work are:

• Proposing, via a Hamiltonian formalism, a new mathematical model which takes into account
the viscosity of the fluid, for the coupled of a free boundary shallow fluid and of a rigid body
floating on the surface.

• Proving the existence and uniqueness of strong solutions (locally in time or globally in time
for small data).

• Proposing a reduced model and performing numerical simulations in the linear case.

The content of the subsequent sections is outlined below. In Section 2 we derive the governing
equations using a Hamiltonian formalism. In Section 3 we show that our model is energetically
consistent and we state our main existence and uniqueness results. In Section 4 we write the gov-
erning equation in an equivalent form obtained by “eliminating” the unknown functions involving
the floating solid. Section 5 is devoted to the proof of the local in time existence and uniqueness
result, whereas in Section 6 we prove global in time existence and uniqueness of solutions for ini-
tial data which are close to an equilibrium state. Finally, in Section 7 we analyze the return to
equilibrium problem and in Section 8, we present some numerical simulations for this problem.
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Figure 1: Configuration

2 Modelling

In this section, we derive, using a Hamiltonian formalism, the simplified model which is analyzed
in the remaining part of this work. The fluid is described using the viscous Saint Venant equations,
whereas the solid obeys Newton’s second law. To couple the two models we use a Hamiltonian
formalism, passing by the following steps:

• Introduce the total energy of the fluid-floating object system within the Saint-Venant ap-
proximation and define conservation of mass as a constraint, following Petit and Rouchon
[17].

• Use of a Hamiltonian formalism to derive the governing equations, by combining the ap-
proach introduced in [17] for the inviscid case with the methodology used in Gay-Balmaz
and Yoshimura [8] in the case the Navier-Stokes-Fourier system, which allows us to include
the viscous effects in the system.

To describe our model we need some notation, which is introduced below. Denote respectively
by ρ(t, x), v(t, x) and h(t, x) the density, the velocity, and the height of the free surface of the fluid
(see Figure 1). These quantities depend on the time t > 0 and on the position x ∈ [0, `]. We also
denote by H(t) the height of the cylinder. The mass M of the rigid body is a positive constant.
We also assume that the cylinder moves only vertically and we set

I := [a, b] := the projection of the cylinder on the flat bottom, E := (0, `) \ I, (2.1)

with I ⊂ (0, `).

The function H, which depends only on time is supposed to satisfy

0 < H(t) < min(h(t, a−), h(t, b+)) (t > 0),

so that the cylinder is immersed into the fluid and does not touch the bottom.

We are now on a position to derive the governing equations. The first one is the equation of
mass conservation:

∂h

∂t
+
∂(hv)

∂x
= 0 (t > 0, x ∈ [0, `]). (2.2)

For x ∈ I the height of fluid is given by the position of the cylinder, i.e.:

h(t, x) = H(t) (t > 0, x ∈ I). (2.3)

Equations (2.2) and (2.3) appear below as constraints in our Hamiltonian formalism.

3



In order to derive the other equations, we introduce the kinetic energy Kf and the potential
energy Uf of the fluid:

Kf =
1

2

∫
(0,`)

ρhv2 dx,

Uf =

∫
(0,`)

[1

2
ρgh2 + e(s(t, x))

]
dx,

where g is the gravity acceleration, and e(s) represents the internal energy density which is a
function of the density of entropy s. We assume that the fluid is homogeneous and incompressible,
so that that its density ρ is a constant.

We also introduce the kinetic energy Kf and the potential energy Uf of the solid:

Ks =
1

2
MḢ2 Us = MgH.

We obtain below the governing equations by writing the stationarity for the total action of the
system under the constraints (2.2) and (2.3). To this aim, it seems more convenient, in particular
to treat the continuity restriction (2.2), to introduce the variable q defined by

q(t, x) = h(t, x)v(t, x) (t > 0, x ∈ [0, `]). (2.4)

The total action of the system is given by

A(h, v,H) = (Kf +Ks)− (Uf + Us)

=

∫ T

0

{∫ `

0

[1

2
ρhv2 − 1

2
ρgh2 − e(s(t, x))

]
dx+

1

2
MḢ2 −MgH

}
dt.

In order to include the restrictions (2.2)–(2.3), we introduce two Lagrange multipliers:

λ1(t, x) (t > 0, x ∈ [0, `]),

λ2(t, x) (t > 0, x ∈ I).

With the above notation, the governing equations are obtained as stationarity conditions for the
Lagrangian defined by

L(h, q,H, λ1, λ2) =

∫ T

0

{∫ `

0

[1

2
ρ
q2

h
− 1

2
ρgh2 + ρλ1

(∂h
∂t

+
∂q

∂x

)
− e(s(t, x))

]
dx

+

∫
I

[
λ2

(
H − h

)]
dx+

1

2
MḢ2 −MgH

}
dt. (2.5)

To achieve this aim, we consider virtual displacements of the trajectory, given by the indepen-
dent variations δh(x, t), δH(t) and δq. Since q is a velocity type quantity, whereas h and H are
displacements, we introduce the function ϕ and its variation δϕ defined by

∂ϕ

∂t
= q and

∂(δϕ)

∂t
= δq. (2.6)

The governing equations are obtained by imposing that δL = 0 for any virtual displacement
δh(t, x), δH(t) and δϕ(t, x) such that

δh(0, x) = δh(T, x) = δH(0) = δH(T ) = δϕ(0, x) = δϕ(T, x) = 0, (2.7)

δϕ(t, 0) = δϕ(t, `) = 0. (2.8)
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Moreover, to take in consideration friction forces inside the fluid, we follow the approach in [8] by
assuming that the entropy trajectory s and its variation δs satisfy the variational constraint

∂e

∂s
δs =

µ

h

∂q

∂x

∂(δϕ)

∂x
(2.9)

where the constant µ > 0 is the viscosity of the fluid, together with the phenomenological constraint

∂e

∂s
ṡ =

µ

h

(
∂q

∂x

)2

.

Note that the above expression of this friction term leads to an nonstandard form of the viscous
Saint-Venant equations, see Remark 2.1 below.

Using (2.5) we get

δL =

∫ T

0

{∫ `

0

[
ρ
q

h
(δq)− 1

2
ρ
q2

h2
(δh)− ρgh(δh) + ρλ1

(∂(δh)

∂t
+
∂(δq)

∂x

)]
− ∂e

∂s
(δs)

)
dx

+

∫
I

[
λ2

(
δH − δh

)]
dx+MḢ(δḢ)−Mg(δH)

}
dt.

The above formula and (2.6) yield:

δL =

∫ T

0

{∫ `

0

[
ρ
q

h

∂(δϕ)

∂t
− 1

2
ρ
q2

h2
(δh)− ρgh(δh) + ρλ1

(∂(δh)

∂t
+

∂

∂x

∂(δϕ)

∂t

)]
− ∂e

∂s
(δs)

)
dx

+

∫
I

[
λ2

(
(δH )− (δh)

)]
dx+MḢ(δḢ)−Mg(δH)

}
dt. (2.10)

Considering (2.7) and integrating by parts in time the formula (2.10), we find

δA =

∫ T

0

{∫ `

0

[
− ρ ∂

∂t

( q
h

)
δϕ− ρ∂λ1

∂t

∂

∂x
δϕ− ∂e

∂s
δs
]

dx

+

∫ `

0

[(
− 1

2
ρ
q2

h2
− ρgh− ρ∂λ1

∂t

)
δh
]

dx−
∫
I

[
λ2 δh

]
dx

+
(∫
I
λ2 dx−MḦ −Mg

)
δH
}

dt. (2.11)

Using the model (2.9) in (2.11) we get

δA =

∫ T

0

{∫ `

0

[
− ρ ∂

∂t

( q
h

)
(δϕ)− ρ∂λ1

∂t

∂

∂x
(δϕ)− µ 1

h

∂q

∂x

∂(δϕ)

∂x

]
dx

+

∫ `

0

[(
− 1

2
ρ
q2

h2
− ρgh− ρ∂λ1

∂t

)
(δh)

]
dx−

∫ b

a

[
λ2 (δh)

]
dx

+
(∫ b

a

λ2 dx−MḦ −Mg
)

(δH)

}
dt. (2.12)

Now we integrate by parts in space but we need to take care about the fact that some quantities
can present discontinuities at the interfaces solid-liquid. We thus introduce the notation

[f ]a := f(a+)− f(a−), [f ]b := f(b+)− f(b−) (2.13)
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and we use the following formula for the integration by parts with discontinuities:∫ `

0

uv′ dx = −
∫ `

0

u′v dx− [uv]a − [uv]b. (2.14)

We thus obtain

δA =

∫ T

0

{∫ `

0

[
− ρ ∂

∂t

( q
h

)
+ ρ

∂

∂x

(
∂λ1
∂t

)
+

∂

∂x

(
µ

h

∂q

∂x

)]
(δϕ) dx

+
[
ρ
∂λ1
∂t

+
µ

h

∂q

∂x

]
a
(δϕ)(t, a) +

[
ρ
∂λ1
∂t

+
µ

h

∂q

∂x

]
b
(δϕ)(t, b)

+

∫ `

0

[(
− 1

2
ρ
q2

h2
− ρgh− ρ∂λ1

∂t

)
(δh)

]
dx−

∫ b

a

[
λ2 (δh)

]
dx

+
(∫ b

a

λ2 dx−MḦ −Mg
)

(δH)
}

dt. (2.15)

Since δA = 0 for any virtual displacement, we get the following system of equations

∂

∂t

( q
h

)
− ∂

∂x

∂λ1
∂t

=
µ

ρ

∂

∂x

(
1

h

∂q

∂x

)
(t > 0, x ∈ [0, `]), (2.16)[

ρ
∂λ1
∂t

+
µ

h

∂q

∂x

]
a

= 0 (t > 0), (2.17)[
ρ
∂λ1
∂t

+
µ

h

∂q

∂x

]
b

= 0 (t > 0), (2.18)

−∂λ1
∂t

=
1

2

q2

h2
+ gh+

λ2
ρ

(t > 0, x ∈ I), (2.19)

−∂λ1
∂t

=
1

2

q2

h2
+ gh (t > 0, x ∈ E) (2.20)

MḦ =

∫ b

a

λ2 dx−Mg (t > 0). (2.21)

We remark that equation (2.21) gives an interpretation to the Lagrange multiplier λ2 as the pressure
force exerted by the fluid on the solid. For this reason, we write in what follows

p(t, x) := λ2(t, x).

Combining equations (2.16)–(2.20), we can eliminate the Lagrange multiplier λ1 and we obtain:

∂h

∂t
+
∂q

∂x
= 0 (t > 0, x ∈ I ∪ E), (2.22)

∂

∂t

( q
H

)
+

∂

∂x

(1

2

q2

H2
+ gH +

p

ρ

)
=

µ

ρH

∂2q

∂x2
(t > 0, x ∈ I), (2.23)

∂

∂t

( q
h

)
+

∂

∂x

(1

2

q2

h2
+ gh

)
=

µ

ρ

∂

∂x

(
1

h

∂q

∂x

)
(t > 0, x ∈ E), (2.24)[(1

2

q2

H2
+ gH +

p

ρ

)
− µ

Hρ

∂q

∂x

]
(a+) =

[(1

2

q2

h2
+ gh

)
− µ

hρ

∂q

∂x

]
(a−) (t > 0), (2.25)[(1

2

q2

H2
+ gH +

p

ρ

)
− µ

Hρ

∂q

∂x

]
(b−) =

[(1

2

q2

h2
+ gh

)
− µ

hρ

∂q

∂x

]
(b+) (t > 0), (2.26)

MḦ(t) = −Mg +

∫ b

a

p(t, x) dx (t > 0), (2.27)

where we have also rewritten (2.2) and used (2.3) in the solid part. In the solid part we can simplify
once again this system, using the fact that as h(t, x) = H(t) does not depend on x, then equation
(2.22) implies that q is a first degree polynomial.
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Then our model for the rigid rectangle solid, constrained to move in the vertical direction, which
is floating at the surface of a viscous fluid is

∂h

∂t
+
∂q

∂x
= 0 (t > 0, x ∈ I ∪ E), (2.28)

∂

∂t

( q
H

)
+

∂

∂x

(1

2

q2

H2
+ gH +

p

ρ

)
= 0 (t > 0, x ∈ I), (2.29)

∂

∂t

( q
h

)
+

∂

∂x

(1

2

q2

h2
+ gh

)
=

µ

ρ

∂

∂x

(
1

h

∂q

∂x

)
(t > 0, x ∈ E), (2.30)[(1

2

q2

H2
+ gH +

p

ρ

)
− µ

Hρ

∂q

∂x

]
(t, a+) =

[(1

2

q2

h2
+ gh

)
− µ

hρ

∂q

∂x

]
(t, a−) (t > 0), (2.31)[(1

2

q2

H2
+ gH +

p

ρ

)
− µ

Hρ

∂q

∂x

]
(t, b−) =

[(1

2

q2

h2
+ gh

)
− µ

hρ

∂q

∂x

]
(t, b+) (t > 0), (2.32)

MḦ(t) = −Mg +

∫ b

a

p(t, x) dx (t > 0). (2.33)

Remark 2.1. As mentioned above, our modeling approach yields a nonstandard viscous term in
the Saint-Venant system, more precisely in the right hand side of (2.31). Indeed, different forms
of this term are generally used in most of the literature on viscous Saint-Venant equations. We
mention in this direction Kloeden [13], Sundbye [19], Gerbeau and Perthame [9] or the review
paper Bresch [5], which consider, once written in dimension one and with our notation, the term
µ
hρ

∂
∂x

(
h ∂
∂x

(
q
h

))
in the right hand side of (2.31). However, other viscous terms have been considered

in the literature, see, for instance, [5], Bernardi and Pironneau [3], Orenga [16] or Rodŕıguez and
Taboada-Vázquez [18]. Comparing the viscosity term we introduce with the more commonly one
used used, for instance, in [9], shows that their difference is given by

µ

ρ

∂

∂x

(
1

h

∂q

∂x

)
− µ

hρ

∂

∂x

(
h
∂

∂x

( q
h

))
=

µq

ρh2
∂2h

∂x2
− µq

ρh3

(
∂h

∂x

)2

.

Passing to dimensionless variables and denoting by ε the size of the solution, the term in the right
hand side of the above formula is of higher order in ε than the other terms in the momentum equa-
tion. Therefore, within the global precision of the shallow water approximation, the two viscosity
terms are equivalent. Our choice of the viscous term in the right hand side of (2.31) seems an
appropriate one in the case of viscous shallow water model of a fluid interacting with a floating
solid for at least two reasons:

• It is energetically consistent, see Proposition 3.1 below.

• In our case, the smoothing effect coming from the viscous term applies to the flux q instead
of the velocity field v as in [13] and [19] (note that in our case, unlike in the case of non
viscous Saint Venant equations, q and v have different regularity properties). An advantage
of our approach is that, since we use the variables h and q we do not need any information
on the sign of the velocity v at the solid-fluid interface.
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3 Energy estimate and main result

By extending the pressure by 0 in the fluid part, by taking ρ = 1 and by adding boundary and
initial conditions, we can rewrite system (2.28)–(2.33) as follows:

∂h

∂t
+
∂q

∂x
= 0 (t > 0, x ∈ I ∪ E), (3.1)

∂

∂t

( q
h

)
+

∂

∂x

(
q2

2h2
+ gh+ p

)
− µ ∂

∂x

( 1

h

∂q

∂x

)
= 0 (t > 0, x ∈ I ∪ E), (3.2)

q(t, 0) = q(t, `) = 0 (t > 0), (3.3)

p(t, x) = 0 (t > 0, x ∈ E), (3.4)

h(t, x) = H(t) (t > 0, x ∈ I), (3.5)

[q(t, ·)]a = [q(t, ·)]b = 0 (t > 0), (3.6)[
p(t, ·) +

q2(t, a)

2h2(t, ·)
+ gh(t, ·)− µ

h

∂q

∂x
(t, ·)

]
a

= 0 (t > 0), (3.7)[
p(t, ·) +

q2(t, b)

2h2(t, ·)
+ gh(t, ·)− µ

h

∂q

∂x
(t, ·)

]
b

= 0 (t > 0), (3.8)

MḦ(t) = −Mg +

∫ b

a

p(t, x) dx (t > 0), (3.9)

h(0, x) = h0(x) (x ∈ E), (3.10)

q(0, x) = q0(x) (x ∈ [0, `]), (3.11)

H(0) = H0. (3.12)

Note that from (3.1) and (3.5) it follows that

∂q

∂x
(t, x) = −Ḣ(t) (t > 0, x ∈ I). (3.13)

In particular, the initial velocity of the solid is given by

Ḣ(0) = −∂q0
∂x

.

Let us note that the spatial derivatives in the above equations and in the whole paper correspond
to the spatial derivatives of the restrictions for each subdomain. In particular, we have the classical
formula for any function f , smooth on E ∪ I:∫ `

0

df

dx
dx = f(`)− f(0)− [f ]b − [f ]a. (3.14)

We first show that the system (3.1)–(3.12) satisfies an energy estimate:

Proposition 3.1. Let us write

E(t) =
1

2

∫ `

0

(
q2(t, x)

h(t, x)
+ gh2(t, x)

)
dx+

1

2
MḢ2(t) +MgH(t) (t > 0) (3.15)

and let us consider a smooth solution (h, q,H, p) of system (3.1)–(3.12). Then we have the following
relation:

Ė(t) = −µ
∫ `

0

1

h(t, x)

[
∂q

∂x
(t, x)

]2
dx (t > 0). (3.16)
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Proof. From (3.15), it follows that

Ė(t) =

∫ `

0

[
1

2

( q
h

)2 ∂h
∂t

+ q
∂

∂t

( q
h

)
+ gh

∂h

∂t

]
dx+MḢ(t)Ḧ(t) +MgḢ(t).

By combining the above formula with (3.1), (3.2) and (3.4) it follows that

Ė(t) = −
∫ `

0

[(
q2

2h2
+ gh

)
∂q

∂x
+ q

∂

∂x

(
q2

2h2
+ gh

)
− qµ ∂

∂x

( 1

h

∂q

∂x

)]
dx

−
∫ b

a

q(t, x)
∂p

∂x
(t, x) dx+MḢ(t)Ḧ(t) +MgḢ(t) (t > 0). (3.17)

Since (
q2

2h2
+ gh

)
∂q

∂x
+ q

∂

∂x

(
q2

2h2
+ gh

)
=

∂

∂x

[
q

(
q2

2h2
+ gh

)]
,

we can combine (3.3), (3.6) and (3.17) to obtain

Ė(t) = q(t, a)

[
q2(t, a)

2h2(t, ·)
+ gh(t, ·)

]
a

+ q(t, b)

[
q2(t, b)

2h2(t, ·)
+ gh(t, ·)

]
b

+

∫ `

0

[
qµ

∂

∂x

( 1

h

∂q

∂x

)]
dx−

∫ b

a

q(t, x)
∂p

∂x
(t, x) dx+MḢ(t)Ḧ(t) +MgḢ(t) (t > 0).

Integrating by parts in the two integrals in the above formula and using (3.7) and (3.8), together
with (3.6), it follows that

Ė(t) = −µ
∫ `

0

1

h

(
∂q

∂x

)2

dx+

∫ b

a

p(t, x)
∂q

∂x
(t, x) dx+MḢ(t)Ḧ(t) +MgḢ(t) (t > 0).

Finally, inserting (3.13) and (3.9) in the last formula we obtain the desired energy estimate (3.16).

One can check that the stationary solutions of (3.1)–(3.9) can be parametrized by H > 0 by
setting

h := H +
M

b− a
, p :=

Mg

b− a
(3.18)

and in that case

hS(x) =

{
h x ∈ E
H x ∈ I

, qS(x) = 0 and pS(x) =

{
0 x ∈ E
p x ∈ I

. (3.19)

In the statements below, we also need the following notation: we write Pk(I), k > 0 the set of
polynomial functions of degree 6 k. Let us state our main results:

Theorem 3.2. Let us assume that[
H0, h0, q0

]> ∈ R×H1(E)×H1(0, `)

with

H0 > 0, h0 > 0 in E , H0 < min(h0(a−), h0(b+)) (3.20)

q0(0) = q0(`) = 0. (3.21)

Let K > 0 be such that

|H0|+ ‖h0‖H1(E) + ‖q0‖H1(0,`) 6 K,
1

K
6 h0(x) 6 K for x ∈ E . (3.22)
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Then, there exists T > 0, depending only on K such that the system (3.1)–(3.12) admits a unique
strong solution

H ∈ H2(0, T ), h ∈ H1(0, T ;H1(E)) ∩ C1([0, T ];L2(E)), (3.23)

q ∈ C0([0, T ];H1(0, `)) (3.24)

q|E ∈ H1(0, T ;L2(E)) ∩ C0([0, T ];H1(E)) ∩ L2(0, T ;H2(E)), (3.25)

q|I ∈ H1(0, T ;P1(I)), (3.26)

p|I ∈ L2(0, T ;P2(I)). (3.27)

Moreover, there exists a constant KT > 0 such that

1

KT
6 h0(t, x), H(t) 6 KT , for all t ∈ (0, T ), x ∈ E ,

H(t) < min(h(t, a−), h(t, b+)) for all t ∈ (0, T ).

Theorem 3.3. For any H > 0, the system (3.1)–(3.12) is locally well-posed around the stationary
state defined by (3.18)-(3.19). More precisely, there exists η0 > 0 such that, for all η ∈ (0, η0) there
exists two constants ε > 0 and C > 0, such that, for any[

H0, h0, q0
]> ∈ R×H1(E)×H1(0, `)

with ∫
E
h0(x) dx+H0(b− a) = M

|E|
|I|

+H`, q0(0) = q0(`) = 0, (3.28)

|H0 −H|+ ‖h0 − h‖H1(E) + ‖q0‖H1(0,`) 6 ε, (3.29)

there exists a unique solution of (3.1)–(3.12) with

H ∈ H +H2(0,∞), h ∈ h+H1(0,∞;H1(E)) ∩ C1
b ([0,∞);L2(E)), (3.30)

q ∈ Cb([0,∞);H1(0, `)) (3.31)

q|E ∈ H1(0,∞;L2(E)) ∩ Cb([0,∞);H1(E)) ∩ L2(0,∞;H2(E)), (3.32)

q|I ∈ H1(0,∞;P1(I)) (3.33)

p|I ∈
Mg

|I|
+ L2(0,∞;P2(I)) (3.34)∫

E
h(t, x) dx+H(t)(b− a) = M

|E|
|I|

+H` (t > 0), (3.35)

h(t, x) >
h

2
, H(t) >

H

2
, for all t ∈ (0,∞), x ∈ E , (3.36)

H(t) < min(h(t, a−), h(t, b+)) for all t ∈ (0,∞). (3.37)

satisfying the estimate

‖eη(·)
(
H −H

)
‖H2(0,∞) + ‖eη(·)

(
h− h

)
‖H1(0,∞;H1(E)) + ‖eη(·)q‖L∞(0,∞;H1(0,`))

+ ‖eη(·)q|E‖H1(0,∞;L2(E))∩L2(0,∞;H2(E)) 6 Cε.

4 Equations (3.1)–(3.12) as a parabolic system on E

In this section we eliminate pressure from (3.1)–(3.12) and obtain an equivalent system involving
the restrictions of h and q to E , together with the traces of q at x = a, b and H. More precisely,
let us set

qa(t) := q(t, a−) = q(t, a+), qb(t) := q(t, b−) = q(t, b+). (4.1)
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From (3.13), we deduce

Ḣ = −qb − qa
b− a

in I, (4.2)

and

q(t, x) = qa(t)
(x− b
a− b

)
+ qb(t)

(x− a
b− a

)
,

∂q

∂x
(t, x) =

qb(t)− qa(t)

b− a
(t > 0, x ∈ I). (4.3)

Combining (3.2), (3.5) and (3.13), we get

∂p

∂x
= −H ∂

∂t

( q

H2

)
= − q̇

H
+ 2

qḢ

H2
(t > 0, x ∈ I). (4.4)

We recall that if f ∈ P2([a, b]), then we have the following standard formulas∫ b

a

f(x)dx = f(a)(b− a) + f ′(a)
(b− a)2

3
+ f ′(b)

(b− a)2

6
, (4.5)

∫ b

a

f(x)dx = f(b)(b− a)− f ′(a)
(b− a)2

6
− f ′(b) (b− a)2

3
. (4.6)

In particular, since p is a second degree polynomial with respect to x, we deduce∫ b

a

p(t, x) dx

= p(t, a)(b− a) +

(
− q̇a(t)

H(t)
+ 2

qa(t)Ḣ(t)

H(t)2

)
(b− a)2

3
+

(
− q̇b(t)
H(t)

+ 2
qb(t)Ḣ(t)

H(t)2

)
(b− a)2

6
(4.7)

and∫ b

a

p(t, x) dx

= p(t, b)(b− a)−

(
− q̇a(t)

H(t)
+ 2

qa(t)Ḣ(t)

H(t)2

)
(b− a)2

6
−

(
− q̇b(t)
H(t)

+ 2
qb(t)Ḣ(t)

H2

)
(b− a)2

3
. (4.8)

Combining (4.7), (4.8), (4.2) and (3.9) yields

[
M +

(b− a)3

3H

]
q̇a −

[
M − (b− a)3

6H

]
q̇b = −Mg(b− a) + p(·, a)(b− a)2

+

[
2q2a − qaqb − q2b

]
(b− a)2

3H2
(t > 0), (4.9)

and

−
[
M − (b− a)3

6H

]
q̇a +

[
M +

(b− a)3

3H

]
q̇b = Mg(b− a)− p(·, b)(b− a)2

−

[
2q2b − qaqb − q2a

]
(b− a)2

3H2
(t > 0). (4.10)

Inverting the above linear system, we get

[
q̇a
q̇b

]
= S(H)

−Mg(b− a) + p(·, a)(b− a)2 +
[
2q2a − qaqb − q2b

]
(b−a)2
3H2

Mg(b− a)− p(·, b)(b− a)2 −
[
2q2b − qaqb − q2a

]
(b−a)2
3H2

 , (4.11)
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where for all H > 0, S(H) is the following symmetric positive matrix:

S(H) :=
H

(b− a)3
(
M + (b−a)3

12H

) [M + (b−a)3
3H M − (b−a)3

6H

M − (b−a)3
6H M + (b−a)3

3H

]
. (4.12)

Considering equations (3.7)–(3.8) together with (4.3) and with (4.11), we deduce, we obtain:[
q̇a
q̇b

]
= R

(
H, q(·, a),

∂

∂x
q(·, a−), h(·, a−), q(·, b), ∂

∂x
q(·, b+), h(·, b+)

)
, (4.13)

where

R

(
H, q(·, a),

∂

∂x
q(·, a−), h(·, a−), q(·, b), ∂

∂x
q(·, b+), h(·, b+)

)

= S(H)

−Mg(b− a) + p(·, a)(b− a)2 +
[
2q2a − qaqb − q2b

]
(b−a)2
3H2

Mg(b− a)− p(·, b)(b− a)2 −
[
2q2b − qaqb − q2a

]
(b−a)2
3H2

 , (4.14)

and p(·, a) and p(·, b) are given by:

p(t, a) =
q2(t, a)

2h2(t, a−)
+ gh(t, a−)− µ

h

∂q

∂x
(t, a−)− q2(t, a)

2H2(t)
− gH(t) + µ

qb(t)− qa(t)

H(b− a)
(4.15)

p(t, b) =
q2(t, b)

2h2(t, b+)
+ gh(t, b+)− µ

h

∂q

∂x
(t, b+)− q2(t, b)

2H2(t)
− gH(t) + µ

qb(t)− qa(t)

H(b− a)
. (4.16)

Finally, the system (3.1)–(3.12) writes in the equivalent form

Ḣ = −qb − qa
b− a

(t > 0), (4.17)

∂h

∂t
(t, x) +

∂q

∂x
(t, x) = 0 (t > 0, x ∈ E), (4.18)

∂q

∂t
+

∂

∂x

(
q2

h
+
gh2

2

)
= h

∂

∂x

(
µ

h

∂q

∂x

)
(t > 0, x ∈ E), (4.19)

q(t, 0) = q(t, `) = 0 (t > 0), (4.20)

q(t, a) = qa(t), q(t, b) = qb(t) (t > 0), (4.21)

[
q̇a
q̇b

]
= R

(
H, q(·, a),

∂

∂x
q(·, a−), h(·, a−), q(·, b), ∂

∂x
q(·, b+), h(·, b+)

)
, (4.22)

with R defined by (4.14), (4.15) and (4.16).

5 Local in time existence and uniqueness

In this section we prove Theorem 3.2. In view of the reduction performed in Section 4, our main
result in Theorem 3.2 can be restated as:
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Theorem 5.1. Assume that[
H0, h0, q0, qa,0, qb,0

]> ∈ R×H1(E)×H1(E)× R2,

with

H0 > 0, h0 > 0 in E , H0 < min(h0(a−), h0(b+)), (5.1)

q0(0) = q0(`) = 0, q0(a) = qa,0, q0(b) = qb,0. (5.2)

Let K > 0 be such that

|H0|+ ‖h0‖H1(E) + ‖q0‖H1(E) + |q0,a|+ |q0,b| 6 K,
1

K
6 h0(x) 6 K for x ∈ E . (5.3)

Then, there exists T > 0, depending only on K, such that the system (4.17)–(4.22) admits a unique
strong solution

H ∈ H2(0, T ), h ∈ H1(0, T ;H1(E)) ∩ C1([0, T );L2(E)), (5.4)

q ∈ H1(0, T ;L2(E)) ∩ C([0, T );H1(E)) ∩ L2(0, T ;H2(E)), (5.5)

qa ∈ H1(0, T ), qb ∈ H1(0, T ) (5.6)

Moreover, there exists a constant KT > 0 such that

1

KT
6 h(t, x), H(t) 6 KT (t ∈ (0, T ), x ∈ E),

H(t) < min(h(t, a−), h(t, b+)) (t ∈ (0, T )).

The proof of the above theorem relies on classical estimates on linear parabolic problems, com-
bined with the use of the Banach fixed point theorem. The strategy we adopt here is based on the
fact that the system (4.17)–(4.22) can be rewritten as

Ḣ = −qb − qa
b− a

(t > 0), (5.7)

∂h

∂t
+
∂q

∂x
= 0 (t > 0, x ∈ E), (5.8)

∂q

∂t
− µ∂

2q

∂x2
= F1(h, q) (t > 0, x ∈ E), (5.9)

q(t, 0) = q(t, `) = 0, (t > 0), (5.10)

q(t, a) = qa(t), q(t, b) = qb(t) (t > 0), (5.11)[
q̇a
q̇b

]
= F2(H, q, qa, qb) (t > 0), (5.12)

h(0, x) = h0(x), q(0, x) = q0(x) (x ∈ E), (5.13)

H(0) = H0, qa(0) = qa,0, qb(0) = qb,0, (5.14)

where

F1(h, q) = −2q

h

∂q

∂x
+
q2

h2
∂h

∂x
+ gh

∂h

∂x
− µ

h

∂h

∂x

∂q

∂x
, (5.15)

and

F2(H, q, qa, qb) = R

(
H, q(·, a),

∂

∂x
q(·, a−), h(·, a−), q(·, b), ∂

∂x
q(·, b+), h(·, b+)

)
, (5.16)

with R defined by (4.14), (4.15) and (4.16). Next, by replacing F1 and F2 by given source term
f1 and f2 we obtain the following linear system :
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Ḣ = −qb − qa
b− a

(t > 0), (5.17)

∂h

∂t
+
∂q

∂x
= 0 (t > 0, x ∈ E), (5.18)

∂q

∂t
− µ∂

2q

∂x2
= f1 (t > 0, x ∈ E), (5.19)

q(t, 0) = q(t, `) = 0, (t > 0), (5.20)

q(t, a) = qa(t), q(t, b) = qb(t) (t > 0), (5.21)[
q̇a
q̇b

]
= f2 (t > 0), (5.22)

h(0, x) = h0(x), q(0, x) = q0(x) (x ∈ E), (5.23)

H(0) = H0, qa(0) = qa,0, qb(0) = qb,0. (5.24)

We have the following regularity result for the system (5.17)-(5.24)

Theorem 5.2. Let us assume that
[
H0, h0, q0, qa,0, qb,0

]> ∈ R×H1(E)×H1(E)×R2 and satisfies the
compatibility condition (5.2). Then, for all 0 < T 6 1, f1 ∈ L2(0, T ;L2(E)) and f2 ∈ L2(0, T ;R2)
the system (5.17)-(5.24) admits a unique solution

H ∈ H2(0, T ), h ∈ H1(0, T ;H1(E)) ∩ C1([0, T );L2(E)),

q ∈ H1(0, T ;L2(E)) ∩ C([0, T );H1(E)) ∩ L2(0, T ;H2(E)),

qa ∈ H1(0, T ), qb ∈ H1(0, T ).

Moreover, there exists a constant C independent of T such that

‖H‖H2(0,T ) + ‖h‖H1(0,T ;H1(E)) + ‖h‖L∞(0,T ;H1(E)) + ‖q‖L2(0,T ;H2(E)) + ‖q‖H1(0,T ;L2(E))

+ ‖q‖L∞(0,T ;H1(E)) + ‖(qa, qb)‖H1(0,T ;R2) 6 C
(
|H0|+ ‖h̃0‖H1(E) + ‖q0‖H1(E)

+ |qa,0|+ |qb,0|+
∥∥∥(f1, f2)

∥∥∥
L2(0,T ;L2(E)×R2)

)
, (5.25)

for all 0 < T 6 1.

Proof. Let us remark that the linear system (5.17)-(5.24) can be solved in “cascades”: Eq. (5.22)
can be solved independently and admits a unique solution (qa, qb) ∈ H1(0, T ;R2). Next we solve
Eq. (5.17) and we obtain H ∈ H2(0, T ). Using the standard regularity results for parabolic equa-
tions with non-homogeneous boundary conditions, we also have that

q ∈ L2(0, T ;H2(E)) ∩H1(0, T ;L2(E)) ∩ L∞(0, T ;H1(E)).

Finally, using the regularity of q, we obtain the desired regularity of h from Eq. (5.18). To obtain
estimates with continuity constant independent of time T we can proceed as in [10, Theorem
5.3].

Now we estimate the nonlinear terms defined in (5.15)-(5.16).

Proposition 5.3. Let us assume that
[
H0, h0, q0, qa,0, qb,0

]> ∈ R×H1(E)×H1(E)×R2 such that

(5.1)-(5.3) holds. There exist T̃ ∈ (0, 1), δ > 0 and C = C(M, T̃ ) > 0 such that for T ∈ (0, T̃ ] and
for (f1, f2) ∈ L2(0, T ;L2(E)× R2) satisfying∥∥∥(f1, f2)

∥∥∥
L2(0,T ;L2(E)×R2)

6 1,

the solution (H,h, q, qa, qb) of (5.17)-(5.24) verifies∥∥∥F1

∥∥∥
L2(0,T ;L2(E))

+
∥∥∥F2

∥∥∥
L2(0,T ;R2)

6 CT δ.
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Proof. We choose T̃ < 1 and T ∈ (0, T̃ ]. The constant appearing in this proof depends only on K
and independent of T. First of all, from (5.25) we first obtain

‖H‖H2(0,T ) + ‖h‖H1(0,T ;H1(E)) + ‖h‖L∞(0,T ;H1(E)) + ‖q‖L2(0,T ;H2(E)) + ‖q‖H1(0,T ;L2(E))

+ ‖q‖L∞(0,T ;H1(E)) + ‖(qa, qb)‖H1(0,T ;R2) 6 C. (5.26)

Applying Hölder’s inequality together with the above estimate we deduce that

‖H −H0‖L∞(0,T ) 6 C
√
T , ‖h− h0‖L∞(0,T ;H1(E)) 6 C

√
T .

In particular, there exists T̃ such that for all T ∈ (0, T̃ ] the following holds:

H(t) >
H0

2
, h(t, x) >

1

2K
, t ∈ (0, T ), x ∈ E , (5.27)

‖h‖L∞((0,T )×E) + ‖H‖L∞(0,T ) 6 C, (5.28)

‖h‖L2(0,T ;H1(E)) + ‖H‖L2(0,T ) 6 C
√
T , (5.29)∥∥∥∥ 1

h

∥∥∥∥
L∞(0,T ;H1(E))

+

∥∥∥∥ 1

h

∥∥∥∥
L∞((0,T )×E)

+

∥∥∥∥ 1

H

∥∥∥∥
L∞(0,T )

6 C. (5.30)

In a similar manner, we also obtain

‖qa‖L∞(0,T ) + ‖qb‖L∞(0,T ) 6 C, ‖qa‖L2(0,T ) + ‖qb‖L2(0,T ) 6 C
√
T . (5.31)

On the other hand, using an interpolation inequality one has following estimate (see, for instance
estimate, (6.13) of [10])

‖q‖L2(0,T ;H1+s(E)) 6 CT (1−s)/4, s ∈ (0, 1). (5.32)

Using the above estimate, (5.26) and the Sobolev embedding we get

‖q‖L∞((0,T )×E) 6 C,

∥∥∥∥ ∂q∂x
∥∥∥∥
L2(0,T ;L∞(E))

6 CT (1−s)/4, s ∈ (1/2, 1) (5.33)

We are now in a position to estimate the non-linear terms defined in (5.15)-(5.16).
Estimate of F1 :

‖F1‖L2(0,T ;L2(E)) 6 CT δ, for some δ > 0. (5.34)

•Estimate of the first term of F1 : Using (5.26), (5.27) and (5.33), we have∥∥∥∥−2q

h

∂q

∂x

∥∥∥∥
L2(0,T ;L2(E))

6 C‖q‖L2(0,T ;H1(E)) 6 C
√
T‖q‖L∞(0,T ;H1(E)) 6 C

√
T .

•Estimate of the second and third term of F1 : Using (5.26), (5.27) and (5.33) we have∥∥∥∥ q2h2 ∂h∂x + gh
∂h

∂x

∥∥∥∥
L2(0,T ;L2(E))

6 C‖h‖L2(0,T ;H1(E)) 6 C
√
T .

•Estimate of the last term of F1 : Using (5.26), (5.27) and (5.33) we obtain∥∥∥∥µh ∂h∂x ∂q∂x,
∥∥∥∥
L2(0,T ;L2(E))

6 C

∥∥∥∥∂h∂x
∥∥∥∥
L∞(0,T ;L2(E))

∥∥∥∥ ∂q∂x
∥∥∥∥
L2(0,T ;L∞(E))

6 CT (1−s)/4,

for some s ∈ (1/2, 1). Thus we have proved (5.34).
Estimate of F2 :

‖F2‖L2(0,T ;R2) 6 CT δ, for some δ > 0. (5.35)
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•Estimate of S(H) defined in (4.12) : Using (5.27) - (5.29), we have the following estimates

‖S(H)‖L∞(0,T ;R4) 6 C, ‖S(H)‖L2(0,T ;R4) 6 C
√
T . (5.36)

•Estimate p(t, a) and p(t, b) defined in (4.15) - (4.16): We claim that

‖p(·, a)‖L2(0,T ) + ‖p(·, b)‖L2(0,T ) 6 CT δ, for some δ > 0. (5.37)

We provide only the estimate of third term of p(t, a). Estimates of the other terms are similar.
Using (5.30) and (5.32) we have∥∥∥∥µh ∂q∂x (·, a−)

∥∥∥∥
L2(0,T )

6 C

∥∥∥∥ 1

h

∂q

∂x

∥∥∥∥
L2(0,T ;Hs(0,a))

6 C

∥∥∥∥ 1

h

∥∥∥∥
L∞(0,T ;H1(0,a))

∥∥∥∥ ∂q∂x
∥∥∥∥
L2(0,T ;Hs(0,a))

6 CT (1−s)/4,

for some s ∈ (1/2, 1). Thus we have (5.37). Finally, combining (5.36), (5.37) and (5.31), we obtain
(5.35).

We are now in a position to prove one of Theorem 5.1.

Proof of Theorem 5.1. Let T̃ be the constant in Proposition 5.3. For T ∈ (0, T̃ ], we consider the
ball

BT :=

{
(f1, f2) ∈ L2(0, T ;L2(E)× R2) ;

∥∥∥(f1, f2)
∥∥∥
L2(0,T ;L2(E)×R2)

6 1

}
(5.38)

and the map
Ξ : (f1, f2) ∈ BT 7→ (F1(h, q),F2(H, q, qa, qb)), (5.39)

where (H,h, q, qa, qb) is the solution to the system (5.17)-(5.24) and where F1 and F2 are given by
(5.15)-(5.16). By Proposition 5.3, we have that Ξ(BT ) ⊂ BT for T small enough. With similar
calculation as Proposition 5.3, we can also show that for small T , Ξ|BT

is a strict contraction. This
completes the proof of Theorem 5.1.

6 Global in time existence and uniqueness

In this section, we linearize the system (4.17)–(4.22) around a stationary state and we study the
corresponding linear system. Note that, in order to prove global existence for small data of our
original problem (4.17)–(4.22) we need this linearization to be exponentially stable, so that we
cannot use the linearized problem (5.17)-(5.24), introduced for the local existence result.

6.1 Linearization around a stationary state

We consider the stationary state given by (3.19) and we define

H̃ := H −H, h̃ := h− hS =

{
h− h in E
H̃ in I

.

From (4.15)–(4.16) and (3.18), we deduce

p(t, a) =
q2(t, a)

2

(
1

(h̃+ h)2(t, a−)
− 1

(H̃ +H)2(t)

)
+ g(h̃(t, a−)− H̃(t)) + g

M

b− a

− µ

h

∂q

∂x
(t, a−) + µ

qb(t)− qa(t)

H(b− a)
+
µ

h

(
h̃

(h̃+ h)

∂q

∂x

)
(t, a−)− µqb(t)− qa(t)

b− a
H̃

(H̃ +H)H
(6.1)
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p(t, b) =
q2(t, b)

2

(
1

(h̃+ h)2(t, b+)
− 1

(H̃ +H)2(t)

)
+ g(h̃(t, b+)− H̃(t)) + g

M

b− a

− µ

h

∂q

∂x
(t, b+) + µ

qb(t)− qa(t)

H(b− a)
+
µ

h

(
h̃

(h̃+ h)

∂q

∂x

)
(t, b+)− µqb(t)− qa(t)

b− a
H̃

(H̃ +H)H
. (6.2)

Thus

−Mg(b− a) + p(·, a)(b− a)2 +
[
2q2a − qaqb − q2b

] (b− a)2

3H2

= (b− a)2

{
g(h̃(·, a−)− H̃)− µ

h

∂q

∂x
(·, a−) +

µ(qb − qa)

H(b− a)

+
q2(·, a)

2

(
1

(h̃+ h)2(·, a−)
− 1

(H̃ +H)2

)

+
µ

h

(
h̃

(h̃+ h)

∂q

∂x

)
(t, a−)− µqb − qa

b− a
H̃

(H̃ +H)H
+

2q2a − qaqb − q2b
3(H̃ +H)2

}
(6.3)

and

Mg(b− a)− p(·, b)(b− a)2 −
[
2q2a − qaqb − q2b

] (b− a)2

3H2

= (b− a)2

{
− g(h̃(·, b+)− H̃) +

µ

h

∂q

∂x
(·, a−)− µ(qb − qa)

H(b− a)

− q2(·, b)
2

(
1

(h̃+ h)2(·, b+)
− 1

(H̃ +H)2

)

+
µ

h

(
h̃

(h̃+ h)

∂q

∂x

)
(t, b+) + µ

qb − qa
b− a

H̃

(H̃ +H)H
− 2q2b − qaqb − q2a

3(H̃ +H)2

}
(6.4)

Then (H̃, h̃, q, qa, qb) satisfies

˙̃
H = −qb − qa

b− a
(t > 0), (6.5)

∂h̃

∂t
(t, x) +

∂q

∂x
(t, x) = 0 (t > 0, x ∈ E), (6.6)

∂q

∂t
+ gh

∂h̃

∂x
− µ∂

2q

∂x2
= F1(h̃, q) (t > 0, x ∈ E), (6.7)

q(t, 0) = q(t, `) = 0 (t > 0), (6.8)

q(t, a) = qa(t), q(t, b) = qb(t) (t > 0), (6.9)

[
q̇a
q̇b

]
= (b− a)2S(H)

 g(h̃(·, a−)− H̃)− µ

h

∂q

∂x
(·, a−) +

µ

H

q(·, b)− q(·, a)

b− a
−g(h̃(·, b+)− H̃) +

µ

h

∂q

∂x
(·, b+)− µ

H

q(·, b)− q(·, a)

b− a


+ F2(H̃, h̃, q, qb, qa) (6.10)

where

F1(h̃, q) := − ∂

∂x

(
q2

h̃+ h
+ g

h̃2

2

)
− µ

(h+ h̃)2

∂h̃

∂x

∂q

∂x
, (6.11)
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F2(H̃, h̃, q, qb, qa)

:= (b− a)2
(
S(H̃ +H)− S(H)

) g(h̃(·, a−)− H̃)− µ

h

∂q

∂x
(·, a−) +

µ

H

qb − qa
b− a

−g(h̃(·, b+)− H̃) +
µ

h

∂q

∂x
(·, a−)− µ

H

qb − qa
b− a


+ (b− a)2S(H̃ +H)

[
F3(H̃, h̃, q, qb, qa)

F4(H̃, h̃, q, qb, qa)

]
, (6.12)

F3(H̃, h̃, q, qb, qa) :=
q2a
2

(
1

(h̃+ h)2(·, a−)
− 1

(H̃ +H)2

)
+
µ

h

(
h̃

(h̃+ h)

∂q

∂x

)
(·, a−)

− µqb − qa
b− a

H̃

(H̃ +H)H
+

2q2a − qaqb − q2b
3(H̃ +H)2

(6.13)

F4(H̃, h̃, q, qb, qa) := −q
2
b

2

(
1

(h̃+ h)2(·, b+)
− 1

(H̃ +H)2

)
− µ

h

(
h̃

(h̃+ h)

∂q

∂x

)
(·, b+)

+ µ
qb − qa
b− a

H̃

(H̃ +H)H
− 2q2b − qaqb − q2a

3(H̃ +H)2
(6.14)

Using (3.10), (3.11) and (3.12), we add the following initial conditions to system (6.5)–(6.14):

h̃(0, x) = h̃0(x) (x ∈ E), (6.15)

q(0, x) = q0(x) (x ∈ E), (6.16)

H̃(0) = H̃0, qa(0) = qa,0 qb(0) = qb,0, (6.17)

where
H̃0 = H0 −H, h̃0 := h0 − h, qa,0 := q0(a), qb,0 := q0(b).

In order to study the above equations, we consider the following linear system

˙̃
H = −qb − qa

b− a
(t > 0), (6.18)

∂h̃

∂t
(t, x) +

∂q

∂x
(t, x) = 0 (t > 0, x ∈ E), (6.19)

∂q

∂t
+ gh

∂h̃

∂x
− µ ∂

∂x

(
∂q

∂x

)
= f1 (t > 0, x ∈ E), (6.20)

q(t, 0) = q(t, `) = 0 (t > 0), (6.21)

q(t, a) = qa(t), q(t, b) = qb(t) (t > 0), (6.22)

[
q̇a
q̇b

]
= S0(H)

 µ

H

q(·, b)− q(·, a)

b− a
+ g
(
h̃(·, a−)− H̃

)
− µ

h

∂q

∂x
(·, a−)

− µ
H

q(·, b)− q(·, a)

b− a
− g
(
h̃(·, b+)− H̃

)
+
µ

h

∂q

∂x
(·, b+)

+ f2 (6.23)

where

S0(H) =
H

(b− a)
(
M + (b−a)3

12H

) [M + (b−a)3
3H M − (b−a)3

6H

M − (b−a)3
6H M + (b−a)3

3H

]
, (6.24)

and where f1 and f2 are now given.
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6.2 Study of the Linear Problem

In this section we use the methodology developed in [15] in order to prove that the linear problem
introduced above can be described by an analytic C0 semigroup in an appropriate Hilbert space
and then we show that this semigroup is exponentially stable. To this end we begin by defining
the following spaces:

X =
{

[H,h, q]> ∈ C×H1(E)× L2(E) |
∫
E
h0(x) dx+H0(b− a) = 0}, U = C2, (6.25)

Z =
{

[H,h, q]> ∈ C×H1(E)×H2(E) |
∫
E
h0(x) dx+H0(b−a) = 0, q0(0) = q0(`) = 0

}
. (6.26)

We also introduce the following operators:

L : D(L)→ X, L

Hh
q

 =


− q(b)−q(a)b−a

− dq
dx

−ghdh
dx + µ d2q

dx2

 , D(L) = Z, (6.27)

G : D(G)→ U , G

Hh
q

 =

[
q(a)
q(b)

]
, D(G) = Z, (6.28)

and
A := L|Ker(G). (6.29)

The above definition yields

D(A) = C×H1(E)× (H2 ∩H1
0 )(E) and A

Hh
q

 =


0

− dq
dx

−ghdh
dx + µ d2q

dx2

 . (6.30)

Lemma 6.1. The operator A : D(A)→ X generates an analytic semigroup.

Proof. It clearly suffices to prove that the operator Ã defined by

D(Ã) = H1(E)× (H2 ∩H1
0 )(E),

Ã

[
h
q

]
=

[
− dq

dx

−ghdh
dx + µ d2q

dx2

] ([
h
q

]
∈ D(Ã)

)
,

generates an analytic semigroup in X̃ = H1(E) × L2(E). To this aim, noticing that the operator
defined by

P

[
h
q

]
=

[
0

−ghdh
dx

]
is in L(X̃), it suffices to prove that the operator A1 defined by

D(A1) = D(Ã),

A1

[
h
q

]
=

[
− dq

dx

µ d2q
dx2

] ([
h
q

]
∈ D(Ã)

)
,
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generates an analytic semigroup in X̃. Denoting

Σε,γ = {λ ∈ C \ {0} | |argλ| 6 π − ε, |λ| > γ}, (6.31)

this is equivalent to the existence of ε ∈ (0, π/2) and γ > 0 such that

Σε,γ ⊂ ρ(A1)

and the set {
λ(λI −A1)−1 | λ ∈ Σε,γ

}
is bounded in L(X̃). To do this, for

[
f
g

]
∈ X̃ we notes that the equation

(λI −A1)

[
hλ
qλ

]
=

[
f
g

]
,

writes

λhλ +
dqλ
dx

= f, (6.32)

λqλ − µ
d2qλ
dx2

= g, (6.33)

q(0) = q(a) = q(b) = q(`) = 0. (6.34)

Classical results imply the existence of γ, C > 0 and ε ∈ (0, π/2) such that for every λ ∈ Σε,γ the
unique solution of (6.33) and (6.34) satisfies

‖λqλ‖L2(E) + ‖qλ‖H2(E) 6 C‖g‖L2(E) (g ∈ L2(E)). (6.35)

Inserting the above estimate in (6.32) we obtain that

‖λhλ‖H1(E) 6 ‖f‖H1(E) + C‖g‖L2(E) (f ∈ H1(E), g ∈ L2(E)).

The last estimates and (6.35) imply that the family of operators

λ(λI −A1)−1 (λ ∈ Σε,γ)

is bounded in L(X̃), which ends the proof.

Using the notation

z =

H̃h̃
q

 , u =

[
qa
qb

]
, (6.36)

the linear system (6.18)–(6.24) writes

ż = Lz +

 0
0
f1

 , Gz = u, (6.37)

u̇ = Cz + f2, (6.38)

where L and G have been defined in (6.27) and (6.28), respectively, and

Cz = S0(H)

 µ

H

q(b)−q(a)
b−a + g

(
h̃(a−)− H̃

)
− µ

h

dq
dx (a−)

− µ

H

q(b)−q(a)
b−a − g

(
h̃(b+)− H̃

)
+ µ

h

dq
dx (b+)

 . (6.39)
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We introduce the operator A by:

D(A) =

{[
z
u

]
∈ Z × U ;Gz = u

}
(6.40)

and

A
[
z
u

]
=

[
Lz
Cz

]
(6.41)

Then the linear system (6.18)–(6.24) can be written as

d

dt

[
z
u

]
= A

[
z
u

]
+

[
Φ1

Φ2

]
(6.42)

where

Φ1 =

 0
0
f1

 , Φ2 = f2.

Theorem 6.2. The operator A is the infinitesimal generator of an analytic semigroup on X ×U .

Proof. From a trace theorem, one can check the following property on C:

∀δ > 0, ∃k(δ) ‖Cz‖C2 6 δ‖z‖Z + k(δ)‖z‖X . (6.43)

Then by [15, Theorem 1.25] and Lemma 6.1 we deduce that A : D(A) → X × U generates an
analytic semigroup.

We now show the following property on the resolvent set ρ(A) of A:

Proposition 6.3. The resolvent set of A contains the closed right half plane of C:

C+ := {λ ∈ C ; Re(λ) > 0} ⊂ ρ(A).

Proof. We first show that 0 ∈ ρ(A), i.e. that A is boundedly invertible. Assume F ∈ X × U and
let us solve the equation

A
[
z0
u0

]
= F

([
z0
u0

]
∈ D(A)

)
. (6.44)

Denoting

[
z0
u0

]
=


H0

h0
q0
qa,0
qb,0

 and F =


f1
f2
f3
f4
f5

, the above system writes

−q0(b)− q0(a)

b− a
= f1, (6.45)

−dq0
dx

(x) = f2(x) (x ∈ E), (6.46)

−ghdh0
dx

+ µ
d2q0
dx2

= f3(x) (x ∈ E), (6.47)

S0(H)

 µ

H

q0(b)−q0(a)
b−a + g

(
h0(a−)−H0

)
− µ

h

dq0
dx (a−)

− µ

H

q0(b)−q0(a)
b−a − g

(
h0(b+)−H0

)
+ µ

h

dq0
dx (b+)

 =

[
f4
f5

]
(6.48)
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q0(0) = q0(`) = 0, (6.49)

q0(a) = qa,0, q0(b) = qb,0. (6.50)

We first note that from (6.46) and (6.49) it follows that

q0(x) =

{
−
∫ x
0
f2(ξ) dξ for x ∈ [0, a]∫ `

x
f2(ξ) dξ for x ∈ [b, `].

(6.51)

Remark that since

f1f2
f3

 ∈ X (see (6.25)), equation (6.45) is also satisfied. Moreover, from (6.50)

it follows that

qa,0 = −
∫ a

0

f2(ξ) dξ, qb,0 =

∫ `

b

f2(ξ) dξ. (6.52)

Multiplying both sides of (6.48) by S0(H)−1 and using (6.45), (6.46), we obtaing(h0(a−)−H0

)
g
(
h0(b+)−H0

) =

 µ

H
f1 − µ

h
f2(a−) +

[
M + (b−a)3

3H

]
f4

(b−a)2 −
[
M − (b−a)3

6H

]
f5

(b−a)2

µ

H
f1 − µ

h
f2(b+) +

[
M − (b−a)3

6H

]
f4

(b−a)2 −
[
M + (b−a)3

3H

]
f5

(b−a)2

 . (6.53)

On the other hand, by combining (6.46) and (6.47) it follows that

d

dx
(h0 −H0)(x) = −f3(x)

gh
− µ

gh

df2
dx

(x) (x ∈ E), (6.54)

so that, according to (6.53), we have

h0(x)−H0 =
µ

gH
f1 +

[
M +

(b− a)3

3H

]
f4

g(b− a)2

−
[
M − (b− a)3

6H

]
f5

g(b− a)2
+

1

gh

∫ a

x

f3(ξ) dξ − µ

gh
f2(x) (x ∈ [0, a]), (6.55)

h0(x)−H0 =
µ

gH
f1 +

[
M +

(b− a)3

3H

]
f4

g(b− a)2

−
[
M − (b− a)3

6H

]
f5

g(b− a)2
− 1

gh

∫ x

b

f3(ξ) dξ − µ

gh
f2(x) (x ∈ [b, `]). (6.56)

The above formulas, combined with the the fact that
∫
E(h0(x)−H0) dx+H0` = 0, give an explicit

formula for H0 in terms of fk, with k ∈ {1, . . . , 5}, together with the existence of some positive
constant K0 such that

|H0| 6 K0 ‖F‖X×U (F ∈ X × U) .

The above estimate, together with (6.55) and (6.56) imply the existence of K1 > 0 such that

‖h0‖L2(E) 6 K1 ‖F‖X×U (F ∈ X × U) .

The last two estimates and (6.54), (6.51), (6.52) imply that there exists K2 > 0 such that∥∥∥∥[z0u0
]∥∥∥∥

X×U
6 K2 ‖F‖X×U (F ∈ X × U) .

This shows that 0 ∈ ρ(A). Assume now λ ∈ C+ \ {0} and F = [f1, f2, f3, f4, f5]>, the equation

(λI −A)

[
z0
u0

]
= F,
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writes

λH0 +
q0(b)− q0(a)

b− a
= f1 (6.57)

λh0(x) +
dq0
dx

(x) = f2(x) (6.58)

λq0(x) + gh
dh0
dx
− µd2q0

dx2
= f3(x) (6.59)

q0(0) = q0(`) = 0, (6.60)

q0(a) = qa,0, q0(b) = qb,0, (6.61)

λ

[
qa,0
qb,0

]
− S0(H)

 µ

H

q0(b)−q0(a)
b−a + g

(
h0(a−)−H0

)
− µ

h

dq0
dx (a−)

− µ

H

q0(b)−q0(a)
b−a − g

(
h0(b+)−H0

)
+ µ

h

dq0
dx (b+)

 =

[
f4
f5

]
. (6.62)

From (6.62) and (6.24), it follows that

µ

H

q0(b)− q0(a)

b− a
+ g
(
h0(a−)−H0

)
− µ

h

dq0
dx

(a−)

=

[
M +

(b− a)3

3H

]
(λqa,0 − f4)

(b− a)2
+

[
M − (b− a)3

6H

]
(f5 − λqb,0)

(b− a)2
(6.63)

− µ

H

q0(b)− q0(a)

b− a
− g
(
h0(b+)−H0

)
+
µ

h

dq0
dx

(b+)

=

[
M − (b− a)3

6H

]
(f4 − λqa,0)

(b− a)2
+

[
M +

(b− a)3

3H

]
(λqb,0 − f5)

(b− a)2
. (6.64)

We next transform (6.57)-(6.64) into a boundary value problem for q0 by eliminating h0, H0, qa,0, qb,0
from the above mentioned equations. Firstly, from (6.58) and (6.59) we deduce

λ

h
q0 −

(
µ

h
+
g

λ

)
d2q0
dx2

=
f3

h
− g

λ

df2
dx

=: φ1 ∈ L2(E). (6.65)

Next, using (6.57), (6.58) and (6.61) in (6.63)-(6.64) it follows that(µ
h

+
g

λ

)dq0
dx

(a−) =
( µ
H

+
g

λ
+

λM

b− a

)q0(b)− q0(a)

b− a
− λ(b− a)

6H
(2q0(a) + q0(b)) + φ2, (6.66)

(µ
h

+
g

λ

)dq0
dx

(b+) =
( µ
H

+
g

λ
+

λM

b− a

)q0(b)− q0(a)

b− a
+
λ(b− a)

6H
(q0(a) + 2q0(b)) + φ3, (6.67)

with

φ2 := g
(f2(a−)

λ
− f1
λ

)
+

[
M +

(b− a)3

3H

]
f4

(b− a)2
−
[
M − (b− a)3

6H

]
f5

(b− a)2
,

φ3 := g
(f2(b+)

λ
− f1
λ

)
+

[
M − (b− a)3

6H

]
f4

(b− a)2
−
[
M +

(b− a)3

3H

]
f5

(b− a)2
.

At this stage we remark that the fact that C+ \ {0} ⊂ ρ(A) readily follows as soon as we have
shown that for every λ ∈ C+ \ {0} ⊂ ρ(A) and F ∈ X × U , the system formed by (6.65) and
(6.66)-(6.67), together with (6.60) admits a unique solution q0 with

‖q0‖H2(E) 6 K(λ)‖F‖X×U (F ∈ X × U).
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We then recover h0, H0, qa,0, qb,0 by using (6.57), (6.58) and (6.61).

Now, to solve (6.65), (6.60) and (6.66)-(6.67), it is sufficient to prove the existence and uniqueness
of a weak solution. The H2 regularity can then be obtained in a standard way.

Let us set
V :=

{
ψ ∈ H1(E) | ψ(0) = ψ(`) = 0

}
.

Then we can check (6.65), (6.60) and (6.66)-(6.67) are equivalent to

Bλ(q, ψ) =

∫
E
φ1ψ dx+ φ2ψ(a)− φ3ψ(b) (ψ ∈ V ), (6.68)

where

Bλ(q, ψ) :=

∫
E

[
λ

h
qψ +

(
µ

h
+
g

λ

)
dq0
dx

dψ

dx

]
dx

−
[(

g

λ
+
µ

H
+

λM

b− a

)
q0(b)− q0(a)

b− a
− λ(b− a)

6H
[2q0(a) + q0(b)]

]
ψ(a)

+

[(
g

λ
+
µ

H
+

λM

b− a

)
q0(b)− q0(a)

b− a
+
λ(b− a)

6H
[q0(a) + 2q0(b)]

]
ψ(b) (q, ψ ∈ V ).

We notice that Bλ writes more conveniently as

Bλ(q, ψ) =

∫
E

[
λ

h
qψ +

(
µ

h
+
g

λ

)
dq0
dx

dψ

dx

]
dx

+

(
g

λ
+
µ

H
+

λM

b− a

)
(q0(b)− q0(a))(ψ(b)− ψ(a)

b− a

+
λ(b− a)

6H

[
q0(a)ψ(a) + q0(b)ψ(b) + (q0(b) + q0(a))(ψ(b) + ψ(a))

]
(q, ψ ∈ V ). (6.69)

From the above formula and the Poincaré inequality, it follows that for any λ ∈ C+ \ {0} there
exist positive constants C = C(λ), α = α(λ) such that

|Bλ(q, ψ)‖ 6 C‖q‖V ‖ψ‖V , ReBλ(q, q) > α‖q‖2V (q, ψ ∈ V ),

thus Bλ is a bounded and coercive form on V . Moreover, the right hand side of (6.68) clearly
defines a bounded linear functional on V . Thus the conclusion follows by the complex version of
the Lax-Milgram Lemma (see, for instance, Arendt et al. [1, Lemma 5.4]).

Proposition 6.4. The operator A generates an exponentially stable semigroup (etA)t>0 on X×U .
In other words, there exist constant C > 0 and η0 > 0 such that∥∥∥∥etA (H̃0, h̃0, q0, qa,0, qb,0

)>∥∥∥∥
X×U

6 Ce−η0t
∥∥∥∥(H̃0, h̃0, q0, qa,0, qb,0

)>∥∥∥∥
X×U

. (6.70)

Proof. By Lemma 6.1 we have the existence of C > 0 such that for any λ ∈ Σε,γ with ε ∈ (0, π/2),∥∥(λI −A)−1
∥∥
L(X×U) 6 C.

Next, by Proposition 6.3 and noting the fact that C+ \ Σε,γ is a compact set, we obtain∥∥(λI −A)−1
∥∥
L(X×U) 6 C, for any λ ∈ C+ ∪ Σε,γ .

This yields that
{λ ∈ C | Reλ > −η} ⊂ ρ(A).

Finally applying Proposition 2.9 [2, p. 120] we deduce the exponential stability of the semigroup
generated by the operator A.
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We conclude from Theorem 6.2 and Proposition 6.4 the following result:

Proposition 6.5. Let η ∈ [0, η0) where η0 is the constant introduced in Proposition 6.4. Then for
any [

H̃0, h̃0, q0, qa,0, qb,0

]>
∈ R×H1(E)×H1(E)× R2

with ∫
E
h̃0(x) dx+ H̃0(b− a) = 0, q0(0) = q0(`) = 0, q0(a) = qa,0, q0(b) = qb,0, (6.71)

and for any eη(·)f1 ∈ L2(0,∞;L2(E)), eη(·)f2 ∈ L2(0,∞;R2) the system (6.18)–(6.23), with (6.15)–
(6.17) admits a unique solution

eη(·)H̃ ∈ H1(0,∞), eη(·)h̃ ∈ H1(0,∞;H1(E)), (6.72)

eη(·)q ∈ H1(0,∞;L2(E)) ∩ Cb([0,∞);H1(E)) ∩ L2(0,∞;H2(E)), (6.73)

eη(·)qa ∈ H1(0,∞), eη(·)qb ∈ H1(0,∞), (6.74)∫
E
h̃(t, x) dx+ H̃(t)(b− a) = 0 (t > 0). (6.75)

Moreover, there exists a positive constant C depending on η such that

‖eη(·)H̃‖H1(0,∞) + ‖eη(·)h̃‖H1(0,∞;H1(E)) + ‖eη(·)q‖H1(0,∞;L2(E))∩Cb([0,∞);H1(E))∩L2(0,∞;H2(E))

+ ‖eη(·)(qa, qb)‖H1(0,∞;R2)

6 C
(
|H̃0|+ ‖h̃0‖H1(E) + ‖q0‖H1(E) +

∥∥∥eη(·)(f1, f2)
∥∥∥
L2(0,∞;L2(E)×R2)

)
. (6.76)

6.3 Fixed point

Let us fix η ∈ (0, η0), where η0 is the constant introduced in Proposition 6.4. We consider for all
ε > 0 the ball

Bε :=

{
(f1, f2) ∈ L2(0,∞;L2(E)× R2) ;

∥∥∥eη(·)(f1, f2)
∥∥∥
L2(0,∞;L2(E)×R2)

6 ε

}
(6.77)

and the map
Ξ : (f1, f2) ∈ Bε 7→ (F1(h̃, q), F2(H̃, h̃, q, qb, qa)) (6.78)

where (H̃, h̃, q, qb, qa) is the solution of (6.18)–(6.23), with (6.15)–(6.17) associated with (f1, f2),
and where F1 and F2 are given by (6.11)–(6.14). We take

|H̃0|+ ‖h̃0‖H1(E) + ‖q0‖H1(E) 6 ε (6.79)

so that (6.76) yields

‖eη(·)H̃‖H1(0,∞) + ‖eη(·)h̃‖H1(0,∞;H1(E)) + ‖eη(·)q‖H1(0,∞;L2(E))∩Cb([0,∞);H1(E))∩L2(0,∞;H2(E))

+ ‖eη(·)(qa, qb)‖H1(0,∞;R2) 6 Cε. (6.80)

Taking ε small enough, we deduce from the above estimate that

H̃ > −1

2
H, h̃ > −1

2
h ((t, x) ∈ (0,∞)× E). (6.81)
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From the above estimate and from the the Sobolev embeddings H1(0,∞) ⊂ L∞(0,∞) and H1(E) ⊂
L∞(E), we deduce ∥∥∥∥ 1

h+ h̃

∥∥∥∥
L∞((0,∞)×E)

+

∥∥∥∥ 1

h+ h̃

∥∥∥∥
L∞(0,∞;H1(E))

6 C,∥∥∥eη(·)q∥∥∥
L∞((0,∞)×E)

6 Cε,
∥∥∥eη(·)h∥∥∥

L∞((0,∞)×E)
6 Cε, (6.82)

for some constant C indepedent of ε. For simplicity, we assume now that

ε 6 1. (6.83)

We deduce from (6.11), (6.80) and the above estimate that

‖eη(·)F1(h̃, q)‖L2(0,∞;L2(E)) 6 Cε2. (6.84)

From (6.80) and (6.82), we have∥∥∥∥∥ eη(·)h̃

(h̃+ h)

∂q

∂x

∥∥∥∥∥
L2(0,∞;H1(E))

6 Cε2, (6.85)

and thus ∥∥∥∥∥eη(·)
[
F3(H̃, h̃, q, qb, qa)

F4(H̃, h̃, q, qb, qa)

]∥∥∥∥∥
L2(0,∞;R2)

6 Cε2. (6.86)

We also deduce from (6.80) that∥∥∥∥∥∥∥eη(·)
 g(h̃(·, a−)− H̃)− µ

h

∂q

∂x
(·, a−) +

µ

H

qb − qa
b− a

−g(h̃(·, b+)− H̃) +
µ

h

∂q

∂x
(·, a−)− µ

H

qb − qa
b− a


∥∥∥∥∥∥∥
L2(0,∞;R2)

6 Cε.

From (4.12), (6.81) and (6.80), we have

‖S(H̃ +H)‖L∞(0,∞;R4) 6 C, ‖S(H̃ +H)− S(H)‖L∞(0,∞;R4) 6 Cε. (6.87)

We obtain from (6.12) and from the above estimates

‖eη(·)F2(H̃, h̃, q, qb, qa)‖L2(0,∞;R2) 6 Cε2. (6.88)

This shows that for small ε, Ξ defined by (6.78) satisfies Ξ(Bε) ⊂ Bε. With similar calculations, we
can also obtain that for small ε, Ξ|Bε

is a strict contraction. This gives the existence and uniqueness
of a solution for system (4.17)–(4.22). We have now to come back to system (3.1)–(3.12). We see
that (4.17) yields (3.1) in I and there exists a unique

p ∈ Mg

|I|
+ L2(0,∞;P2(I))

satisfying (4.4) and ∫ b

a

p(t, x) dx = −MḦ(t) +Mg = M
q̇b − q̇a
b− a

+Mg.

Using (4.5) and (4.6), we deduce that p(t, a) and p(t, b) satisfies (4.9) and (4.10). We deduce from
this and from (4.22) that (3.7) and (3.8) hold.

This concludes the proof of Theorem 3.3.
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7 Return to the Equilibrium

The return to the equilibrium problem is a particular configuration of the floating structure prob-
lem, which consists in starting from a configuration where the solid is not at its equilibrium state
and with water at rest. The motion of the solid is often described in the literature by a linear
integro-differential equation, known as the Cummins equation, which has been obtained in [6], in
the case of an inviscid fluid filling the whole space and assuming small waves amplitude. A similar
equation taking in consideration some nonlinear effects has been derived in [14]. The classical
linear Cummins equation, in the case of vertical displacements of a floating structure reads:

(M +m∞)Ḧ(t) = αH +K ∗ Ḣ, (7.1)

where H denotes the displacement of the structure from the equilibrium position, M denotes the
mass of the structure, m∞ is the added mass at infinite frequency, α is the hydrostatic stiffness
and K is the radiation force impulse response function (see, for instance, [6]). In this section, our
aim is to derive a similar equation taking into consideration the viscosity of the fluid and possibly
the presence of an exterior boundary for the fluid. To this aim, we use a linearized version of the
system (3.1)-(3.12) as departure point.

Let h and H be the equilibrium height for the fluid and the solid respectively. Then we have

h = H +
M

b− a
,

where M is the mass of the solid (see (3.18)). For simplicity, let us assume that

h = 1, M = 1, g = 1, p =
1

b− a
.

The system (3.1)-(3.12), linearized around the trajectory (H,h, q, p) = (h,H, 0, p), reads as

∂h

∂t
+
∂q

∂x
= 0, x ∈ E , (7.2)

∂q

∂t
+
∂h

∂x
− µ∂

2q

∂x2
= 0, x ∈ E , (7.3)

h(t, a−)− µ∂q
∂x

(t, a−) = p(t, a+) +H(t)− µ∂q
∂x

(t, a+) (7.4)

h(t, b+)− µ∂q
∂x

(t, b+) = p(t, b−) +H(t)− µ∂q
∂x

(t, b−) (7.5)

∂H

∂t
+
∂q

∂x
= 0, x ∈ I, (7.6)

∂q

∂t
+
∂p

∂x
= 0, x ∈ I, (7.7)

Ḧ(t) =

∫ b

a

p(t, x) dx. (7.8)

As we are interested in the return to the equilibrium problem we consider the above system with
the following initial data

h(0, x) = h0, q(0, x) = 0, H(0) = H0, (7.9)

where h0 is a constant, h0 6= 0, H0 6= 0 and

h0|E|+H0(b− a) = 0. (7.10)

The last condition means that the volume of fluid is the same in the initial configuration and at
equilibrium and it is necessary only in the case when the fluid is bounded.

27



Remark 7.1. The system (7.2)-(7.8) is equivalent to the system (6.18)-(6.24). Therefore by Propo-
sition 6.5, the system (7.2)-(7.9) admits a unique solution

H ∈ H2(0,∞), h ∈ H1(0,∞;H1(E)) ∩ C1
b ([0,∞);L2(E)),

q ∈ Cb([0,∞);H1(0, `))

q|E ∈ H1(0,∞;L2(E)) ∩ Cb([0,∞);H1(E)) ∩ L2(0,∞;H2(E)),

q|I ∈ H1(0,∞;P1(I)), p|I ∈ L2(0,∞;P2(I)).

Our aim is to show that, in the above configuration, we can eliminate h, q and p from the above
system to obtain an integro-differential equation of Cummins type for H. To this aim, we first
differentiate (7.7) with respect to x and using (7.4) -(7.6) we have

∂2p

∂x2
= Ḧ(t), x ∈ I,

p(t, a+) = pa(t) := h(t, a−)− µ∂q
∂x

(t, a−)−H(t)− µḢ(t),

p(t, b−) = pb(t) := h(t, b+)− µ∂q
∂x

(t, b+)−H(t)− µḢ(t).

(7.11)

We decompose p as
p = p1 + p2, (7.12)

where p1 solves
∂2p1
∂x2

= Ḧ(t), p1(t, a) = p1(t, b) = 0, (7.13)

and p2 solves
∂2p2
∂x2

= 0, p2(t, a) = pa(t), p2(t, b) = pb(t). (7.14)

Therefore

p1(t, x) = Ḧ(t)

(
x2

2
− b+ a

2
x+

ab

2

)
, (7.15)

and

p2(t, x) = pa(t) + (pb(t)− pa(t))
x− a
b− a

. (7.16)

Substituting the values of p1 and p2 in (7.8), we obtain the following equation(
1 +

1

12
(b− a)3

)
Ḧ(t) = pa(t)(b− a) + (pb(t)− pa(t))

b− a
2

=
b− a

2
(pa(t) + pb(t)) .

Using the expression of pa and pb from (7.11) we can rewrite the above equation as(
1 +

1

12
(b− a)3

)
Ḧ(t) =

b− a
2

(
h(t, a−)− µ∂q

∂x
(t, a−) + h(t, b+)− µ∂q

∂x
(t, b+)

)
− (b− a)

(
H(t) + µḢ(t)

)
. (7.17)

To simplify we assume symmetry of the fluid-structure configuration, i.e., we suppose that the
solid is symmetric around the axis x = x0 where x0 = 1

2 (b+ a) and that ` = a+ b. Thus we have

h(t, a−) = h(t, b+) q(t, b+) = −q(t, a−). (7.18)

Then by taking the boundary trace of all the terms in (7.2), we obtain

∂q

∂x
(t, a−) =

∂q

∂x
(t, b+).
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Therefore, (7.17) can be written as(
1 +

1

12
(b− a)3

)
Ḧ(t) = (b− a)

(
h(t, a−)− µ∂q

∂x
(t, a−))

)
− (b− a)

(
H(t) + µḢ(t)

)
. (7.19)

We now need to express h(t, a−)− µ ∂q∂x (t, a−) in terms of H and Ḣ. For x ∈ I we have

q(t, b)− q(t, a) = −(b− a)Ḣ(t). (7.20)

Using (7.18), we obtain

q(t, a) =
b− a

2
Ḣ(t), q(t, b) = −b− a

2
Ḣ(t). (7.21)

From (7.2)-(7.3), q satisfy the following equation for x ∈ [0, a]

∂2q

∂t2
− ∂2q

∂x2
− µ ∂3q

∂t∂x2
= 0, q(t, 0) = 0, q(t, a) =

b− a
2

Ḣ(t), q(0, x) =
∂q

∂t
(0, x) = 0. (7.22)

For f ∈ L1[0,∞) let f̂ be the Laplace transform of f . Applying this transform to both sides of
(7.22) we obtain

s2q̂ − (1 + sµ)
∂2q̂

∂x2
= 0, q̂(s, 0) = 0, q̂(s, a) =

b− a
2

̂̇H, Re(s) > 0. (7.23)

Therefore
q̂(s, x) = A(s)e

− s√
1+sµ

x
+B(s)e

s√
1+sµ

x
, (7.24)

where z 7→
√
z is the principal branch of the square root function.

Using the boundary conditions (7.23) it follows that

A(s) +B(s) = 0, A(s)e
− sa√

1+sµ +B(s)e
sa√
1+sµ =

b− a
2

̂̇H.
Therefore, (7.24) yields

q̂(s, x) =
b− a

2

e
−sx√
1+sµ − e

sx√
1+sµ

e
−sa√
1+sµ − e

sa√
1+sµ

̂̇H(s) (x ∈ [0, a], Re s > 0). (7.25)

From the above formula it follows that

∂q̂

∂x
(s, a) = −b− a

2
f̂a(s) ̂̇H(s) (Re s > 0), (7.26)

where

f̂a(s) =
s√

1 + sµ

e
−sa√
1+sµ + e

sa√
1+sµ

e
−sa√
1+sµ − e

sa√
1+sµ

(Re s > 0).

On the other hand, taking Laplace transform of (7.2) we have

ĥ(s, a) =
h0
s
− 1

s

∂q̂

∂x
(s, a).

Therefore,

ĥ(s, a)− µ∂q̂
∂x

(s, a) =
h0
s
− b− a

2
F̂ (s) ̂̇H(s) with F̂ (s) = −

(
1

s
+ µ

)
f̂a(s). (7.27)
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Let F (t) denotes the inverse Laplace transform of F̂ (s). By taking the inverse Laplace transform
in the above identity we obtain

h(t, a−)− µ∂q
∂x

(t, a−) = h0 −
b− a

2
F ∗ Ḣ. (7.28)

Using the above expressions in (7.19) we have(
1 +

1

12
(b− a)3

)
Ḧ = (b− a)h0 −

(b− a)2

2
F ∗ Ḣ − (b− a)H − µ(b− a)Ḣ. (7.29)

Therefore, we have proved the following proposition

Proposition 7.2. Assume that ` = a+ b, i.e.that the solid is symmetric around the axis x = x0,
x0 = 1

2 (a+b). Then, for the return to the equilibrium problem (7.2)-(7.10), the position of the solid
is completely determined by the integro-differential equation

(
1 +

1

12
(b− a)3

)
Ḧ = −H0

|I|2

|E|
− (b− a)2

2
F ∗ Ḣ − (b− a)H − µ(b− a)Ḣ,

H(0) = H0, Ḣ(0) = 0,

(7.30)

and with F such that

F̂ (s) = −
√

1 + sµ
e
−sa√
1+sµ + e

sa√
1+sµ

e
−sa√
1+sµ − e

sa√
1+sµ

. (7.31)

The function F̂ growths like
√

Re s when Re s→∞, thus F is a distribution. Consequently, the
second term in the right hand side of the first equation in (7.30) involves fractional derivatives of
H, as explained with more details below. More precisely, in the remaining part of this section we
consider the case in which the fluid domain is unbounded and we derive a generalized Cummins
equation, taking in consideration the viscosity.

Let E = (−∞, a) ∪ (b,∞) and take the initial data (for the linearized problem (7.2)-(7.9))

h0 = 0, q0 = 0, H0 6= 0.

In this case, for x ∈ (−∞, a) we have the following equation satisfied by q̂(s, x) (instead of (7.23)):

s2q̂− (1 + sµ)
∂2q̂

∂x2
= 0, q̂(s, x)→ 0 as x→ −∞, q̂(s, a) =

b− a
2

̂̇H, Re(s) > 0. (7.32)

Then

q̂(s, x) =
b− a

2
e
−sa√
1+sµ e

sx√
1+sµ

̂̇H(s), (7.33)

and

ĥ(s, a−)− µ∂q̂
∂x

(s, a−) = −b− a
2

(
1

s
+ µ

)
s√

1 + sµ
̂̇H(s) = −b− a

2

(√
1 + µs

) ̂̇H(s). (7.34)

In a similar manner we obtain

ĥ(s, b+)− µ∂q̂
∂x

(s, b+) = −b− a
2

(√
1 + µs

) ̂̇H(s). (7.35)

Inserting the above expressions in (7.19), the equation for H reads as(
1 +

1

12
(b− a)3

)
Ḧ = −(b− a)2F ∗ Ḣ − (b− a)H − µ(b− a)Ḣ, (7.36)
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where
F̂ (s) =

√
1 + µs. (7.37)

Equation (7.36) can be further transformed in an equation involving a fractional derivative. Indeed,
(7.37) can be rewritten

F̂ (s) = F̂1(s) + F̂2(s), (7.38)

where
F̂1(s) =

√
µs, (7.39)

F̂2(s) =
√
µ

(√
s+

1

µ
−
√
s

)
=

1
√
µ
(√

s+ 1
µ +
√
s
) . (7.40)

Using tables of Laplace transforms we see that

F2(t) =
√
µ

1− e−
t
µ

2
√
πt3

. (7.41)

On the other hand, (7.39) implies that F1 is (up to a multiplicative constant) the fractional
derivative of order 1

2 of the Dirac mass at t = 0, that is

F1 =
√
µD

1
2 δ0. (7.42)

Combining (7.36)-(7.42) we obtain the Cummins type equation(
1 +

1

12
(b− a)3

)
Ḧ = − (b− a)2

2
F2 ∗ Ḣ −

√
µ
(
D

3
2H
)
− (b− a)H − µ(b− a)Ḣ. (7.43)

Thus the outcome of the viscosity in this model is the presence of the standard damping term

µ(b− a)Ḣ and in the fractional damping term
√
µ
(
D

3
2H
)

.

Remark 7.3. If µ = 0, then (7.36) becomes(
1 +

1

12
(b− a)3

)
Ḧ(t) = − (b− a)2

2
Ḣ − (b− a)H, (7.44)

which is the same as Eq. (57) of [14].
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8 Numerical Simulations

In this section, we discuss some numerical simulations for the system nonlinear (4.17)–(4.22) and
we compare with the results obtained via linearization. To this aim, consider some subdivisions of
the intervals [0, a] and [b, `], and we use them to discretize the equations with respect to the space
variable. Since the procedure is similar for the two intervals, we only present the method for the
interval [0, a]. To simplify, we also assume that the subdivision (xk) of [0, a] is uniform:

xk =
k

n
a, k ∈ {0, . . . , n}, δx =

a

n
.

We also consider the subdivision (x̃k):

x̃k =
k − 1/2

n
a, k ∈ {1, . . . , n}.

Our aim is compute approximations of h and q respectively on (x̃k) and on (xk):

h̃k ≈ h(·, x̃k) qk ≈ q(·, xk).

In particular, q0 = 0 and qn ≈ qa where qa is one of the unknowns of (4.17)–(4.22). With the
above notation, it is natural to approximate the derivative of q by the following formula:(

∂̃q

∂x

)
k

=
qk − qk−1

δx
, k ∈ {1, . . . , n},

and (4.18) is approximated by

d

dt
h̃k = −qk − qk−1

δx
, k ∈ {1, . . . , n}.

In a similar way, (4.19) is approximated by

d

dt
qk = − F̃k+1 − F̃k

δx
+ hk

(
∂̃q

∂x

)
k+1

−

(
∂̃q

∂x

)
k

δx
, k ∈ {1, . . . , n− 1}, (8.1)

where

F̃k =
q̃2k

h̃k
+
gh̃2k
2
.

In the above formulas, we see that we need to compute q̃k and hk. For the height of fluid, we
consider the formula

hk =
h̃k+1 + h̃k

2
, k ∈ {1, . . . , n− 1},

and for q we use an upwind approximation:

q̃k =
qk+1 + qk

2
or

qk + qk−1
2

, k ∈ {1, . . . , n− 1},

according to the sign of qk+1+qk
2 .

Note that in (8.1), we don’t need to compute the derivative of qk for k = 0 (q0 = 0) or for k = n
since qn corresponds to qa and its derivative is obtained through the equation (4.22).

Using the above numerical scheme, we can consider the return to the equilibrium problem, in
its linear and nonlinear version. We place ourselves in the configuration described in Section 7. In
particular, we take the initial conditions (7.9), with different values of h0, H0 and µ (see Figure 2
and Figure 3).
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We notice in both experiments that the convergence to the equilibrium is depending a lot of
the viscosity. When the viscosity is large, both linear and nonlinear problem converges to the
equilibrium very quickly. For instance, if µ = 50 we see that at t = 100 the solutions are close
to the equilibrium. On the contrary, when the viscosity is small (µ = 5 or 0.5) trajectories do
not converge to the equilibrium as fast as the previous one. Moreover, these simulations seem to
support the conjecture that the return to equilibrium takes place without imposing initial data
close to equilibrium.

We also see that the differences between the nonlinear problem and the linear problem are
stronger for small viscosities, and we remark that, at least for these numerical tests, the nonlinear
system goes faster than the linear system to the equilibrium.
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Figure 2: H0 = 9, µ = 5, 0.5, 50
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Figure 3: H0 = 2, µ = 5, 0.5, 50
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