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Inertial drag on a sphere settling in a stratied uid

We compute the drag force on a sphere settling slowly in a quiescent, linearly stratied uid. Stratication can signicantly enhance the drag experienced by the settling particle. The magnitude of this eect depends on whether uid-density transport around the settling particle is due to diusion, to advection by the disturbance ow caused by the particle, or due to both. It therefore matters how eciently the uid disturbance is convected away from the particle by uid-inertial terms. When these terms dominate, the Oseen drag force must be recovered. We compute by perturbation theory how the Oseen drag is modied by diusion and stratication. Our results are in good agreement with recent direct-numerical simulation studies of the problem.

Introduction

The settling of small solid particles in either gaseous or liquid ows with density stratication is a topic of great interest in uid dynamics. Such multi-phase ows are widely encountered in nature. An example is the settling of small aggregates of organic matter, `marine snow', in the ocean [START_REF] Van Aartrijk | Vertical dispersion of light inertial particles in stably stratied turbulence: The inuence of the basset force[END_REF][START_REF] Guasto | Fluid mechanics of planktonic microorganisms[END_REF][START_REF] Sozza | Largescale connement and small-scale clustering of oating particles in stratied turbulence[END_REF][START_REF] De Pietro | Clustering of vertically constrained passive particles in homogeneous isotropic turbulence[END_REF]. Here density stratication is due to either saltconcentration or temperature gradients. A second example is the dynamics of pollutants in the atmosphere which is often stably-stratied turbulence [START_REF] Jacobson | Fundamentals of atmospheric modeling[END_REF][START_REF] Leel®ssy | Dispersion modeling of air pollutants in the atmosphere: a review[END_REF]. It is important to understand the settling speed of particles in such ows, because it determines their residence times and deposition rates. Also, density-stratied uids occur in industrial processes that involve heated uids [START_REF] Linden | The uid mechanics of natural ventilation[END_REF], or the mixing of uids of dierent densities [START_REF] Turner | Buoyancy eects in uids[END_REF].

To compute, from rst principles, the drag force experienced by the particles as they fall through the ow is a dicult problem, in particular if there is turbulence. Many authors have therefore concentrated on particle dynamics in quiescent stratied uids. Settling through a sharp density interface was measured in experiments [START_REF] Srdi¢-Mitrovi¢ | Gravitational settling of particles through density interfaces[END_REF][START_REF] Abaid | An internal splash: Levitation of falling spheres in stratied uids[END_REF][START_REF] Camassa | Prolonged residence times for particles settling through stratied miscible uids in the stokes regime[END_REF] and in simulation [START_REF] Blanchette | Drops settling in sharp stratication with and without marangoni eects[END_REF][START_REF] Ardekani | Transport of particles, drops, and small organisms in density stratied uids[END_REF][START_REF] Pierson | Inertial settling of a sphere through an interface. part 2. sphere and tail dynamics[END_REF]. Direct-numerical simulation (DNS) studies of particles settling in quiescent, linearly stratied uids were reported by [START_REF] Torres | Flow past a sphere moving vertically in a stratied diusive uid[END_REF]; [START_REF] Yick | Enhanced drag of a sphere settling in a stratied uid at small Reynolds numbers[END_REF]; [START_REF] Ardekani | Stratlets: Low Reynolds number point-force solutions in a stratied uid[END_REF]. Stratication can signicantly slow down the settling particle by enhancing the drag it experiences [START_REF] Yick | Enhanced drag of a sphere settling in a stratied uid at small Reynolds numbers[END_REF]). The reason is that buoyancy dierences due to the stratication tend to prevent the vertical motion of the uid that the particle stirs up as it settles. As a consequence, the disturbance ow remains conned around the particle [START_REF] Ardekani | Stratlets: Low Reynolds number point-force solutions in a stratied uid[END_REF]. How much the particle is slowed down depends on the mechanisms that govern the dynamics of the uid density: diusion of concentration or temperature, or their advection by the disturbance ow, or a combination of diusion and advection.

Which of these mechanisms is most important depends on the physical system in question. In salt water, for example, the diusion coecient of salt is much smaller than the kinematic viscosity of the uid. Therefore salt water is often considered non diusive. But when temperature comes into play this may not be a good approximation, because the diusion coecient of temperature in water is roughly of the same order as the kinematic viscosity. This is even more important in gases where the temperature diusion coecient may exceed the kinematic viscosity of the uid [START_REF] Salazar | On thermal diusivity[END_REF].

The nature of the disturbance ow caused by the settling particle depends on how eciently the uid disturbance is convected away. This is an inertial eect. So stratication, diusion, and convective uid inertia compete to determine the drag force on the particle. When the convective uid-inertia terms dominate so that stratication and diusion do not matter the Oseen drag force must be recovered. The question is how the Oseen drag on the settling sphere is modied by diusion and stratication.

To answer this question we compute the drag force on a sphere settling slowly in a quiescent linearly stratied uid. The density gradient points in the direction of gravity, so that the heavier uid is at the bottom. The importance of convective uid inertia is measured by the particle Reynolds number, Re. The relative importance of advection and diusion is characterised by the Péclet number Pe. The importance of stratication is often quantied by the viscous Richardson number Ri, the ratio of buoyancy and viscous forces [START_REF] Yick | Enhanced drag of a sphere settling in a stratied uid at small Reynolds numbers[END_REF]). Recent direct-numerical simulation studies of the problem [START_REF] Yick | Enhanced drag of a sphere settling in a stratied uid at small Reynolds numbers[END_REF][START_REF] Zhang | Wake of a vertically moving sphere in a linearly stratied uid. 16th Eur. Turbulence Conf[END_REF] explored how the drag depends on the importance of diusivity versus advection, and upon the degree of density stratication. Our goal is to explain their results by perturbation theory, assuming that both Re and Ri are small but nite. Chadwick & Zvirin (1974b,a) analysed this question, but for a sphere moving horizontally in a quiescent non-diusive stratied uid, along surfaces of constant uid density.

Here we study the settling problem, where the particle settles vertically along the uiddensity gradient, so that it crosses the surfaces of constant density. The two problems are quite dierent: when the particle moves horizontally, the streamlines of the ow tend to encircle the sphere in the horizontal plane. When the sphere moves vertically, by contrast, light uid is pushed down into regions of larger uid density, giving rise to complex disturbance-ow patterns [START_REF] Ardekani | Stratlets: Low Reynolds number point-force solutions in a stratied uid[END_REF].

Neglecting eects of convective uid inertia, the dierence between horizontal and vertical motion was compared earlier. When density transport is entirely diusive, the additional drag due to stratication is ve times larger in the vertical than in the horizontal direction [START_REF] Candelier | The history force on a small particle in a linearly stratied uid[END_REF]. When density advection dominates, the vertical drag is seven times larger than the horizontal one [START_REF] Zvirin | Settling of an axially symmetric body in a viscous stratied uid[END_REF].

Despite these qualitative and quantitative physical dierences, the horizontal and vertical problems share an important mathematical property: regular perturbation expansions fail to describe the eects of convective uid inertia and buoyancy due to stratication even if these perturbations are weak. Therefore so-called `singular-perturbation' methods are required to solve the problem. We use the standard method of asymptotic matching (Saman 1965), where inner and outer solutions of the disturbance problem are matched, describing the disturbance ow close to and far from the particle. where gravity g points in the negative ê3-direction (we denote the basis in the lab frame by ê1, ê2, and ê3, and x3 is the third component of the coordinate vector x in the lab frame. The particle settles with velocity u along gravity.

We parametrise the eect of convective inertia and stratication in terms of length scales: the particle radius a, the Oseen length o = a/Re, and the stratication length s = (νκ/N 2 ) 1/4 [START_REF] Ardekani | Stratlets: Low Reynolds number point-force solutions in a stratied uid[END_REF]. Here ν is the kinematic uid viscosity, κ is the diusivity, and N is the Brunt-Vaisala frequency. Diusive changes of the uid density are either due to concentration or temperature diusion. These dierent physical eects can be treated in the same model if changes in the uid density are linearly related to concentration and temperature changes [START_REF] Ardekani | Transport of particles, drops, and small organisms in density stratied uids[END_REF]. This is assured if these changes are small. In the case of temperature diusion, the importance of the diusivity κ is characterised by the Prandtl number Pr = ν/κ = Pe/Re. For concentration diusion, this dimensionless number is usually referred to as the Schmidt number Sc = ν/κ [START_REF] Candelier | The history force on a small particle in a linearly stratied uid[END_REF][START_REF] Doostmohammadi | A numerical study of the dynamics of a particle settling at moderate Reynolds numbers in a linearly stratied uid[END_REF][START_REF] Zhang | Wake of a vertically moving sphere in a linearly stratied uid. 16th Eur. Turbulence Conf[END_REF]. To simplify the notation we do not distinguish between these two conventions here. In the following we refer to this dimensionless parameter as the Prandtl number.

We obtain a uniformly valid perturbation theory to rst order in = a/ s and show that analysing the results in terms of the dimensionless parameter s / o reveals three distinct regimes where density diusion, density advection, and convective uid inertia dominate. Fluid inertia begins to matter when s / o is of the order of or larger than Pr -1/4 . This condition is met in recent (DNS) of the problem [START_REF] Yick | Enhanced drag of a sphere settling in a stratied uid at small Reynolds numbers[END_REF][START_REF] Zhang | Wake of a vertically moving sphere in a linearly stratied uid. 16th Eur. Turbulence Conf[END_REF], and our results are in good agreement with the simulations at small Re and small (but not too small) values of . When is so small that stratication eects are almost entirely negligible, we ascribe deviations between our theory and the DNS of [START_REF] Zhang | Wake of a vertically moving sphere in a linearly stratied uid. 16th Eur. Turbulence Conf[END_REF] to nite-size eects: while our theory applies to an unbounded system, the DNS were performed for a bounded system. The comparison shows that nite-size eects are larger in the homogeneous system.

Formulation of the problem

We consider a spherical particle of radius a and of material density ρ p settling with velocity u in a quiescent stratied uid. The diusivity of the stratifying agent (salt or temperature) is denoted by κ, and the kinematic viscosity of the uid is denoted by ν. The ambient density of the uid is assumed to vary linearly with height

x 3 ρ 0 = ρ ∞ -γx 3 , (2.1)
where γ is the density gradient, and ρ ∞ is a reference density. The problem is illustrated in Fig. 1. The settling particle causes disturbances in the uid, in the local density ρ, and in the pressure p. To determine these disturbances one must solve the Navier-Stokes equation for the uid velocity and the diusion-advection equation for the density. Following [START_REF] Maxey | Equation of motion for a small rigid sphere in a nonuniform ow[END_REF] we express these equations in a frame of reference that translates with the particle position x p (t),

ρ ∂w ∂t r + (w • ∇) w = -∇p + µ∆w + ρg -ρ ∂u ∂t and ∇ • w = 0 , (2.2a) ∂ρ ∂t + (w • ∇) ρ = κ∆ρ . (2.2b) w = 0 , ∂ r ρ = 0 at r = a and w → -u , ρ → ρ 0 as r → ∞ .
(2.2c)

Here r ≡ xx p , the spatial gradients ∇ are w.r.t. r, and the uid velocity is a function of r, w(r, t). The boundary condition for ρ on the surface of the particle is derived from the surface condition ∇ρ • n = 0. This means that the particle surface is impermeable. We dene the disturbance velocity, density, and pressure as:

w = w + u , ρ = ρ -ρ 0 and p = p -p 0 . (2.3)
Here p 0 is the hydrostatic pressure, ρ 0 is the ambient density at height x 3 , and -u is the undisturbed uid velocity in the frame translating with the particle. We de-dimensionalise the problem in the usual fashion (Alias & Page 2017), using the particle radius a for lengths, the typical time τ of variation of the disturbance velocity induced by the boundary condition (2.4c) for times, the terminal Stokes velocity in a homogeneous uid u t = [2a 2 /(9ν)](ρ p /ρ ∞ -1)g for the uid velocity, ρ ∞ νu t /a for the pressure, and γa for the density. All equations below are written in these dimensionless variables.

We further assume that quadratic combinations of the density and pressure disturbances are negligible, and that γx 3 /ρ ∞ 1 in the region of interest. This allows us to ignore density gradients except when multiplied by the gravitational acceleration [START_REF] Gray | The validity of the Boussinesq approximation for liquids and gases[END_REF]. This `Boussinesq' approximation was used in the DNS of the problem by [START_REF] Yick | Enhanced drag of a sphere settling in a stratied uid at small Reynolds numbers[END_REF] and Zhang et al. ( 2017) that we compare with in Section 5, see also [START_REF] Doostmohammadi | A numerical study of the dynamics of a particle settling at moderate Reynolds numbers in a linearly stratied uid[END_REF]. Under these assumptions the non-dimensional equations for the disturbance velocity, density and pressure take the form

ReSl ∂w ∂t + Re (w • ∇) w -(u • ∇) w + Ri ρ ê3 = -∇p + ∆w and ∇ • w = 0 , (2.4a) PeSl ∂ρ ∂t + Pe (w • ∇) ρ -(u • ∇) ρ -w • ê3 = ∆ρ , (2.4b) w = u , ∂ r ρ = cos θ at r = 1 and w → 0 , ρ → 0 as r → ∞ . (2.4c)
Here θ is the angle between the outward unit normal n of the sphere and the vertical direction ê3 . The dimensionless parameters in Eqs. (2.4a) and (2.4b) are the particle Reynolds number, the Péclet number, the Richardson number, and the Strouhal number:

Re = au t /ν , Pe = au t /κ , Ri = a 3 N 2 /(u t ν) , and Sl = a/(u t τ ) .

(2.5)

Here N is the Brunt-Vaisala frequency

N = g γ/ρ ∞ , (2.6)
the frequency at which a perturbation describing a vertically displaced parcel of uid oscillates in a stably-stratied environment [START_REF] Mowbray | A theoretical and experimental investigation of the phase conguration of internal waves of small amplitude in a density stratied liquid[END_REF] (2.4) in a frame of reference translating with the particle. It is convenient to use such moving coordinates, because the problem simplies. For a sphere settling in a homogeneous ow, for example, the problem becomes steady. After a short transient, the buoyancy force balances the viscous drag so that the sphere reaches a steady terminal velocity. In a stratied uid the situation is slightly more complicated. The problem appears to remain unsteady, because the settling sphere experiences a time-dependent buoyancy force since the ambient density ρ 0 varies as a function of height x 3 . We now show under which circumstances this residual time-dependence is negligible. The time scale τ of variation of the disturbance velocity can be estimated as τ -1 ∼ ut /u t where now u t ∼ (2/9)(a 2 g/ν)[ρ p /ρ 0 (t) -1], and ρ 0 (t) is the ambient density evaluated at the time-dependent particle position. We conclude that

Sl ∼ Ri ρ p ρ ∞ (2.7)
In this paper we obtain the drag force on the sphere assuming that convective uid inertia and density stratication matter, but that they are weak enough so that their eects can be treated in perturbation theory. We assume that 0 < Re 1 and 0 < Ri 1 (2.8)

In this limit the unsteady terms in Eqs. (2.4a) and (2.4b) are negligible, so that we can consider the steady problem.

3. Earlier results for Re = 0

For Re = 0 the drag on a sphere settling in a stratied uid was studied theoretically by [START_REF] Zvirin | Settling of an axially symmetric body in a viscous stratied uid[END_REF] and [START_REF] Candelier | The history force on a small particle in a linearly stratied uid[END_REF]. These authors made dierent assumptions concerning the relative importance of advection and diusion in Eq. (2.4b). [START_REF] Zvirin | Settling of an axially symmetric body in a viscous stratied uid[END_REF] assumed that advection is more important than diusion. When advection dominates, the density disturbance ρ scales as z/r near the particle (Chadwick & Zvirin 1974b), in the `inner region' of the problem. As a consequence, the buoyancy term in Eq. (2.4a) balances the viscous Laplacian term at

r ∼ Ri -1/3 . (3.1)
At this distance inner and outer solutions of the disturbance problem must be matched. This implies that advection is more important than diusion in Eq. (2.4b) if Pe > Ri 1/3 . Second, at r ∼ Ri -1/3 the dominant convective inertial term in Eq. (2.4a) is estimated as Re(u • ∇)w (0) ∼ Re Ri 2/3 , where w (0) ∼ 1/r is the solution of the disturbance problem in the Stokes limit. So convective inertial terms are negligible if Re Ri 1/3 . Under these conditions, Pe > Ri 1/3 and Re Ri 1/3 , (3.2) [START_REF] Zvirin | Settling of an axially symmetric body in a viscous stratied uid[END_REF] derived the following expression for the drag force

f 3 = -6πu 3 1 + B Ri 1/3 /Pe Ri 1/3 . (3.3)
Here B(•) is a function given in integral form. In the limit of a non-diusive uid, Pe → ∞, the above expression simplies to: 

f 3 = -6πu 3 (1 + 1.060 Ri 1/3 ) . ( 3 
f 3 = -6πu 3 (1 + 0.6621 ) . (3.8)
Using Ri = 4 /Pe, we see that the condition Pe corresponds to Pe Ri 1/3 . Comparing with the condition (3.2) it seems that the results (3.4) and (3.8) apply in the opposite limits of large and small Péclet numbers. Below we show, however, that the two approaches are in fact equivalent, although they seem to apply in distinct limits.

Method

We consider the same problem as Candelier et al. ( 2014), but we do not neglect the uid-inertia terms and the eect of advection of the uid density by the disturbance ow. The relative importance of stratication and inertial eects is determined by the magnitude of the length scales s and o in relation to the particle size a. Therefore we use = a/ s [Eq. (3.5)] and s / o as dimensionless parameters. The third parameter is the Prandtl number. In summary, we solve Eqs. (2.4) to rst order in the parameter using the method of asymptotic matching (Saman 1965). Inner and outer solutions of the disturbance problem are matched at r ∼ -1 in the limit 1 , s / o -1 , and Pr arbitrary but xed. (4.1)

In this way we obtain an expression for drag force that is valid regardless of whether diusion or advection dominates: our solution is valid in both limits considered by Candelier et al. ( 2014) and [START_REF] Zvirin | Settling of an axially symmetric body in a viscous stratied uid[END_REF], as well as uniformly in between.

Previous arguments, summarised in 3, appeal to dierent behaviours of the density disturbance to show that the non-linear convective terms Re(w (0) •∇)w (0) and Pe (w (0) • ∇)ρ in Eq. (2.4) can be disregarded. A weakness of these arguments is that the limits of large and small Pe are considered separately. This is not necessary in our formulation.

A general property of the method of asymptotic matching is that it is the magnitude of the dierent terms in the matching region that matters: all terms that are sub-leading in this region can be entirely neglected. As already mentioned in 3, when Re and Ri are small, the disturbance velocity close to the particle is well approximated by the Stokes solution w (0) ∼ 1/r. Assuming this dependence, we can estimate the magnitude of the non-linear convective term Re(w (0) • ∇)w (0) in the matching region. Setting r ∼ -1 we conclude that Re(w (0) • ∇)w (0) is small in this region compared with all other terms in Eq. (2.4a), when is small. The orders of magnitude in Eq. (2.4b) are more dicult to determine because the r-dependence of the density disturbance is not known unless Pe is either small [START_REF] Candelier | The history force on a small particle in a linearly stratied uid[END_REF] or large [START_REF] Zvirin | Settling of an axially symmetric body in a viscous stratied uid[END_REF]. However, since w (0) ∼ in the matching region, we can conclude that the non-linear term Pe (w (0) •∇)ρ is negligible compared with Pe (u • ∇)ρ . As a result, Eqs. (2.4) take the form:

- s o (u • ∇) w = -∇p -4 ρê 3 + ∆w and ∇ • w = 0 , (4.2a) -Pr s o (u • ∇)ρ -w • ê3 = ∆ρ , (4.2b)
with boundary conditions corresponding to (2.4c), and ρ = Pe ρ. The inner solution of Eqs. (4.2) is obtained by a regular perturbation expansion in . To obtain the outer solution one replaces the boundary condition on the particle surface by a singular source term (Saman 1965). To lowest order in this term takes the form 6πu δ(r), corresponding to the leading-order force exerted by the sphere on the uid. Higher -orders in the source term contribute to the force at order O( 2 ), and need not be considered to order . Since the non-linear convective terms are negligible, Eq. ( 4.2) is linear, so that the outer solution can be obtained by Fourier transform, for arbitrary values of . We dene:

f (k) = dx f (x)e -ik•x and f (x) = dk (2π) 3 f (k)e ik•x . (4.3)
We expand the Fourier transform ŵ out (k) of the outer solution in , in terms of gener- alised functions [START_REF] Candelier | Note on the method of matchedasymptotic expansions for determining the force acting on a particle[END_REF][START_REF] Meibohm | Angular velocity of a spheroid log rolling in a simple shear at small Reynolds number[END_REF]:

ŵ out = T (0) + T (1) + 2 T (2) + . . . . (4.4)
This method diers slightly from the standard approach (Saman 1965) that formulates the outer problem in terms of strained coordinates r = r. The advantage of the present approach is that it does not refer to any particular matching length scale for instance the length scale at which the Laplacian is balanced by the buoyancy term in Eq. (4.2a). The only requirement is that is small. For certain cases this approach is equivalent to using the reciprocal theorem to compute inertial corrections [START_REF] Meibohm | Angular velocity of a spheroid log rolling in a simple shear at small Reynolds number[END_REF].

The rst two terms in the expansion (4.4) are obtained from ŵ out as:

T (0) = lim →0
ŵ out and

T (1) = lim →0 1 ( ŵ out - T (0)
) .

(4.5)

The rst term, T (0) (k), is the Fourier transform of the solution of the outer problem at = 0. The next term in the expansion takes the form

T (1) (k) = lim →0 1 3 ŵ out k - T (0) k . (4.6)
We evaluate this limit using the homogeneity properties of the functions ŵ out (k) and

T (0)
(k) [START_REF] Candelier | Note on the method of matchedasymptotic expansions for determining the force acting on a particle[END_REF][START_REF] Meibohm | Angular velocity of a spheroid log rolling in a simple shear at small Reynolds number[END_REF]. This yields

T (1) (k) = δ(k) dk ŵ out | =1 (k ) - T (0) (k ) . (4.7)
Here δ is the three-dimensional Dirac delta function. The functions T (0) (k) and T (1) (k) are readily transformed back from k-to obtain the outer solution in conguration space. In particular, T (1) (r) is found to be r-independent. Since T (1) (r) is constant, the problem to order is equivalent to determining the force on a particle kept xed in a uniform ow (Saman 1965;[START_REF] Meibohm | Angular velocity of a spheroid log rolling in a simple shear at small Reynolds number[END_REF]. It follows that the drag force is

given by

f = -6π u + 8π 3 dk ŵ out (k )| =1 - T (0) (k ) . (4.8) 
We note that the force is determined entirely by the solution of the outer problem, as rst shown by Saman (1965) for the lift force on a small sphere in a shear ow.

Results

For = 1 the Fourier transforms ŵ out and ρout of the outer solution read:

ŵ out ρout = -6π k 2 s o ik • u I + A -1 • G • u 0 .
(5.1)

Here I is the 4 × 4 unit tensor, and

A =        -k 2 0 0 -k1k3 k 2 0 -k 2 0 -k2k3 k 2 0 0 -k 2 - (k 2 -k 2 3 ) k 2 0 0 1 Pr -k 2 Pr        , G =        k 2 -k 2 1 k 4 -k1k2 k 4 -k1k3 k 4 0 -k2k1 k 4 k 2 -k 2 2 k 4 -k2k3 k 4 0 -k3k1 k 4 -k3k2 k 4 k 2 -k 2 3 k 4 0 0 0 0 0        . (5.2)
We set u = u 3 ê3 in Eq. (4.8) to nd the drag force on the settling sphere:

f 3 = -6πu 3 (1 + M 33 ) , (5.3a) 
M 33 = 3 2π ∞ 0 dk π 0 dθ sin(θ) 3 1-Pr s o 2 k 2 +1 cos (θ) 2 -i cos (θ) s o k 3 Pr s o 2 k 2 +1 cos (θ) 2 + i s o k 3 (Pr+1) cos (θ)-k 4 -1 . (5.3b)
The imaginary part in Eq. (5.3b) vanishes upon integration. Fig. 2 shows how M 33 depends on the ratio s / o for dierent values of Pr, namely, 0.7 (temperature-stratied gas), 7 (temperature-stratied water at 20 o C) and 700 (saltstratied water). When the ratio s / o is very small, the curves collapse onto a horizontal 1 ( ). Coloured solid lines show Eq. (5.3b) for < 0, dashed lines for > 0, for a small value of 0. We take 0 = 0.3. Also shown are power laws in Fr, black solid lines. The vertical dashed line corresponds to Fr=1/Re. (b) Same data as in panel (a) but now with linear axes to emphasise the deviations between theory and DNS at large Fr. The black dashed line shows the drag for the nite homogeneous system obtained by [START_REF] Zhang | Wake of a vertically moving sphere in a linearly stratied uid. 16th Eur. Turbulence Conf[END_REF]. The solid black line shows the theoretical value for the homogeneous innite system. line, Eq. (3.8). In this limit diusion dominates. When s / o reaches Pr -1 , a second regime emerges: diusion and advection in Eq. (2.4b) become of the same order, resulting in a change in the behaviour of the density disturbance. As a result, M 33 in Fig. 2 turns downwards as s / o increases (this does not mean that the drag -6π(1 + M 33 ) increases at xed particle radius a and Reynolds number Re, because = a/ s ). A further transition occurs at s / o ∼ 1/Pr 1/4 , caused by the formation of an Oseen wake behind the particle [START_REF] Lovalenti | The force on a bubble, drop or particle in arbitrary time-dependent motion at small Reynolds number[END_REF]. When s / o 1/Pr 1/4 the curves approach M 33 ≈ (3/8)( s / o ), the Oseen correction [START_REF] Oseen | über die Stokes'sche Formel und über eine verwandte Aufgabe in der Hydrodynamik[END_REF][START_REF] Proudman | Expansions at small Reynolds numbers for the ow past a sphere and circular cylinder[END_REF][START_REF] Lovalenti | The force on a bubble, drop or particle in arbitrary time-dependent motion at small Reynolds number[END_REF]. In this regime stratication and diusion do not matter, the settling particle experiences the uid as if it were homogeneous. For small Pr, only the rst and third regimes are realised.

Eq. (5.3b) is uniformly valid in the limit (4.1), regardless of the value of ( s / o )Pr = (Ri 1/3 /Pe) -3/4 . It is not necessary to assume that Pe Ri 1/3 , the expression holds also when Pe Ri 1/3 . In particular, we can see that Eq. (5.3b) reduces to Eq. (3.3) when convective inertia is negligible, by taking the limit s / o → 0 at xed ( s / o )Pr:

lim s/ o →0 M 33 = 3 Ri 1/3 π ∞ 0 dk π 2 0 dθ sin(θ) 5 sin(θ) 2 + (Ri 1/3 /Pe)k 4 sin(θ) 2 + (Ri 1/3 /Pe)k 4 2 + cos(θ) 2 k 6 .
(5.4) This is precisely the function B(•) in Eq. (3.3) [Eq. ( 29) in [START_REF] Zvirin | Settling of an axially symmetric body in a viscous stratied uid[END_REF]], computed assuming that convective inertia is negligible, and that Pe > Ri 1/3 . Since our solution is uniformly valid, we can conclude that Eq. (3.3) must be valid also for Pe Ri 1/3 , well outside the region of validity stated by [START_REF] Zvirin | Settling of an axially symmetric body in a viscous stratied uid[END_REF]. Closer inspection of their calculation shows that it corresponds to asymptotic matching at r ∼ Ri -1/3 in the limit Ri → 0 keeping Ri 1/3 /Pe constant. The two dierent matching scales r ∼ Ri -1/3 and r ∼ -1 are equivalent in the limits stated, because the ratio of matching scales Ri 1/3 / = (Ri 1/3 /Pe)(Pe/ ) = (Ri 1/3 /Pe)[( s / o )Pr] remains constant.

In summary, Eq. (5.3b) is a uniform approximation comprising three distinct regimes

f 3 ∼ -6πu 3        1+0.6621
for s / o Pr -1 regime 1 (diusion), 1+1.060 Ri 1/3 for Pr -1 s / o Pr -1/4 regime 2 (advection), 1+ 3 8 Re for s / o Pr -1/4 regime 3 (uid inertia).

(5.5)

The dierent regimes are shown in Fig. 2. In the limit of small Pr, the advective regime disappears, as mentioned above.

We now compare the full result, Eq. (5.3b), with DNS by [START_REF] Zhang | Wake of a vertically moving sphere in a linearly stratied uid. 16th Eur. Turbulence Conf[END_REF] and [START_REF] Yick | Enhanced drag of a sphere settling in a stratied uid at small Reynolds numbers[END_REF], at their smallest Re. These authors use slightly dierent dimensionless parameters, namely Re, Pr, and the Froude number Fr Fr = u t /(a N ) .

(5.6)

In terms of Fr, the dimensionless parameters , s / o , and Ri are given by: = (Re/Fr) 1/2 Pr 1/4 , s / o = (Re Fr) 1/2 /Pr 1/4 , and Ri 1/3 = Re 1/3 /Fr = 12/Re is the Stokes drag coecient for an unbounded system. Since Eq. (5.3b) was obtained for small , we plot it as a solid line when < 0.3, and dashed for > 0.3. For 1 < Fr < 10 the data for Pr = 0.7 are in the diusive regime, where the correction to the drag scales as Fr -1/2 . For Pr = 700, the data approach the advection regime where the theory predicts that the drag correction scales Ri 1/3 ∝ Fr -2/3 . Fig. 3(a) shows that the DNS yield a larger drag coecient than our theory when Fr is small. The likely reason is that the non-linear convective terms matter in this regime, because is not small enough (dashed lines in Fig. 3(a) indicate that > 0.3, as mentioned above). For Pr = 700, for example, becomes larger than 0.3 when Fr falls below 14.7 at Re = 0.05.

When do convective uid-inertia eects dominate? The condition s / o = 1/Pr 1/4 corresponds to Fr = 1/Re, independent of Prandtl number. For Re = 0.05 the smallest value used in the DNS this crossover occurs at Fr = 20, indicated by the vertical black dashed line in Fig. 3(a). Eq. (5.3b) allows us to determine the relative importance of convective uid inertia at this value of Fr. For Pr = 0.7 the correction is substantial, 13.5 %. For larger Péclet numbers the correction is smaller, 1.4% at Pr = 7, and 2 % at Pr = 700. That the correction is largest for small Pr can be inferred from Fig. 3(a).

We observe deviations between DNS and theory not only at small values of Fr, discussed above, but also at large values of Fr [Fig. 3(b)]. These deviations at large Fr may be due to nite-size eects. In this limit, the homogeneous Oseen correction dominates, and it is known to be quite sensitive to the size of the simulation domain. [START_REF] Yick | Enhanced drag of a sphere settling in a stratied uid at small Reynolds numbers[END_REF] chose an elliptical simulation domain, with a smallest size L that gives L/(2a) = 40. The domain used by [START_REF] Zhang | Wake of a vertically moving sphere in a linearly stratied uid. 16th Eur. Turbulence Conf[END_REF] was spherical and larger [diameter/(2a) = 80], but even in that case a theory for cylindrical domains [START_REF] Happel | Low Reynolds number hydrodynamics[END_REF] indicates that the drag correction is expected to be larger than the Oseen expression 3 8 Re. This is consistent with Fig. 3(b). We also see that the asymptotic value for the homogeneous uid is reached more quickly in the nite system. Finite-size eects matter less for smaller Fr, because the wake is smaller, of order s .

Conclusions

We calculated how convective uid inertia modies the drag on a sphere slowly settling in a density-stratied uid, at small Richardson and Reynolds numbers. Plotting the results as a function of the dimensionless parameter s / o reveals three distinct regimes, Eq. (5.5). In the rst regime, the drag is determined by diusion of the disturbance density. In the second regime, advection of the disturbance density determines the drag. In the third regime, convection of the disturbance density by uid-inertia terms dominates. Our main result, Eq. (5.3b), is uniformly valid, independently of whether the density dynamics is diusive or advective. This allowed us to show that a result by [START_REF] Zvirin | Settling of an axially symmetric body in a viscous stratied uid[END_REF] is more generally valid than the authors stated.

We compared with recent DNS at small Re and found that convective uid-inertia eects matter for the larger Froude numbers simulated. Since nite-size eects appear to be important at large Fr and small Re, it would be of interest to take these corrections into account in the theory.

The results derived in this paper were obtained in the steady limit. But when a particle is released from above the water surface and plunges into the uid with a given velocity, then unsteady eects must matter, at least initially. DNS of the problem [START_REF] Doostmohammadi | A numerical study of the dynamics of a particle settling at moderate Reynolds numbers in a linearly stratied uid[END_REF] at Re of order unity reveal unsteady eects that depend on the dimensionless numbers of the problem in intricate ways.

A further motivation for considering unsteady eects concerns the unsteady swimming of micro-organism in stratied uids [START_REF] Doostmohammadi | Low-reynoldsnumber swimming at pycnoclines[END_REF][START_REF] Jephson | Species-and stratication-dependent diel vertical migration behaviour of three dinoagellate species in a laboratory study[END_REF][START_REF] Bergström | Behavioural dierences in relation to pycnoclines during vertical migration of the euphausiids meganyctiphanes norvegica (m. sars) and thysanoessa raschii (m. sars)[END_REF]. In oceans or in lakes the surface layers are known to shelter substantial biological activity. For very small organisms (much smaller than 1mm in size in typical ocean conditions) the dynamics of swimming microorganisms is well understood. Buoyancy (Franks & Jae 2008), density or drag asymmetries of the body [START_REF] Roberts | Geotaxis in motile micro-organisms[END_REF][START_REF] Jonsson | Vertical distributions of planktonic ciliates -an experimental analysis of swimming behaviour[END_REF][START_REF] Kessler | Hydrodynamic focusing of motile algal cells[END_REF], and turbulence [START_REF] Durham | Turbulence drives microscale patches of motile phytoplankton[END_REF][START_REF] Gustavsson | Preferential sampling and small-scale clustering of gyrotactic microswimmers in turbulence[END_REF] determine the spatial distribution of these organisms, their encounter rates, and thus their population ecology [START_REF] Guasto | Fluid mechanics of planktonic microorganisms[END_REF]. For larger organisms less is known. The problem becomes considerably more dicult because inertial eects begin to matter (Wang & Ardekani 2012b,a). The method described here allows to take inertial eects into account in perturbation theory. Finally, an important problem is how uid shears aect the dynamics of motile microorganisms. The approach described by [START_REF] Candelier | Time-dependent lift and drag on a rigid body in a viscous steady linear ow[END_REF] makes it possible to address this question.
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 1 Figure 1. Settling of a sphere in a linearly stratied uid with ambient density ρ0 = ρ∞ -γx3

  .4) Now consider the opposite limit, where the diusive term in Eq. (2.4b) dominates over the advective term. In this case[START_REF] Candelier | The history force on a small particle in a linearly stratied uid[END_REF] showed that the spatial dependence of the disturbance density ρ is of the form ρ ∼ Pe r in the inner region, so that the buoyancy term in Eq. (2.4a) balances the Laplacian viscous term at r ∼ -1 with = a/ s . (3.5) Here s is the stratication length (Ardekani & Stocker 2010) s = νκ/N 2 1/4 . (3.6) It characterises the eect of stratication on the particle dynamics. Under the condition Pe 1 (3.7) Candelier et al. (2014) found

Figure 2 .

 2 Figure 2. Shows Eq. (5.3b) as a function of s/ o for dierent Pr. Also shown are the three dierent regimes in Eq. (5.5), black solid lines.

Figure 3 .

 3 Figure 3. (a) Comparison between Eq. and DNS results for Re= 0.05 by Yick et al. (2009) for Pr= 7 (•), Pr= 700 (•), and by Zhang et al. (2017) for Pr= 0.7 ( ) and Pr= 700

  2/3 . (5.7) Zhang et al. (2017) and Yick et al. (2009) computed the drag coecient C S D of the stratied system. In Fig. 3(a) we plot their result for C S D /C Stokes D -1 versus Fr, and compare it with our result for M 33 . Here C Stokes D

  . The Brunt-Vaisala frequency is an important physical parameter in problems involving stratied uids, such as fountains(Bloomeld & Kerr 1998;[START_REF] Mehaddi | Analytical solutions for turbulent boussinesq fountains in a linearly stratied environment[END_REF]), plumes (McDougall 1978;[START_REF] Woods | Turbulent plumes in nature[END_REF][START_REF] Mehaddi | Naturally bounded plumes[END_REF] or gravity currents[START_REF] Maxworthy | The propagation of a gravity current into a linearly stratied uid[END_REF], to name but a few.We wrote Eqs.
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