
HAL Id: hal-01889856
https://hal.science/hal-01889856

Preprint submitted on 8 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed Function Chaining with Anycast Routing
Adrien Wion, Mathieu Bouet, Luigi Iannone, Vania Conan

To cite this version:
Adrien Wion, Mathieu Bouet, Luigi Iannone, Vania Conan. Distributed Function Chaining with
Anycast Routing. 2018. �hal-01889856�

https://hal.science/hal-01889856
https://hal.archives-ouvertes.fr


1

Distributed Function Chaining with Anycast
Routing

Technical Report
Adrien Wion∗†, Mathieu Bouet∗, Luigi Iannone† and Vania Conan∗

∗ Thales, † Telecom ParisTech
{firstname.name}@thalesgroup.com

{firstname.name}@telecom-paristech.fr

Abstract—Current networks more and more rely on virtualized
middleboxes to flexibly provide security, protocol optimization,
and policy compliance functionalities. As such, delivering these
services requires that the traffic be steered through the desired
sequence of virtual appliances. Current solutions introduce a new
logically centralized entity, often called orchestrator, needing to
build its own holistic view of the whole network so to decide
where to direct the traffic.

We advocate that such a centralized orchestration is not neces-
sary and that, on the contrary, the same objectives can be achieved
by augmenting the network layer routing so to include the notion
of service and its chaining.

In this paper, we support our claim by designing such a system.
We also present an implementation and an early evaluation,
showing that we can easily steer traffic through available re-
sources. This approach also offers promising features such as
incremental deployability, multi-domain service chaining, failure
resiliency, and easy maintenance.

I. INTRODUCTION

Network services used to be built as an ordered set of
physically wired hardware appliances that processed traffic for
security or optimization purpose. With Network Functions Vir-
tualization (NFV), middleboxes are more and more software-
based running on top of virtualization-enabled equipment, thus
allowing cost reduction and network flexibility. Nevertheless,
with this new paradigm, new challenges have risen. Indeed,
the service function chains are completely separated from the
physical topology, and virtual functions are more ephemeral
and dynamic in nature. Steering traffic through these sparsely
located virtual entities, without compromising end-users ses-
sions and Quality of Service (QoS), is therefore a complex
challenge.

Despite the fact that Internet Service Providers critically
rely on middleboxes for security and policy compliance [31],
most of existing NFV management solutions rely on a
logically centralized entity, generally named orchestrator. Such
centralized approaches, as they require a holistic view of
the whole network to perform service chaining, introduce
control reactivity and resiliency (e.g., single point of failure)
issues. Also, this may be quite costly for operators, since it
requires the deployment of a whole new management and
control infrastructure. In addition, the control part, which is
meant to modify network configuration so to accommodate

the orchestrator decisions, tend to be poorly interoperable with
legacy appliances and is thus hard to deploy incrementally.

We believe that centralized orchestration for service func-
tion chaining is not necessary. The same functionalities can
be provided in a distributed way by directly augmenting
the network routing layer. In particular, we argue in this
paper that it is possible to leverage on any Interior Gateway
Protocol (IGP), anycast addressing, and any service chain-
ing encapsulation, to construct a distributed service-aware
distributed control-plane. We propose a modular architecture,
showing that we do not need complex elements and we remain
interoperable with legacy appliances. We also implemented
such architecture, and early evaluation shows that our system
successfully steers traffic through the intended service chain,
distributing it over different instances according to available
resources.

The reminder of this paper is organized as follows. First,
we overview related work in Sec. II. Then, we introduce in
Sec. III the main concept of our proposal: namely the service
plane topology. We detail the system architecture in Sec. IV
and the implementation in Sec. V. Early results supporting our
proposal are presented in Sec. VI, while Sec. VII provides an
agenda about research worth to be performed with respect to
our proposal. Sec. VIII concludes the paper.

II. RELATED WORK

So far, NFV frameworks have been built on top of central-
ized cloud-based management system, which has simplified
the use and implementation of resource allocation algorithms
[25], [18], [15], [11]. For instance, Ghaznavi [17] proposes
a centralized VNF (Virtual Network Functions) splitting and
placement algorithm. Some solutions, such as Slick [9], go
further proposing a programming language to define, on a
central control point, high level policies. Such policies drive
the decision being taken and enforced at runtime concerning
chaining logic, flow forwarding, VNFs placement. Yet, such
centralization, while simplifying VNF and path management,
comes at the price of increased fragility (e.g., single point of
failure, control loop delay, etc.) and high computation load on
the central point.

While the Software-Defined Networking (SDN) paradigm
helps in simplifying path management, as previously men-



2

tioned, it still struggles to achieve traffic steering with fine-
grained forwarding rules. First, the size of forwarding state
is limited by costly memory (TCAM). Second, dealing with
forwarding rules installation when there are middleboxes (e.g.,
NAT – Network Address Translation – service) is another
challenge to be tackled [13], [15], [26].

Another approach consists in using encapsulation to con-
vey traffic along a service chain. Recent work at the IETF
(Internet Engineering Task Force) proposes Network Service
Header (NSH) as a dedicated encapsulation header for service
chaining [27]. Segment Routing (SR) encapsulation has also
been proposed to handle Service Function Chaining [8]. It
is based on a source routing model to steer traffic segment
to segment. Recent work has also made the case for session
protocol to build service overlay [34]. Even if the approach
allows dynamic chaining, it relies on extending/modifying
TCP, which, in an ossified Internet, is a hard task [19].

Whether or not encapsulation is used, another main chal-
lenge in service function chaining is the coordination among
flow path and middlebox state. Indeed, sometime VNF in-
stances need to be created or reduced due to fluctuations in
flow volume, migrated for resource optimization, or just re-
covered due to failure. Some solutions, like OpenNF [16] and
Split/Merge [28], provide an open interface on middleboxes,
so to allow a central coordinator to manage both forwarding
and state. Dysco [34] proposes to solve these issues by
consolidating forwarding and session state into middleboxes.
Kablan et Al. [20] instead try to avoid such state coordination
problem by splitting each VNF into a stateless processing part
and a consistent back-end data store.

All these works strongly rely on a centralized orchestration
or were only used in such context. In the rest of the paper,
we make the case for orchestrating service chaining in a
distributed manner.

III. DISTRIBUTED ORCHESTRATION VIA NETWORK LAYER
ROUTING AUGMENTATION

While so far service function chaining has relied on a
holistic centralized orchestration to steer the traffic through
sequences of virtual appliances, we believe that it can be done
at the network layer routing in a distributed way.

Indeed, any network Interior Gateway Protocol (IGP) can
be directly leveraged to convey the location, the type, and the
necessary information associated to a virtual appliance and
build an augmented network view.

Such a view, which we call the service plane topology, is
formed by two different types of nodes. The first type is NFV
nodes. NFV nodes are physical appliances that run the IGP
and host virtual middleboxes (i.e., VNFs). NFV nodes can be
datacenters, Points of Presence, or routers with VNF hosting
capabilities. The second type of node, named VNF node,
corresponds to the VNF instances themselves. NFV nodes
can provide different types of service: Deep Packet Inspection
(DPI), Firewalling, NAT, stream encoding etc. These virtual
nodes run on top of NFV nodes. Since the NFV nodes that
host them run the IGP, they can directly use control packets
to share information on their VNF instances. This way, the

IDS @IPFW

@IPFW

@IPIDS

FW

FW

(a) Network topology.

FWIDS

(b) IGP logical view.

Fig. 1: Network topology composed of 6 NFV nodes, with
3 of them hosting VNF instance (1a). The IGP views the
two FW instances as a single entity, since they announce the
same anycast IP address. A first flow (plain red line) is routed
through the IDS and the top FW instance. A second flow
(dashed blue line), arriving after the previous one, is then
routed through the IDS and the bottom FW instance as the
first FW instance is already loaded with the first flow.

VNF nodes are present in the IGP topology too. Consequently,
each NFV node has a service plane view1 to not only take
chaining decisions, but also VNF instantiation, scaling, or
deletion decisions.

The main feature of VNF instances is the service they
provide. We thus propose to leverage on anycast addressing
to announce service functions (i.e., VNF instances) on the
network. Different VNF instances, that are potentially hosted
on different NFV nodes, but that provide the same service, will
be announced by the same prefix. This way, each function
is mapped to a prefix. The IGP cost to reach such prefix,
announced by each NFV node, can be based on the VNF state,
its available capacities, its load, or any other relevant informa-
tion.2 A link between two NFV nodes represents a topological
distance (network cost), while a link to a VNF node describes
some state of the VNF instance (VNF cost). Thus, a routing
decision makes a tradeoff among these metrics and can be
designed so as to balance the load, differentiate nodes or
chains, etc. By applying the routing algorithm associated to
the IGP to such a service plane topology, nodes can populate
their routing table, which now becomes service-aware, since
it includes routes toward all the available VNF-based services.
Indeed, VNF instances providing the same service share the
same prefix, hence they can be discriminated by the prefix’s

1We use the terms service plane topology and service plane view inter-
changeably.

2In Sec. VII, we discuss more about how to calculate such a metric in a
meaningful and rigorous way, so to guarantee loop-free routing convergence.



3

attribute(s).

Figure 1 illustrates with a toy example the approach we
propose. Figure 1a represents the network topology consti-
tuted of NFV nodes. Each VNF instance of a given type is
announced on the network with the same anycast address. In
particular the two Firewall (FW) instances announce the same
prefix: @IPfw. Flows have to be processed here by a unique
chain: IDS + FW . The first flow is thus routed through the
IDS instance and then through the top FW instance. Indeed,
in this example, this VNF instance is at one hop from the
NFV node that hosts the IDS instance. The NFV nodes that
host the used VNFs advertise their neighbors with the new
experienced load or any other relevant information. When the
second flow arrives, the Firewall instance at the bottom is
preferred, resulting in load balancing among the FW instances
as well as dynamic path allocation for service function chains
(Figure 1b). Notice that in Figure 1b, since the same prefix
is announced but no adjacency is made, the flows that use a
link to reach a service function (drawn as boxes) have to use
the same link to go out of it. However, note as well that this
link is only virtual, since it is the representation of the VNF
instance in the IGP, but in reality is running directly on a NFV
node.

Combining this augmented IGP with anycast addressing
allows to fully benefit from what is already done at the network
layer routing: network layer information exchange and route
computation. Indeed, the NFV nodes can be considered as
classic routers that compute the next hop(s) for the best path(s),
depending on the metrics, to the different prefixes, which are
in our case different network services.

As for any IGP, high level policies can be used to control
the decision-making at each NFV node. They are common to
all the nodes. Such policies include flow classification rules, to
map traffic to the needed service chain. High level policies also
concern routing decisions since all NFV nodes must share the
same routing objectives. Based on the service plane topology,
the NFV nodes can use the shortest path algorithm, or any
other path computation algorithm, to choose which instance
of the next VNF of the chain the flow will go through.
Additionally, high level policies can define as well how to
compute VNFs’ IGP costs, stating which data to use and the
function to translate such data in a cost.

To actually drive flows through the service chain they
are associated to, we need to leverage on an encapsulation
approach. In both the hop-by-hop model and the source routing
model the encapsulation header should provide the information
necessary to steer the flows through the correct sequence of
VNFs. As such, the header should include i) part or all of the
service chain identified at the classification step at the ingress
of the network and ii) the next service step in this chain. For
instance, in the example in Figure 1, the NFV node that hosts
the IDS instance must have a mean to know that a packet
belonging to a specific flow has been assigned to the service
chain IDS +FW , that the next service to apply is FW , and
which of the FW instances it actually has to go through.

NFV Node

Connector

Network

VNF VNFVNF

Resource
Monitor

Route
Injector

VNF
Routing

Algorithm

High Level
Policies

Router

D-MANO

Fig. 2: NFV Node architecture. Doted arrows illustrate VNF
routing control flow. Solid arrows show how VNFs state is
monitored, transformed in a cost, which is then injected in the
IGP.

IV. SYSTEM ARCHITECTURE

In this section, we describe the architecture of our system
and design its main modules. A NFV node, as illustrated in
Figure 2, is composed of a router providing underlay connec-
tivity, a connector, which attaches the router to the different
VNF instances, the VNFs themselves, providing the services,
and a Distributed MANagement and Orchestration (D-MANO)
component, which allows local autonomous management of
the node.

Router: The router provides both underlay connectivity and
participate in the network IGP. It exposes a control interface
used by the D-MANO to inject or remove VNF anycast
prefixes, announcing the services available on the node and
the associated costs. This control interface is also used to get
the IGP topology to build the service plane topology.

Connector: The connector allows dispatching traffic to the
VNFs. It enforces chaining decisions as follows. It forwards
incoming packets to the intended VNF instance, based on the
encapsulation header. Once the packets have been processed,
the VNF forwards them back to the connector, which enforces
a forwarding decision toward the next VNF instance location
(i.e., its connector) according to the service topology. These
forwarding decisions are cached in the connector, indexed
by a hash computed using flow-related information. The
connector also exposes a control interface, used by the D-
MANO, to populate the service-aware routing table and the
mapping between service function and VNF instance unicast
address. This information is used by the connector to enforce
chaining decisions for outgoing traffic, and locally balance the
load among the VNF instances that provide the same service
(same prefix).

VNF: VNF instances process service flow packets according
to the service they provide. Once a packet has been processed,
the VNF instance updates the chaining encapsulation header



4

to point to the next service. Each instance is monitored by the
D-MANO.

Distributed MANO: The D-MANO controls and manages
the other NFV node’s components. It is configured with
high level policies, which guide its autonomous orchestration
decisions. It has two essential control functions (illustrated in
Figure 2). The first one consists in monitoring VNF instances,
deriving from them VNF costs, and then injecting such costs
in the IGP, via the router. The second function consists in
getting IGP information from the router to build the service
plane topology, computing the service-aware routing table and
then pushing it in the connector.

V. IMPLEMENTATION

We started to implement our proposed solution, which
we describe in the present section. Furthermore, we include
the technical choices we made for each component of the
architecture described in the previous section.

A. System-Level Choices

Encapsulation Header: Our implementation is based on
the Network Service Header (NSH) protocol to allow steering
the traffic through the different services [27]. Even if other
encapsulations, such as Segment Routing v6 [8], could have
been used, our choice is motivated by the fact that NSH is an
IETF standard explicitly designed for service chaining and is
widely used in many opensource frameworks (e.g., [5], [4], [3],
[1]). In NSH, the Service Path Identifier (SPI) field uniquely
identifies a set of abstract service functions (i.e., the Service
Function Chain), while the Service Index (SI) points to the
next function the packet has to be delivered to in the SPI set.
NSH also provides extensible metadata fields that we leverage
to convey the hash value used to consistently identify a
flow along its chain. Such hash value is computed at the
classification step with the 5-tuple of the original packet.

IGP: We build our implementation on top of an Open
Shortest Path First (OSPF) underlay since this IGP is widely
used and easily extensible thanks to opaque Link State Ad-
vertisements (LSA). Opaque LSAs are leveraged to propagate
information about VNF instances and links. Even if flooding
opaque LSAs increase control traffic overhead, it does not
affect OSPF stability since they do not trigger shortest path
algorithm computation. We thus define VNF opaque LSAs
to convey 3 pieces of data: i) the anycast address of a
VNF instance, ii) the associated VNF cost, and iii) the NSH
endpoint IP address (i.e., the IP address of the next Connector).
In our initial implementation, we choose to use a simple VNF
metric: the remaining processing capacity of the VNF instance.
The NFV nodes use the provided information to build a graph
linking VNFs and NFV nodes, each link being weighted with
the associated cost (Fig. 3). Thus, each NFV node is able
to build the service plane topology based on the information
shared via OSPF.

Service-aware path computation algorithm: We choose to
use Weighted Cost MultiPath (WCMP) [35] to compute nodes’
service-aware routing table. It is particularly suited for our
anycast-based approach as it allows balancing the traffic based

NFV Node A 

NFV Node D

NFV Node C

NFV Node B

NFV Node E

FW FW

IDS

Classifier

10

10

10 1010

10

10

20 5

25

(a) Network topology.

NFV Node
A

NFV Node 
C

NFV Node
B 

NFV Node 
D

FW

IDS

10

20

10

20

5

25

Network Metric VNF Metric
(b) Service plane view at the Node A.

Fig. 3: Each node builds its service plane view (example at
Node A on Fig. (b)) with the Network costs and VNF costs
so as to compute the next hop(s).

on the VNF cost. As illustrated on Figure 3, we use network
link costs and VNF costs to weight the paths to a VNF anycast
prefix. In this example, we show the service topology as seen
by node A. It is easy to see that the cost to reach the FW
instance on node B is 30 and to reach the one on node D is
25. Such cost is used by WCMP to assign the flows on these
instances. Since the VNF cost is regularly updated, WCMP
adapts to the current load by distributing the traffic on the
VNF instances that have the lower load (i.e., lower cost and
thus higher WCMP weight). In Sec. VII we discuss more about
the metrics.

B. Node-Level Choices

We build our NFV node using Linux and use network name-
spaces to isolate the components.

Router: In our implementation, we use FRRouting [2],
an open source IP routing protocol suite, to implement our
OSPF router. In particular, we use the OSPF API offered by
FRRouting to mirror the Link-State Database (LSDB) in the
D-MANO and to inject VNF opaque LSAs.

Connector: We implemented the connector logic in P4, a
language for programming the dataplane [10]. Our P4 code
is run on the simple switch target [6]. Its runtime CLI is



5

0 50 100 150 200 250 300
Time (s)

0

20

40

60

80

100
Tr

af
fic

 d
ist

rib
. o

n 
VN

Fs
 (%

)

Node B
Node C

Node D

Fig. 4: Traffic distribution over time on the VNF instances.
During the first 150s only two VNFs are running. At t = 150s,
a third VNF is instantiated.

exposed to the D-MANO to configure the switch and populate
the WCMP table at runtime.

VNF: VNFs are implemented as simple processes (using
scapy [7]) parsing incoming packets, decrement their NSH SI
field, and forward them back to the connector. The focus of the
initial implementation being on the different components of
the proposed approach, we purposely choose simplistic VNFs
for the time being. The Python psutil library enables us to
monitor the resources used by the VNF processes.

D-MANO: The D-MANO has been implemented in Python.
Its main loop runs as follows. First, it polls the resource use
of the local VNF instances to build the related costs. The
costs are then announced on the network with VNF opaque
LSAs. Second, the D-MANO gets the VNF announces from its
mirrored LSDB. With these data, it builds a service view (see
Fig. 3b). Based on this topology, it computes WCMP weights
and updates them on the connector.

VI. PRELIMINARY RESULTS

In this section we evaluate a simple scenario to show how
we can achieve load balancing on different VNF instances of
the same type by using the proposed solution.

We consider a network topology that looks like Figure 3b,
except that we use one single generic service. Moreover, the
link cost between Node A and Node B and between Node A
and Node C are set to 160 and between Node A and Node
D it is set to 30. All the VNF instances have the same initial
capacity (i.e., VNF cost) set to 150. It is the maximum number
of packets per second a VNF instance can process, normalized
so to have the same range of values as the link costs. We use
Mininet to emulate this topology [21].

Traffic has to be steered through one of the VNF instances
and then toward the egress. We generate constant bit-rate flows
on a source connected to Node A. Each flow lasts 50 seconds
and consumes 2 of processing units at the VNFs. The arrival
rate is of two flows per second. Our scenario evolves in 2
phases. Phase 1: only the VNFs on Node B and Node C
are running. Phase 2: After 150 seconds, a third VNF is
instantiated on at Node D, which leads to a redistribution of
the traffic, since there are more VNF processing capacities
now available in the service topology.

Figure 4 presents the traffic distribution over time on the
VNF instances. Since each flow lasts 50s, during the first 50s

Node B Node C0

20

40

60

80

100

Tr
af

fic
 d

ist
rib

. o
n 

VN
Fs

 (%
)

(a) Phase 1 (50-150s).

Node B Node C Node D0

20

40

60

80

100

Tr
af

fic
 d

ist
rib

. o
n 

VN
Fs

 (%
)

(b) Phase 2 (200-300s).

Fig. 5: Boxplot of the traffic distribution on the VNF instances
during the two phases.

of the experiment, the system load rises until it reaches its
steady state. Note that, in this example, a measure of each
VNF load is measured and advertised every 2s. We can see
that, during the first phase, each VNF instance receives in
average the same amount of traffic. Indeed, they do have the
same network cost from the ingress point of view and the same
initial VNF cost. Once Phase 2 starts, after the 50 seconds of
transition, which lasts between t = 150s and t = 200s, a new
steady state is reached. Now the VNFs on Node B and C, each
process 40% of the traffic, while the VNF on Node D roughly
processes 20%. This distribution of traffic corresponds to the
WCMP weights that consider links’ cost and VNFs’ cost.

Figure 5 presents the mean traffic distribution on the in-
stances for the steady state of the two phases of the scenario.
They result from 20 runs of the experiment. We can observe
that our solution is able to balance the load among the
available VNFs. The mean and median loads are centered on
the values we can compute from WCMP: 50/50% in Phase
1 and 40/40/20% in Phase 2. In addition, 50% of the loads
are less than 3 points from the median value, while the max
and min values are at most 10 points from it. Such limited
variation shows that the system remains quite stable.

VII. RESEARCH AGENDA

Our preliminary results illustrate how service chaining can
indeed be achieved by augmenting the network layer routing
and applying high level policies. However, while opening in-
teresting perspectives, it opens as well a number of questions.
We overview them in this section.

Traffic Engineering Constraints: Forwarding traffic in
service function chains, fulfilling both Service Level Agree-
ments and cost minimization, is a hard task. Some long-lived
flows require QoS guarantees (e.g., small delay for VoIP),
while short ones may suffer from an initial latency in path
computation (e.g., DNS query). We believe that best effort
traffic and short lived flows are best handled by precomputed
hop-by-hop routing decisions. Conversely, traffic requiring
resource reservation would be best served using the source
routing paradigm. Our service plane topology provides support
for both approaches, and enables enforcing high-level policies.
However, such hybrid scenarios and related tradeoff need
further investigation.



6

VNF Metrics: In our approach, service-aware routing in-
volves two different types of entity: namely network links
and VNF instances. While assigning a cost to a link is
straightforward and normal operation (based on bandwidth,
latency etc.), evaluating the cost of a VNF instance is an open
research area. On the one hand, such a cost may be based on
a plethora of VNF state parameters [12], [24]. On the other
hand, the metric computation needs to be in the same order
of magnitude of the links’ metric, and, more importantly, it
has to be additive, so to guarantee loop-free convergence even
when taking into account multiple constraints [32], [23].

VNF/Resource Management: Resource allocation is al-
ready a hard problem when using a centralized approach [18].
Even if a distributed approach, like ours, improves the archi-
tecture resiliency and scalability, it adds coordination to the
problem. In a distributed environment, each NFV node needs
to take autonomous VNF provisioning decisions based on the
exchanged information. Defining the needed information, their
granularity, their update frequency, and the range of actions
that each NFV node can take according to global resources
availability remains to be explored. However, there is a great
potential to use Machine Learning solutions that would make
the network completely autonomous.

Service Modification: During a flow lifetime, the service
chain it is associated to may be modified for numbers of
reasons (e.g., a suspicious flow is redirected to a DPI). Such
a service change implies a traffic redirection. In the source
routing model, this modification could be easily handled since
per flow state is concentrated at the edge. Conversely, in the
hop-by-hop model, the chaining protocol should coordinate
NFV nodes’ state in order to modify the flow path (e.g., use
Operations, Administration, and Maintenance for signaling).
Existing work [34] identified challenges to keep end user
sessions alive during reconfigurations. Coordination between
VNF session state and routing decisions remains a challenging
question to be explored.

Maintenance and Failure: To provide carrier grade net-
work services, the impact of VNF unavailability on existing
traffic should be minimized. With our approach maintenance
can be easily handled through any existing loop-free graceful
shutdown approach [14]. Furthermore, some VNF state migra-
tion use-cases can be dealt locally with on NFV nodes [28],
[20], [33]. However, VNF migration to a remote NFV node
is more challenging. Indeed, NFV state migration has to be
coordinated with service topology update. Certainly existing
fail-over mechanisms and make-before-break approaches can
be considered, yet, the design of such mechanism is an open
research area.

Security: Distributing the service chaining decision raises
some inherent security questions. To state if a VNF an-
nounce is valid or not, NFV nodes should trust each other.
Trustworthiness can be solved by key distribution and initial
authentication. Moreover, since the chaining protocol may
convey sensitive information in its header or metadata, it
may be useful to use encryption between authenticated NFV
nodes. For instance, we could use IPsec [30] as a transport
encapsulation between NFV nodes. In general, since we are
augmenting the network routing layer, without revolutionizing

it, there is quite a number of existing security solutions that
can be considered to provide security in the service topology.

Multi-domain SFC: Even if multi-domain SFC would open
new business opportunities, service providers are reluctant
to share information related with their network. We believe
that a distributed design can ease multi-domain orchestration.
Defining an IGP routing logic to provide distributed SFC
decisions is a first step for the design of multi-domain services.
Indeed, the next step to be investigated is the use of inter-
domain routing, based on BGP [29] to provide chaining among
different administrative entities, for instance based on the use
of communities [22].

VIII. CONCLUSION

In this paper, we have made the case for orchestrating ser-
vice chaining in a distributed manner. We proposed to augment
the network layer routing by using anycast addressing for
VNF so to build what we call the service topology, allowing
embedding service chaining into routing. We designed an
architecture based on this concept and implemented a first
prototype. Early evaluation performed with our implemen-
tation shows that flows can be successfully driven through
the chain of services according to available resources. Our
approach sets itself apart from previous work, and as such
it still needs to be thoroughly investigated. To this end we
provide a research agenda highlighting the different aspects
that need to be tackled. However, what comes out as well is
quite promising and opens interesting perspectives.

REFERENCES

[1] fd.io. https://fd.io/.
[2] Frrouting. https://frrouting.org/.
[3] Onos. https://onosproject.org/.
[4] Opendaylight. https://www.opendaylight.org/.
[5] Opnfv. https://opnfv.org.
[6] P4 software switch. https://github.com/p4lang/behavioral-model.
[7] Scapy. https://github.com/secdev/scapy.
[8] A. Abdelsalam, F. Clad, C. Filsfils, S. Salsano, G. Siracusano, and

L. Veltri. Implementation of virtual network function chaining through
segment routing in a linux-based NFV infrastructure. In Proceedings of
the IEEE Conference on Network Softwarization (NetSoft), pages 1–5,
2017.

[9] B. Anwer, T. Benson, N. Feamster, and D. Levin. Programming slick
network functions. In Proceedings of the ACM SIGCOMM Symposium
on Software Defined Networking Research, page 14, 2015.

[10] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, et al. P4:
Programming protocol-independent packet processors. ACM SIGCOMM
Computer Communication Review, 44(3):87–95, 2014.

[11] A. Bremler-Barr, Y. Harchol, and D. Hay. OpenBox: a software-defined
framework for developing, deploying, and managing network functions.
In Proceedings of the ACM SIGCOMM Conference, pages 511–524,
2016.

[12] L. Cao, P. Sharma, S. Fahmy, and V. Saxena. Nfv-vital: A framework
for characterizing the performance of virtual network functions. In
Proceedings of the IEEE Conference on Network Function Virtualization
and Software Defined Network (NFV-SDN), pages 93–99, 2015.

[13] S. K. Fayazbakhsh, V. Sekar, M. Yu, and J. C. Mogul. Flowtags:
Enforcing network-wide policies in the presence of dynamic middlebox
actions. In Proceedings of the ACM SIGCOMM Workshop on Hot Topics
in Software Defined Networking, pages 19–24, 2013.

[14] P. Francois, M. Shand, and O. Bonaventure. Disruption free topology
reconfiguration in OSPF networks. In Proceedings of the IEEE Inter-
national Conference on Computer Communications (INFOCOM), pages
89–97, 2007.

https://fd.io/
https://frrouting.org/
https://onosproject.org/
https://www.opendaylight.org/
https://opnfv.org
https://github.com/p4lang/behavioral-model
https://github.com/secdev/scapy


7

[15] A. Gember, A. Krishnamurthy, S. S. John, R. Grandl, X. Gao, A. Anand,
T. Benson, A. Akella, and V. Sekar. Stratos: A network-aware orches-
tration layer for middleboxes in the cloud. CoRR, abs/1305.0209, 2013.

[16] A. Gember-Jacobson, R. Viswanathan, C. Prakash, R. Grandl, J. Khalid,
S. Das, and A. Akella. OpenNF: Enabling innovation in network
function control. In ACM SIGCOMM Computer Communication Review,
volume 44, pages 163–174, 2014.

[17] M. Ghaznavi, N. Shahriar, S. Kamali, R. Ahmed, and R. Boutaba.
Distributed service function chaining. IEEE Journal on Selected Areas
in Communications, 35(11):2479–2489, 2017.

[18] J. G. Herrera and J. F. Botero. Resource allocation in NFV: A
comprehensive survey. IEEE Transactions on Network and Service
Management, 13(3):518–532, 2016.

[19] M. Honda, Y. Nishida, C. Raiciu, A. Greenhalgh, M. Handley, and
H. Tokuda. Is it still possible to extend TCP? In Proceedings of the
ACM SIGCOMM Conference, pages 181–194. ACM, 2011.

[20] M. Kablan, A. Alsudais, E. Keller, and F. Le. Stateless network
functions: Breaking the tight coupling of state and processing. In
Proceedings of the USENIX Conference on Networked Systems Design
and Implementation (NSDI), pages 97–112, 2017.

[21] B. Lantz, B. Heller, and N. McKeown. A network in a laptop: rapid
prototyping for software-defined networks. In Proceedings of the ACM
SIGCOMM Workshop on Hot Topics in Networks, page 19, 2010.

[22] T. Li, R. Chandra, and P. S. Traina. BGP Communities Attribute. RFC
1997, 1996.

[23] J. J. M. Algorithms for finding paths with multiple constraints. Networks,
14(1):95–116.

[24] P. Naik, D. K. Shaw, and M. Vutukuru. NFVPerf: Online performance
monitoring and bottleneck detection for NFV. In Proceedings of the
IEEE Conference on Network Function Virtualization and Software
Defined Networks (NFV-SDN), pages 154–160, 2016.

[25] S. Palkar, C. Lan, S. Han, K. Jang, A. Panda, S. Ratnasamy, L. Rizzo,
and S. Shenker. E2: A framework for NFV applications. In Proceedings
of the Symposium on Operating Systems Principles (SOSP), pages 121–
136, 2015.

[26] Z. A. Qazi, C.-C. Tu, L. Chiang, R. Miao, V. Sekar, and M. Yu. SIMPLE-
fying middlebox policy enforcement using SDN. In Proceedings of the
ACM SIGCOMM, pages 27–38, 2013.

[27] P. Quinn, U. Elzur, and C. Pignataro. Network service header (NSH).
RFC 8300, 2018.

[28] S. Rajagopalan, D. Williams, H. Jamjoom, and A. Warfield. Split/merge:
System support for elastic execution in virtual middleboxes. In Pro-
ceedings of the USENIX Conference on Networked Systems Design and
Implementation (NSDI), pages 227–240, 2013.

[29] Y. Rekhter, S. Hares, and T. Li. A Border Gateway Protocol 4 (BGP-4).
RFC 4271, 2006.

[30] K. Seo and S. Kent. Security Architecture for the Internet Protocol.
RFC 4301, Dec. 2005.

[31] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy, and
V. Sekar. Making middleboxes someone else’s problem: Network
processing as a cloud service. In Proceedings of the ACM SIGCOMM
Conference, pages 13–24, 2012.

[32] Z. Wang and J. Crowcroft. Bandwidth-delay based routing algorithms.
In Proceedings of the IEEE Global Telecommunications Conference
(GLOBECOM), volume 3, pages 2129–2133, 1995.

[33] S. Woo, J. Sherry, S. Han, S. Moon, S. Ratnasamy, and S. Shenker.
Elastic scaling of stateful network functions. In Proceedings of the
USENIX Symposium on Networked Systems Design and Implementation
(NSDI), 2018.

[34] P. Zave, R. A. Ferreira, X. K. Zou, M. Morimoto, and J. Rexford.
Dynamic service chaining with dysco. In Proceedings of the Conference
of the ACM Special Interest Group on Data Communication, pages 57–
70, 2017.

[35] J. Zhou, M. Tewari, M. Zhu, A. Kabbani, L. Poutievski, A. Singh, and
A. Vahdat. WCMP: Weighted cost multipathing for improved fairness in
data centers. In Proceedings of the European Conference on Computer
Systems, page 5, 2014.


	Introduction
	Related Work
	Distributed Orchestration via Network Layer Routing Augmentation
	System Architecture
	Implementation
	System-Level Choices
	Node-Level Choices

	Preliminary Results
	Research Agenda
	Conclusion
	References

