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Population balance equations (PBE) applied to comminution processes are commonly based on selection and breakage 
functions, which allow the description of changes of particle-size distributions vs. time. However, other properties, such 
as the particle strength, also influence the grinding kinetics. A bivariate PBE was developed and resolved by the direct 
quadrature method of moments. This equation includes both the particle size and strength, the latter of which is defined 
as the minimum energy required for breakage. The monovariate case was first validated by comparing the predicted 
moments with those calculated from the size distributions given by an analytical solution of the PBE derived for specific 
selection and breakage functions. The bivariate model was then compared with a discretized model to evaluate its valid-
ity. Finally, the benefit of the bivariate model was proven by analyzing the sensitivity of some parameters and compar-ing the 
results of the monovariate and bivariate cases. 

Keywords: particle technology, mathematical modeling, grinding, population balance, direct quadrature method of 
moments

Introduction

Population balance equations (PBE) are commonly used to
model particulate processes. In the framework of comminu-
tion processes, PBE tracks the change in the density distribu-
tion of the weight of particles distributed over defined size
classes. Batch grinding mass balance equations usually incor-
porate the selection function, which expresses the breakage
probability of particles as a function of their size, and the
breakage function, which describes the daughter particle-size
distribution. This approach permits the optimization of the
size reduction process and has intensively been used in the
past to model ball mills1,2 and more recently to help deter-
mine breakage and selection functions parameters.3,4 The
kinetics parameters are then back-calculated from the PBE.
A similar approach was also used to model the simultaneous
breakage and reagglomeration of fines in a grinding process5

and to identify the grinding mechanisms in a submicron

milling process.4,6 The modeling of continuous grinding
processes is also based on PBE, which combines the frag-
mentation kinetics with the particle residence time distribu-
tion. The batch mass balance equation is first solved, which
yields the temporal change of the mass fractions in each size
class. The grinding kinetics is then combined with a global
transport model to obtain the size distribution of the ground
product during a continuous process.7 Many analytical or
approximated solutions of the batch grinding equation have
been proposed in the literature2,8 depending on the specific
forms of the selection and breakage functions. Irrespective
of the method used to solve the mass balance equation, the
mass balance can describe the fragment-size distribution as a
function of the grinding time.

However, size is not the only important solid characteristic
in a grinding process, as the particle strength (or grindabil-
ity) is another key parameter that directly affects the process
kinetics. Grindability can be the cause of what Austin et al.9

called an abnormal breakage behavior, which is character-
ized by an increase in the selection function vs. time (when
a fatigue phenomenon occurs) or a decreasing tendency
(when small fragments are more resistant than larger ones).

Correspondence concerning this article should be addressed to C. Frances at 
Christine.Frances@ensiacet.fr.



The usefulness of the actual population balance models for
mill design, optimization, or control is thus reduced if the

particle size is the unique property. An innovative approach

was recently proposed by Crespo,10 who developed a PBE

for a ball-milling process in which the weight distribution

was jointly characterized by the particle size and strength. In

the context of grinding processes, the particle strength can

be practically defined by expressing the minimum energy

required to break the particle. Such a property can be eval-

uated by performing crushing tests on a single particle, such

as with the ultrafast load cell (UFCL).11,12 The method used

to characterize the fracture energy leads to a statistical treat-

ment of the results to consider the variability of the particle

properties. The particle strength is thus defined by an energy

spectrum that depends on particle size. The PBE applied to

comminution processes can finally be written for the break-

age energy-size distribution.
An important quantity for grinding processes is the energy

consumed by the mill, a part of which is transmitted to the

particles. For example, Kwade13 developed theoretical con-

siderations of interactions between the fracture energy spec-

tra induced by bead motion to characterize the material

properties and impact energy for stirred media mills. The

impact energy spectra depend on the process conditions and

can be determined by computing the collision energy via the

discrete element method,14,15 simulating the hydrodynamics

inside the grinding chamber using computation fluid dynam-

ics (CFD) codes based on Reynolds-averaged Navier–

Stokes16 or direct numerical simulation.17 Thus, a first main

challenge of comminution processes modeling is to simulta-

neously consider two variables, such the particle size and

fracture energy in the PBE, which is addressed in this article.

A further challenge would be to combine the PBE with a

simulation tool to predict the solid property by considering

the impact energy spectra.
Crespo10 solved a discretized form of the homogeneous

bivariate PBE. However, this method only considers a few
size and fracture energy intervals and cannot easily be
coupled to CFD code if flow or impact energy heterogene-
ities must be considered.

In this work, the batch grinding equation is solved by the
direct quadrature method of moments (DQMOM); one of the
advantages of this method is that it can solve the PBE by
incorporating several properties of the solid phase. In the
QMOM or DQMOM approaches, the mixed moments of the
density distribution must be expressed by the quadrature for-
mula by incorporating the weights and abscissas defined for
each property. Over the last decade, QMOM and DQMOM
modeling methods have been successfully used for a variety
of particulate processes: aggregation and breakage processes
in homogeneous or one-dimensional flows,18–20 growth and
crystallization processes,21 coagulation and sintering,22 and
nanoparticle processes,23 among others. Examples of the use
of these methods have also been reported for other dispersed
systems, such as liquid sprays undergoing droplet coales-
cence and evaporation,24 bubble coalescence and breakage in
vertical gas-liquid flows,25,26 or in stirred tank reactors.27–29

The breakage phenomena in dispersed systems have thus
been intensively treated in the literature by QMOM and
DQMOM models. However, the breakage kernels used in
these previous studies were usually different from those
commonly used in comminution processes and did not con-
sider two properties for the solid phase, such as the particle

size and strength; the second being a complex property con-
ditioned by the first. Moreover, another advantage of the
DQMOM method is that it solves the spatial and temporal
transport equations directly on weights and abscissas, which
allows the implementation of the population balance model
in CFD codes.30–33 Thus, DQMOM model provides a prom-
ising approach for prospective studies on heterogeneous
comminution processes.

In this study, the DQMOM method was used to solve the
PBE applied to homogeneous batch grinding processes. In
the first step, a single variable, the particle size, is consid-
ered, and the results of the model were compared to an ana-
lytical solution of the mass balance equation. In the second
step, a bivariate model is developed to track the change in
the density distribution, which was simultaneously expressed
in terms of the particle size and strength. The results of the
model are compared with a discretized solution of the PBE
by taking a finite number of size and energy intervals.
Finally, the benefit of the bivariate approach is discussed
based on the sensitivity of the results to the kinetic parame-
ters of the grinding process.

Monovariate DQMOM Applied to Comminution
Processes

General equations: homogeneous breakage

For sake of simplicity, only the homogeneous equation of
population balance is addressed. The population balance can
be expressed as follows by introducing the particle size x
and the mass particle-size distribution f (x, t) instead of the
number-density function

@f x; tð Þ
@t

5Sx x; tð Þ (1)

In the case of pure breakage, the right-hand side contains
only two components, a sink term expressing the breakage
of particles of size x in smaller ones and a source term due
to the breakage of particles larger than x

@f x; tð Þ
@t

52a xð Þf x; tð Þ1
ð1
x

a yð Þb x; yð Þf y; tð Þdy (2)

The DQMOM method is based on the Gaussian quadra-
ture.20,22 The continuous size distribution can then be substi-
tuted with the discrete decomposition

f ðx; tÞ5
XN

a51

wa tð Þd xðtÞ2xaðtÞ½ � (3)

where N is the number of nodes a, xa is the property of the
node (its size), wa is its weight, and d is the Dirac function.
If this discrete expression of the mass particle-size distribu-
tion f (x, t) is injected into transport Eq. 2, one obtains the
following

XN

a51

d x2xað Þ @wa

@t
2
XN

a51

d0 x2xað Þwa
@xa

@t
5Sx x; tð Þ (4)

Following Marchisio and Fox,20 one can substitute the
weighted abscissa, ca, for the abscissa, xa, which yields the
following

ca5waxa (5)



Equation 4 then takes the following form

XN

a51

d x2xað Þ1d0 x2xað Þxa½ � @wa

@t
2
XN

a51

d0 x2xað Þ @ca

@t
5Sx x; tð Þ

(6)

The derivatives with time of both the weights and the
weighted abscissa are independent of x. Thus, a set of ordi-
nary differential equations is usually defined to follow the
transient changes of these weights and weighted abscissas

@wa

@t
5EwaðtÞ

@ca

@t
5EcaðtÞ (7)

The integer moments of the distribution were defined by
Hulburt and Katz34 as follows

mkðtÞ5
ð11

21
xk f ðx; tÞdx5
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a51

waxk
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Equation 6 can be transformed into a transport equation of
moments by multiplying it by xk and integrating over x. Dif-
ferent terms need thus to be derived, such asð11

21
xkdðx2xaÞdx5xk

a (9)

ð11

21
xkd0ðx2xaÞdx52kxk21

a (10)

Thus, the final equation can be written as follows

ð12kÞ
XN

a51

xk
a Ewa1k
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a51

xk21
a Eca5

ð11

21
xk Sx x; tð Þdx (11)

This set of Eq. 11 corresponds to an algebraic system,
with 2N unknowns: Ew1, . . ., EwN, Ec1, . . ., EcN. Following
Marchisio and Fox,20 one can write this system in matrix
form A E 5 D, where A is a square matrix (2N, 2N) and E
and D are column vectors of size 2N. Thus, 2N moments are
needed to close the system, so k must vary between 0 and
2N 2 1. One can consider two particular values of k, namely
k 5 0 and k 5 1.

When k 5 0, the previous equation simplifies to the fol-
lowing form

XN

a51

Ewa5

ð11

21
Sx x; tð Þdx50 (12)

On the right hand side, the summation of the source and
sink terms over the whole distribution of sizes must be null,
irrespective of the kernel. Keeping in mind the definition of
Ewa, one can rewrite this expression as follows

@

@t
w11w21w3ð Þ5 @m0

@t
50 (13)

This result is obvious.
When k 5 1, the previous equation reduces to

XN

a51

Eca5

ð11

21
x Sx x; tð Þdx5S1 (14)

Here, one can rewrite this expression as follows by again
keeping in mind the definition of Eca

@

@t
w1x11w2x21w3x3ð Þ5 @m1

@t
5S1 (15)

The transient change in the first moment could be pre-
dicted depending on the closure of the sink and source
terms. The kernels associated with the present comminution
process will be defined in the next paragraph.

Monovariate DQMOM validation and discussion

In the specific case where the selection function a(x) is a
power function (Eq. 16) and the breakage distribution func-
tion B(x, y) is self-similar as in Eq. 177,35–37

a xð Þ5A0

x
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� �a0

(16)
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5
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y

x

y

� �a021

(17)

Then, the batch grinding equation has been shown to have
an analytical solution

R x; tð Þ5R x; 0ð Þ exp 2A0

x

xmax

� �a0

t

� �
(18)

where R(x, t) is the retained cumulative-size distribution
defined as follows

R x; tð Þ5
ð1
x

f y; tð Þdy (19)

The DQMOM model was developed using Matlab and
validated considering a normal law for the initial particle-
size distribution with a mean value (m) equal to 3 and a
standard deviation (r) of 0.5. If the order N of the quadra-
ture is chosen to be 3, the weights and abscissas can be cal-
culated as function of the mean and standard deviation of
the normal law by the following formula

x1 0ð Þ5m2
ffiffiffi
3
p

r52:13 w1 0ð Þ51=6

x2 0ð Þ5m53 w2 0ð Þ52=3

x3 0ð Þ5m1
ffiffiffi
3
p

r53:87 w3 0ð Þ51=6

(20)

It corresponds to the following expression for the mass
particle-size initial distribution f(x, 0)

f ðx; 0Þ5 1

r
ffiffiffiffiffiffi
2p
p e2
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2r2 (21)

One can thus explicitly define the analytical expression of
the initial cumulative size distribution R(x, 0) as follows
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The analytical solution of the mass particle-size distribu-
tion f(x, t) can be expressed as follows
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The model was validated by comparing the values of the
first moments obtained by the DQMOM model with those
derived from the analytical solution (Eq. 23). The results
reported in Figures 1–3 correspond to the case where A0 5

0.5 min21 and a0 5 2. Figure 1a represents the change in the
first six moments as a function of time. Due to the definition



of f(x, t), m0 represents the overall solid mass and remains
constant over time (see Eq. 13), which agrees with the mass
conservation during the grinding process. The higher order
moments decrease over time due to the size reduction. The
simulated values closely approximated the analytical solu-
tion. The changes in the dimensionless moments, which
were obtained by dividing the transient moments by their
value at the initial time, are reported in Figure 1b on a semi-
log graph for the first minutes of the process.

In theory, one can return to the conclusions reached in the
previous section given the selection and breakage kernels
and explicitly define the transient changes in the moments

@m1

@t
5S152

A0

a011

1

xmax
a0

ma011 (24)

The following can be shown in a more general way

@mi

@t
5Si52i

A0

a01i

1

xmax
a0

ma01i (25)

An analytical expression of the moments as a function of
time is not easily derived from these equations. However, an
approximated expression of the first moments can be written
over the first minutes of the process, as shown in Figure 1b

mk tð Þ
mk 0ð Þ5exp 2

t

sk

� �
(26)

The time-scale of the local disintegration phenomena given
by 1/A0 can be compared with the time-scale of the process
estimated from sk (for t 5 sk, the dimensionless moments are
equal to 36.8%). The estimated values obtained for different
values of A0 are reported in Table 1. The time-scale of the pro-
cess always significantly exceeded the time-scale of the disinte-
gration process, irrespective of the value of A0. Furthermore,
quasi-identical values of the parameters sk can determined as a
function of the time-scale of the local disintegration phenomena.
Specifically, the following relationships could be determined

s1 �
11:2

A0

; s2 �
7:2

A0

; s3 �
5:9

A0

; s4 �
5:0

A0

; s5 �
4:4

A0

(27)

Monovariate DQMOM results and discussion

The changes in the abscissas and weights as a function
time are, respectively, reported in Figures 2a, b. As expected,

Figure 1. (a) Change in the first moments vs. time—
comparison of the monovariate DQMOM
solution (points) with the analytical solution
(continuous lines) and (b) change in the
dimensionless moments at the beginning of
the process—comparison of the monovariate
DQMOM solution (points) with an exponential
law (lines).

Figure 2. (a) Change in the abscissas—monovariate
DQMOM and (b) change in the weights—
monovariate DQMOM.



Table 1. Comparison of the Time-Scale of the Local Break-Up Phenomena with the Time-Scale of the Grinding Process

Kinetic Parameter
A0 (min21)

Time-Scale Local
Break-Up (min)

Time-Scale of the Process (min)

s1 s2 s3 s4 s5

1 1 13.5 8.2 6.3 5.4 4.8
0.5 2 26.3 15.9 12.3 10.5 9.3
0.1 10 111.1 71.4 58.8 50.0 43.5

Figure 3. (a) Change in the PSD vs. time (analytical solution) and visualization of couples (wa, xa) obtained by
DQMOM monovariate—t 5 0 min, (b) t 5 1 min, (c) t 5 5 min, (d) t 5 20 min, and (e) t 5 100 min.



the abscissas decrease over time in relation to the size reduc-
tion process. Simply, if we assume that each couple (xi, wi)
characterizes a subpopulation of the entire size distribution,
their change over time can be compared with the correspond-
ing analytical particle-size distribution. Some examples are
given in Figure 3. At each time considered, the abscissas
belong to the size range, and the weights agree with the pro-
portion of particles in the entire size distribution. Moreover,
Figure 2b shows that the weight of the finer population first
decreases during the first minutes of the process before
increasing for longer times. Initially, the PSD is narrow, but it
rapidly spreads over time as finer fragments are produced.
These fragments eventually comprise the finer subpopulation,
and the couple (x1, w1) reproduces their change. Meanwhile,
the weight of the coarser population first increases from its
initial value before decreasing. This phenomenon results from
the spreading of the PSD; the couple (x3, w3) that represents
the coarser population at any time expresses this trend. Ini-
tially, w3 equals 1/6, it increases during the first minutes of
the process while x3 decreases (see e.g., Figure 3b at t 5 1
min) and then decreases as the coarse particles disintegrate.
Thus, even though the weights and abscissas do not fully
describe the particle-size distributions, these values closely
approximate the corresponding analytical PSD.

Bivariate DQMOM Applied to Comminution
Process

General equations: homogeneous breakage

Two properties were considered for the solid phase of the
bivariate case, the particle size and the particle strength,
which was represented by the fracture energy, that is, the
minimum energy needed to break the particle. The particle-
size energy distribution f(x, e, t), which represents the mass
fraction of particles characterized by size x and fracture
energy e at instant t, was again approximated based on the N
nodes of the Gaussian quadrature

f x; e; tð Þ5
XN

a51

wa tð Þd x2xað Þd e2eað Þ (28)

Furthermore, the mixed moments were defined as follows

mklðtÞ5
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xkelf ðx; e; tÞdx5

XN

a51

wa xk
a el

a (29)

In this bivariate case, the ODE system is based on 3N
equations corresponding to the N nodal values of the
weights, weighted sizes, and weighted energies

@wa

@t
5Ewa (30)

@ wa xað Þ
@t

5Ewxa (31)

@ wa eað Þ
@t

5Ewea (32)

The right hand sides of this ODE system are solutions of
the algebraic system with 3N unknowns: Ew1, . . ., EwN, Ewx1,
. . ., EwxN, Ewe1, . . ., EweN. The generic equation to build the
system is written as follows
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aEwxa1lxk
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a Ewea
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52
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aaba
kl
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(33)

The building of this algebraic system corresponds to the
choice of 3N mixed moments or 3N couples (k, l), which are
needed to close the system.

Application of bivariate DQMOM: case study

Recall the general mass balance equation for a batch
grinding process

@f x; e; tð Þ
@t

52a x; eð Þf x; e; tð Þ

1

ð11
0

ðxmax

x

S x0; e0ð Þb x; e; x0; e0ð Þ f x0; e0; tð Þdx0 de0

(34)

Crespo10 recently developed both experimental and theo-
retical background for the comminution mechanisms related
to this problem. In our bivariate approach, the selection
function and the breakage function being based on both size
and energy enable to introduce improved physics compared
to monovariate case. The selection function a(x, e) describes
the rate at which particles of size x and breakage energy e
are broken. The breakage function b(x, e, x0, e0) represents
the probability to obtain fragments of properties (x, e) after a
fracture event of particles characterized by size x0 and break-
age property e0.

Following Crespo,10 the selection function can be consid-
ered as the product of two probabilities: the impact probabil-
ity, which depends on the process conditions and the particle
size, and the breakage probability after a stress event, which
depends on the breakage energy. Assuming that the impact
probability can be expressed by a power law function as in
the previously considered monovariate case (Eq. 16), and
that the breakage probability can be described by an expo-
nential law, the overall selection function can be written as
follows

aðx; eÞ5A0

x

xmax

� �a0

exp 2
e

e�

	 
h i
(35)

e* is a reference parameter that as the same dimensions as
energy. Its value will be commented on in section Compari-
son of Monovariate and Bivariate DQMOM Methods.

Similarly, the breakage function can be decomposed into
two contributions. Assuming that the size and energy of
daughter particles do not depend on the mother energy after
breakage, the following equation can be addressed

b x; e; x0; e0ð Þ5b1 x; x0ð Þb2 eð jxÞ (36)

The first term breaks the usual probability into fragments
of size x from mother particles of size x0, as expressed by
Eq. 17. The second term expresses the energy spectrum of
daughter particles conditioned by their size. The particle
fracture energy can be evaluated from single-particle impact
test, such as with the UFCL.11,12 Such experiments con-
ducted on individual particles lead to a large scatter of the
data and are usually treated using statistical tools. The



fracture probability can then be described by a log-normal
distribution

P Eð jxÞ5 1

2
11erf

ln E=E50ð Þffiffiffiffiffiffiffiffiffiffi
2rE

2
p
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(37)

where E is the mass-specific particle fracture energy (equal
to the particle fracture energy divided by the mass of a parti-
cle, e/mp). E50 and rE are the median and geometric variance
of the distribution, respectively. Tavares and King12 ana-
lyzed the effect of the particle size on the fracture energy for
a variety of materials, and the following equation for the
nominal size was proposed

E505e50=mp5E1 11
x0

x2x00

� �/
" #

(38)

All parameters in this equation are constants that depend
on the material properties. In our simulations, the following
data obtained by Tavares and King12 for irregular particles
of quartz were used: E15 43.4 mJ/g, x0 5 3.48 mm, x005
5 mm, and / 5 1.61.

The fracture energy spectrum is then given by the
following

b2 ejx; tð Þ5 @P ejxð Þ
@e

5
exp 2

ln e=e50ð Þð Þ2
2rE

2

h i
e
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2prE

2
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With these assumptions, the fracture energy is a function
of the particle size and the energy spectrum of the daughter
particles does not depend on the mother energy spectrum.
The second property of the solid is thus conditioned by the
first one and the bivariate PBE could be solved with a condi-
tional quadrature method of moments whose an algorithm
was developed by Yuan and Fox.38 But the choice of
DQMOM method rather than CQMOM method is driven by
the prospect to derive a general approach of comminution
problems that should be transferable to other kind of break-
up mechanisms. Indeed, the conditions chosen for the case
study are not universal in the comminution context and both
properties have been treated here as if they were independ-
ent. Thus, the bivariate model could be used in more general
situations, when the energy spectrum is not (or not only)
governed by the particle size (fatigue phenomena, increase
of particle strength, change in fracture mechanism during the
process . . .) or even when another solid property, such as a
morphological parameter, has to be considered.

Bivariate DQMOM validation and discussion

The PBE applied to a bidimensional comminution process
does not have an analytical solution, such as the previously
defined solution for the monovariate case. To validate the
method, the change in certain mixed moments calculated by
the bivariate DQMOM were compared to those calculated
using a discrete solution of Eq. (34). After the discretization
of the variables size and energy, Eq. (34) can be rewritten in
the following form
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while considering discrete forms for the selection and the
breakage functions such as
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The problem was solved by considering one hundred size
intervals between the minimum and maximum sizes (i.e.,
zero and 6 mm in the studied case) and one hundred energy
intervals. The reference energy was defined to be equal to
the median energy for the maximum particle size E50 (xmax

5 6 mm). The energy range was chosen to obtain a breakage
probability between zero and 1 for each size class. The sys-
tem of ordinary differential equations obtained after discreti-
zation was directly solved using the ode45 function of
Matlab.

The discrete solution was used to validate the bivariate
solution obtained with DQMOM for a number of nodes
N 5 3. Indeed, following Fox and coworkers,39,40 it is known
that, for two solid properties, the minimum number of nodes
to be considered to represent correctly the second-order
moments is equal to 3. For N> 3, it is necessary to take into
account mixed moments having higher orders which have no
practical interest for the grinding process. The determination
of moments with a high order on the base of experimental
data could also lead to significant errors and this would con-
stitute an important limitation for validation purpose.

If the number of nodes is equal to three, nine moments
are needed to solve the system. In that case, it is known that
there is no optimal moment set.39,40 However, the following
set of moments, that was chosen for the DQMOM resolution:
(m00, m10, m01, m20, m11, m02, m30, m03, m22), corresponds to
a valid moment set, in accordance with the general rules
given by Marchisio and Fox.40 Indeed, all six moments of
global order less than or equal to two were chosen (i.e., m00,
m10, m01, m20, m11, m02) and the remaining three moments
were of global order three for two of them (m30 and m03)
and of a global Order 4 for the last one (m22). m30 and m03

were chosen to precisely predict the pure moments of order
three, as suggested by Zucca et al.23 analysis. Pure moments
of order two and three are needed to evaluate the d32 (ratio
of the pure moment of Order 3 on the pure moment of Order
2), which is a characteristic dimension often considered in
particulate processes. Moreover, with the set of moments
given above, both properties have been equally treated.

The comparison between certain mixed moments calcu-
lated by DQMOM with N 5 3 and those estimated by the
discrete solution is illustrated in Figure 4. The initializing
values were obtained by resolving the nonlinear system com-
prised of the 3N mixed moments using a Newton–Raphson
iterative method. The following initial values were consid-
ered for the weights and abscissas: w1 5 0.5, w2 5 0.1,
w3 5 0.4; x1 5 2.5, x2 5 3.5, x3 5 3.5; e1 5 2.0, e2 5 10, and
e3 5 2.7.



The models showed significant differences, especially for
the mixed moments with a high order on the second variable
(see Figure 4b). However, these errors were already present
at the initial time. They are due to approximations in the
double integral calculation within the discrete solution to
determine the mixed moments. The precision of the discrete
model could most likely be improved by increasing the num-
ber of size and/or energy intervals, which increases the com-
putational time. Indeed, a standard computer obtains the
DQMOM solution in a few minutes, whereas the calculation
of the discrete model requires approximately two couple of
weeks with a 150 3 150 grid. However, similar tendencies
can be observed with both models. For example, both models
calculated similar values for the Sauter diameter (Figure 5),
which is defined by the ratio of the m30 to the m20 mixed
moments.

Moreover, the DQMOM model provides access to the
weights and abscissas as a function of time. These data are
not directly correlated with the physical properties of the dis-
tributions but the couples (wa, xa) and the particle-size distri-
butions show good agreement. The PSD were determined as
a function of time by using the discrete solution and calcu-
lating the mean values of the mass fractions over the energy

range. Some examples are reported in Figure 6. The size
abscissas belong to the particle-size range, and shifting the
abscissas toward the lowest sizes is in concordance with the
size reduction process, irrespective of the time. The increase
in w1 also accompanies the creation of a population consti-
tuted by fines particles.

Comparison of Monovariate and Bivariate
DQMOM Methods

The monovariate and bivariate DQMOM methods can be
directly compared by considering the mixed moments with a
nil order for the second variable, m10, m20, m30, and so forth
for the bivariate solution. The changes in the first six
moments over time are reported in Figure 7a. As expected,
the moments decrease more slowly with the bivariate solu-
tion. The second part of the selection function [exp(2e/e*)]
acts as a decelerator for the breakage process. In the mono-
variate model, the energy limitation is implicitly contained
in the kinetic prefactor A0. To approach identical conditions,
we can assume that the breakage energy is independent of
the particle size and constant over time. This constant is
termed the critical energy and equal to e*. If the energy sup-
plied during the process is higher than the critical energy,
the breakage probability will equal 1. Conversely, it equals
zero when the supplied energy is less than the critical
energy. In this case, the energy breakage function can be
expressed as follows

b ejxð Þ5 @P ejxð Þ
@e

5d e2e�ð Þ (46)

The two models yield very similar values for the transient
change of the six moments when the selection function is
assumed to only depend on the particle size for both the
monovariate and bivariate DQMOM models (Eq. 16) (Figure
7b). Figure 7c also shows that the monovariate and bivariate
DQMOM solutions yielded similar changes in the Sauter
diameter for the special case of a constant critical energy,
whereas these values significantly differ for the general case.

The arbitrary grinding kinetics [A0 5 0.5 min21 and
e* 5 e50(xmax)] were considered on the Figure 7c. To prove
the benefit of the bidimensionnal model over the

Figure 4. (a) Change in certain mixed moments vs.
time–comparison of monovariate DQMOM
solution with the discrete solution and (b)
change in certain mixed moments vs. time—
comparison of bivariate DQMOM solution
with the discrete solution.

Figure 5. Change in the Sauter diameter vs. time—
comparison of bivariate DQMOM solution
with the discrete solution.



monovariate model, the transient change in the Sauter diam-
eter calculated with the monovariate model was compared
with the solution of the bivariate DQMOM model obtained
for different values of the kinetic parameter A0 while main-
taining the reference energy constant (Figure 8a). Similarly,
both models were compared for different values of the refer-
ence energy Eref while maintaining the kinetic parameter
A0 5 0.5 constant (Figure 8b). Decreasing the grinding
parameter A0 decreased the breakage kinetics and dampens
the decrease of the Sauter diameter. The difference between
the monovariate and bivariate solution was similar irrespec-
tive of the value of A0. In each case, the decrease in the
Sauter diameter slowed when considering the energy barrier
compared to the solution obtained with the monovariate
model.

A similar change was observed when considering the
effect of the critical energy, e*, by dividing or multiplying it
by 10. The value of the critical energy significantly affected
the Sauter diameter. A low value of the critical energy
implies that the material has a low strength (a high grind-
ability) and can be ground by any amount of energy supplied
to the mill. If the critical energy is independent of the parti-
cle size, the particle strength is not essential to the popula-
tion balance. On the contrary, the benefit of the bivariate
model compared to the classical one becomes significant for

hard materials or if the energy needed for breakage depends
on the particle size.

Conclusions

The DQMOM was used to solve the PBE applied to a
homogeneous batch-grinding process. A property of the solid
phase, the particle size, was first considered, and the model
was validated by comparing the numerical results with an
analytical solution of the PBE obtained by choosing a power
law for the size selection function and a self-similarity
expression for the breakage function. A bivariate model was
then developed in which two properties were considered for
the solid phase: the particle size and the minimum energy
needed for their breakage. Expressions similar to those of
the monovariate case were considered for the selection and
breakage-size distribution in this case. Moreover, the energy
spectra were assumed to be described by a log-normal proba-
bility function, and the breakage energy probability was
assumed to be described by an exponential law. The bivari-
ate DQMOM solution was very similar to a discrete solution
of the PBE obtained by taking a finite number of size and
energy intervals, but the computational time was signifi-
cantly reduced. Finally, the benefit of the bivariate comminu-
tion model was proven by comparing the monovariate and

Figure 6. (a) PSD obtained by the discrete solution taking mean values of the mass fractions over the energy range
and visualization of the (wa, xa) couples from bivariate DQMOM—t 5 1 min, (b) t 5 5 min, (c) t 5 20 min,
and (d) t 5 100 min.



bivariate solutions for a simplified case that adopted a criti-
cal minimum energy independent of size. The energy needed
for breakage can thus be important for hard or heterogeneous
materials for which the energy needed for breakage depends
on the particle size. Generally speaking, our work shows the

applicability of the DQMOM approach to solve a bidimen-
sional PBE for a batch-grinding process. This model could
be further developed to implement it in a CFD code to pre-
dict the solid properties while considering the heterogeneities
of the impact energy inside the grinding chamber. Moreover,
this work was focused on the particle size and energy for
breakage, but other properties of the solid phase could also
be considered. In particular, morphological characteristics
could be considered to predict the change in the particle
shape during a grinding process.
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