

What MDL can bring to Pattern Mining

Tatiana Makhalova, Sergei O. Kuznetsov, Amedeo Napoli

▶ To cite this version:

Tatiana Makhalova, Sergei O. Kuznetsov, Amedeo Napoli. What MDL can bring to Pattern Mining. ISWS 2018 - International Semantic Web Research Summer School, Jul 2018, Bertinoro, Italy. hal-01889792

HAL Id: hal-01889792 https://hal.science/hal-01889792

Submitted on 8 Oct 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

What MDL can bring to Pattern Mining

Tatiana Makhalova, Sergei O. Kuznetsov, Amedeo Napoli

National Research University Higher School of Economics, 3 Kochnovsky Proezd, Moscow, Russia LORIA, (CNRS -- Inria -- U. of Lorraine) BP 239, Vandœuvre-lès-Nancy, France

Introd	uction

Patterns are subsets of attributes that describe an object.

Ínría

Pattern Mining. Objective: find a small set of patterns that are well interpretable by experts.

Input data: binary table G x M, where G is a set of objects, M is a set of attributes, and I is a relation between them.

Interpretation of glm: object $g \in G$ has attribute $m \in M$.

Background Knowledge: Assumptions on Interestingness

Idea: use measures that reflect knowledge of experts about 'interestingness" of patterns

Examples of interestingness measures for concept (A,B) [area] "interesting patterns are those that take the biggest area in dataset" [length] "Interesting patterns are the most detailed ones that are quite frequent in dataset where $I(\cdot)$ is the indicator*, q is a threshold. [separation] "Interesting patterns are separated the best from the context"

combined measures, etc.

Pattern Mining. What kind of patterns we should compute?

Total number of patterns is 2^M

Types of patterns in terms of Formal Concept Analysis

FCA. Basic Notions

A formal context [Ganter and Wille, 1999; Wille, 1982] is a triple (G,M,I), where G is a set objects, M is a set attributes, $I \subseteq G \times M$ is a relation called incidence relation.

The derivation operator (·)' is defined for $Y \subseteq G$ and $Z \subseteq M$ as follows:

 $Y' = \{ m \in M \mid glm \text{ for all } g \in Y \}; \quad Z' = \{ g \in G \mid glm \text{ for all } m \in Z \}$

A (formal) concept is a pair (Y, Z), where $Y \subseteq G, Z \subseteq M$ and Y' = Z, Z' = Y. Y is called the (formal) extent and Z is called the (formal) intent of the concept (Y, Z).

A concept lattice (or Galois lattice) is a partially ordered set of concepts, the order \ll is defined as follows: (Y, Z) \ll (C, D) iff $Y \subseteq C$ ($D \subseteq Z$), a pair (Y, Z) is a subconcept of (C, D) and (C, D) is a superconcept of (Y. Z).

Example

F	Formal context											
	(Objects	m₁	m₂	m₃	m₄	m₅	m₀	m7	m₀	m₀	m ₁ : 4 legs m ₂ : wool
ę	J 1	dog	Х	Х	Х			Х				m3: change size
ç]2	cat	Х	Х	Х				Х			m4: cold-resistant
ç] 3	frog	Х		Х					Х		m₅: do release CC
ę] 4	car				х					Х	m6: black-white
ç] 5	ball			Х	Х	Х	Х				m7: yellow-braw
ç] 6	chair	Х			Х	Х			Х		m ₈ : green
ç]7	fur coat		Х		Х	Х				Х	m ₉ : gray

For a formal concept ($\{g_1, g_2\}, \{m_1, m_2, m_3\}$)

- closed patterns $\{m_1, m_2, m_3\}$;
- minimal generators $\{m_1, m_2\}, \{m_2, m_3\};$

- generators $\{m_1, m_2\}, \{m_2, m_3\}, \{m_1, m_2, m_3\}$.

 $area(A, B) = |A| \cdot |B|$

 $length(A, B) = |B| I(|A| \ge q)$

 $sep(A, B) = \frac{|A||B|}{\sum_{g \in A} |g'| + \sum_{m \in B} |m'| - |A| \cdot |B|}$

 $I(cond) = \begin{cases} 1 & \text{if } cond \text{ is } True \\ 0 & \text{otherwise} \end{cases}$

The most interesting concepts w.r.t. given assumptions:

Formal concepts ordered by generality relation $(A_1, B_1) \ll (A_2, B_2)$ iff $A_1 \subseteq A_2$ make a lattice, called concept lattice. Types of patterns (defined for concept (A,B)): Closed itemises (intents): <i>B</i> . Minimal generators are minimal subsets $B_i \subseteq B : B_i' = A$. Generators are any patterns between minimal generators and closed itemises	(area) $(\{g_1, g_2\}, \{m_1, m_2, m_3\})$, $(\{g_1, g_2, g_3\}, \{m_1, m_3\})$, $(\{g_5, g_6, g_7\}, \{m_4, m_5\})$; area = 6 (length, frequency ≥ 2): $(\{g_1, g_2\}, \{m_1, m_2, m_3\})$; length = 3 (separation): $(\{g_1, g_2\}, \{m_1, m_2, m_3\})$, $(\{g_1, g_2, g_3\}, \{m_1, m_3\})$; separation = 6/13. Background Knowledge					
Input data Compute patterns Rec	order patterns					
Minimal Description Length (MDL) Principle.D computedBasic DefinitionsThe main principle: the best set of patterns is the set that best compresses the database [Vreeken et al., 2011].Objective: $L(D, CT) = L(D CT) + L(CT D)$, where $L(D CT)$ is the length of the dataset encoded with the code table CT and $L(CT D)$ is the length of the code table CT computed w.r.t. D D computed w.r.t. CT Image: CT computed w.r.t. D Deta with coveringImage: CT computed w.r.t. D	MDL in practice: greedy algorithm (Krimp)Initial stateCrData with coveringCandidate set, area \overline{CT} \overline{Data} with covering $\overline{Candidate set, area}$ $\overline{Tm_1 m_2 m_3, 6}$ $\overline{m_1 m_3 m_6, 4}$ $\overline{m_1 m_2 m_3, 6}$ $\overline{m_1 m_3, 6}$					
Key notions:- Encoding length: new length that "compresses", i.e. the most frequently used ones have the shortest encoding length Code table: a set of selected patterns with their encoding lengths Disjoint covering: principle of compression by patterns.Total length: $L(D, CT) = L(CT D) + L(D CT)$ Code table length w.r.t. data: $L(CT D) = \sum_{i \in CT} code(i) + len(i)$ $L(D CT) = \sum_{d \in D} \sum_{i \in cover(d)} len(i)$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
MDL: is there a place for background knowledge? Idea: MDL as an additional filtering stage in pattern selection. MDL-optimal (blue) vs top-n (green) closed itemsets $ \int_{125}^{125} \int_{100}^{125} $	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					

' datasets from LUCS-KDD repository [4]

 $len_fr(B)$ sort by |B|, then by frequency(B)

lift_len_fr(B) sort by *lift(B)*, *|B|* and *frequency(B)*

len_lift(B) sort by *|B|*,then by *lift(B)*

in that case patterns characterize the same objects at different levels of abstraction. Short paths correspond to "flat" structures with more varied patterns.

Pattern mining with area len_sep and area_sep lift, lift_len_fr can be significantly improved by the application of MDL.

distinctive (w.r.t.

Data coverage The rate of covered "crosses" in objectattribute relation

A subset of selected patterns can be considered as a concise representation of a dataset. Thus, it is important to know how much information is lost by compression. It can be measured by the rate of covered attributes. Values close to 1 correspond to the lossless compression

MDL ensures better covering and allows for the biggest gain for area-based orderings.

Typicality (representativeness)

75 50 25

සූ 125

ම 100

0.9

i 0.8

£[']0.7

g^{0.6}

0.5

It is measured by the usage of patterns, i.e. the frequency of the occurrence of patterns in the greedy covering, so the usage does not exceed the frequency.

It is not obvious which values are better. The high values of usage correspond to a subset of common patterns, while low values indicates that a subset contains less typical, but still interesting (w.r.t. interestingness measures) patterns.

The usage of MDL-optimal patterns is almost the same for different orders while the usage of topn is dependent on ordering.

Used measures for ordering candidate sets. The ordered list of candidates is used for greedy covering of data in Krimp

area_fr_lift = frequency(B)·lift(B) $area_len_lift = len(B) \cdot lift(B) = |B| \cdot lift(B)$ $area_len_fr = len(B) \cdot frequency(B)$

References

- 1. Aggarwal, C.C., Han, J.: Frequent pattern mining. Springer (2014)
- Baldi, P., Brunak, S., Chauvin, Y., Andersen, C.A., Nielsen, H.: Assessing the accuracy of prediction algorithms for 2. classification: an overview. Bioinformatics 16(5), 412-424 (2000)
- 3. Buzmakov, A., Kuznetsov, S.O., Napoli, A.: Fast generation of best interval patterns for nonmonotonic constraints. In: Joint European Conference on Machine Learning and Knowledge Discovery in Databases. pp. 157–172. Springer (2015)
- 4. Coenen, F.: Thelucs-kdddiscretised/normalisedarmandcarmdatalibrary(2003), http://www.csc.liv.ac.uk/ frans/KDD/ Software/LUCS KDD DN
- 5. Ganter, B., Wille, R.: Formal concept analysis: Logical foundations (1999)
- 6. Ganter, B., Kuznetsov, S.O.: Formalizing hypotheses with concepts. In: International Conference on Conceptual Structures. pp. 342–356. Springer (2000)
- 7. Grünwald, P.D.: The minimum description length principle. MIT press (2007)
- 8. Kuznetsov, S.O.: Machine learning and formal concept analysis. In: Eklund, P. (ed.) Concept Lattices. Springer Berlin Heidelberg, Berlin, Heidelberg (2004)
- 9. Kuznetsov, S.O., Makhalova, T.: On interestingness measures of formal concepts. Information Sciences 442-443, 202 -219 (2018)
- 10. Vreeken, J., Van Leeuwen, M., Siebes, A.: Krimp: mining itemsets that compress. Data Mining and Knowledge Discovery 23(1), 169–214 (2011)