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Abstract

We present a method for modeling empirical data
by a rule set in ordinal classification problems. This
method is nonparametric and uses an intermediary
model based on Sugeno integral. The accuracy of
rule sets thus obtained is competitive with other
rule-based classifiers. Special attention is given to
the length of rules, i.e., number of conditions.

First author note :
Because of a mistake I made, the results presented in the orig-
inal paper are partly wrong. This document is a corrected
version.

1 Introduction
Let X = X1 × · · · ×Xn, where each Xi is a totally ordered
set called attribute domain, and let L be a totally ordered set,
whose elements are called classes. The minimal and maxi-
mal element of any totally ordered set X are denoted by 0X
and 1X , respectively. An instance is a pair (x, y) ∈ X × L.
A dataset is a collection of instances (in which the same in-
stance can appear several times). A model of a dataset is a
function f : X → L, and its accuracy is the proportion of
instances for which f(x) = y in agreement with the dataset.

We consider datasets that can be accurately modeled by a
nondecreasing function. Such datasets are typically found in
Multi-Criteria Decision Aid, where evaluation of alternatives
depends on several criteria, but also in some medical diagno-
sis problems. The task of finding an accurate nondecreasing
model of a dataset has been addressed in several ways (see,
e.g., [Gutiérrez et al., 2016]). In this short paper, we focus
on rule-based models, since rules provide an explicit justifi-
cation for each class prediction they make. We consider sets
of (selection) rules of the form

if x1 ≥ α1 and . . . and xn ≥ αn then y ≥ δ (1)

where (α1, . . . , αn) ∈ X. The VC-DomLEM algorithm
[Blaszczyński et al., 2011] allows us to learn such a set of
rules, which yields a good accuracy compared to other inter-
pretable models.

In [Brabant et al., 2018], we proposed an alternative
method for learning rule sets, which relies on Sugeno inte-
grals. This method does not require the tuning of any hyper-
parameter and is competitive with VC-DomLEM in terms of
accuracy. Moreover, this method raised new questions about
the relevance of capacities (i.e., monotonically increasing set
functions) in data-modeling.

2 Rule-based and capacity based models
Let R be a set of rules of the form (1). There may be several
functions that are compatible with R. We denote by fR the
smallest function compatible with R, defined by fR(x) =
maxr∈R fr such that for each rule r:

fr(x) = δr, if ∀i ∈ C, xi ≥ αri , and 0 otherwise.

We will say that a function f is equivalent to R if f = fR.
In what follows, we use the notation [n] = {1, . . . , n}. Let

µ : 2[n] → L be a capacity, i.e., a set function 2[n] → L
such that µ(∅) = 0L, µ([n]) = 1L, and µ(I) ≤ µ(J) for all
I ⊆ J ⊆ [n]. The Sugeno integral w.r.t. µ is the aggregation
function Sµ : Ln → L defined by

Sµ(x1, . . . , xn) = max
I⊆[n]

(min(µ(I),min
i∈I

xi)).

Note that the Sugeno integral can be a model for ordinal clas-
sification only if X1 = · · · = Xn = L. A Sugeno util-
ity functional (SUF) is a more expressive model which can
merge values from different scales. Let ϕ = (ϕ1, . . . , ϕn),
where each ϕi : Xi → L is a nondecreasing function such
that ϕi(0Xi

) = 0L and ϕi(1Xi
) = 1L. The SUF Sµ,ϕ is the

function defined by

Sµ,ϕ(x1, . . . , xn) = Sµ(ϕ1(x1), . . . , ϕn(xn)).

It was shown in [Brabant et al., 2018] that:
1. Any SUF is equivalent to a rule set.
2. Any single rule is equivalent to a SUF.
3. Some rule sets are not equivalent to a single SUF.

In other words, some combinations of rules cannot be ex-
pressed by one SUF. However, the second assertion allows
to say that any rule set is equivalent to some function MS :
X → L defined by MS(x) = max{Sµ,ϕ(x) | Sµ,ϕ ∈ S},
where S is a set of SUFs. We call such function a max-SUF.



There is no reason to think that a max-SUF provides a bet-
ter interpretability than its equivalent rule set. However, an
interesting question is whether it can serve as an intermedi-
ary model that helps guiding the learning process of a rule
based model. Indeed, in [Brabant et al., 2018], it is shown
that a non-parametric learning algorithm based on a max-SUF
is competitive with VC-DomLEM.

3 From SUFs to rule sets and vice-versa
Any SUF Sϕ,µ is equivalent to the rule set⋃

I⊆[n]

⋃
δ≤µ(I)

{∀i ∈ I, xi ≥ αi ⇒ y ≥ δ}, (2)

where αi = min{a ∈ Xi | ϕi(a) ≥ δ}. Note that this set is
likely to contain redundant rules. Now let us show a method
of translation of a rule set R into a SUF.

1. Initialize µ and ϕ = (ϕ1, . . . , ϕn) with minimal values.

2. For each rule x1 ≥ α1, . . . , xn ≥ αn ⇒ y ≥ δ in R:

(a) let A = {i ∈ [n] | αi > 0},
(b) increase µ(A) up to δ,
(c) for each i ∈ A, increase ϕi(αi) up to δ

After these steps we always have Sµ,ϕ ≥ fR. When Sµ,ϕ >
fR, no SUF is equivalent to R.

In some cases, it is not problematic that Sµ,ϕ > fR. For
example, if fR is a model of a dataset D, we may want to
find an SUF that best fits D. Obtaining Sµ,ϕ = fR is not
always possible since SUFs are not expressive enough. How-
ever, equality can be always achieved using a max-SUF [Bra-
bant et al., 2018]. The method presented in the next section
relies on this fact.

4 Learning rules from empirical data
Let D be a dataset. The following three steps provide a
method for modeling D by a max-SUF.

1. Selection of an order-preserving subset of data. Two
instances (x, y) and (x’, y′) can be anti-monotonic together,
i.e, x ≤ x’ and y′ ≤ y. We iteratively remove instances from
D, starting from those that are anti-monotonic with the high-
est number of other instances, until no anti-monotonic pair
remains. We denote by D− the dataset obtained in this way.

2. Modeling D− by a rule set R. Initialize R to ∅. For
each instance ((a1, . . . , an), y) in D−, search for A ⊆ [n]
with minimal cardinality, such that the rule

∀i ∈ A, xi ≥ ai ⇒ y ≥ δ, (3)

is not contradicted by any instance in D−. Add the rule (3) to
R. At the end of this step, the class of each instance in D− is
exactly predicted by fR.

3. Translation of R into a max-SUF. See Algorithm 1.
The obtained max-SUF is not necessarily equivalent toR, but
it fits D− precisely.

Note that the max-SUF given by this method can be trans-
lated back into a rule set, which constitutes an equivalent
model and is easier to interpret.

Algorithm 1: Makes a partition P ofR such that the max-
SUF MS verifies MS(x) = y for each instance (x, y).

1 P← {}
2 for each r ∈ R do
3 affected← false
4 for each P ∈ P do
5 translate P into a SUF Sµ,ϕ
6 if Sµ,ϕ(x) ≤ y for all instance (x, y) in D− then
7 add r to P
8 affected← true
9 break loop

10 if affected = false then
11 add {r} to P

1 2 3 4 5 6 7 8 9 10 11 12 avg.
Steps 1,2. 74.4 95.8 97.7 93.6 91.7 65.6 83.2 27 67 63.6 58.2 51.4 72.4
Steps 1,2,3. 76 95.3 97.2 89.3 92.4 65.2 84.5 26.4 69.4 63 56.7 53.2 72.4
VC-DomLEM 76.7 96.3 97.1 91.7 95.4 67.5 87.7 26.9 66.7 55.6 56.4 54.6 72.7

Table 1: Accuracy obtained with each method on each dataset.
Datasets are numbered as in [Blaszczyński et al., 2011]

5 Empirical study
We compared our method to VC-DomLEM on the 12 datasets
in [Blaszczyński et al., 2011]. In order to show the impor-
tance of Step 3 in our method, we separately evaluated the
rule set given by steps 1 and 2 alone, and the max-SUF given
by steps 1,2, and 3. We see that Step 3 do not increases the ac-
curacy on average. Therefore, the good results of this method
are not due to the use of SUFs, but to the 2 first steps.

The length of a rule is the number of attributes Xi where
αi > 0Xi (since the condition αi ≥ 0Xi is trivial). Shorter
rules are easier to interpret and constitute more concise mod-
els. Table 2 shows the rule length distribution obtained after
steps 1, 2, and 3. The dual of max-SUFs are the min-SUFs
that correspond to sets of (rejection) rules of the form

if x1 ≤ α1 and . . . and xn ≤ αn then y ≤ δ.
When learning min-SUFs by a dual method, the rule-length
distribution differs from that obtained by learning max-SUFs.
Long rules of one type sometimes go along with short rules
of the other type.
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Rule length
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

da
ta

se
t
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8 6 62 16 16
9 6 26 36 32
10 5 26 42 27
11 6 2 25 45 9 5 4 1 3
12 3 24 44 21 5 1 2

Table 2: Percentage of rules with a given length, for each data set.
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