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Introduction

In this article we consider the magnetic Pauli operator defined on a bounded and simply-connected domain Ω ⊂ R 2 subject to Dirichlet boundary conditions. This operator is the model Hamiltonian of a non-relativistic spin- 1 2 particle, constraint to move in Ω, interacting with a magnetic field that is perpendicular to the plane.

Formally the Pauli operator acts on two-dimensional spinors and it is given by

P h = [σ • (-ih∇ -A)] 2 ,
where h > 0 is a semiclassical parameter and σ is a two-dimensional vector whose components are the Pauli matrices σ 1 and σ 2 . The magnetic field B enters in the operator through an associated magnetic vector potential A = (A 1 , A 2 ) that satisfies

∂ 1 A 2 -∂ 2 A 1 = B.
Assuming that the magnetic field is positive and few other mild conditions we provide precise asymptotic estimates for the low energy eigenvalues of P h in the semiclassical limit (i.e., as h → 0). Let us roughly explain our results. Let λ k (h) be the k-th eigenvalue of P h counting multiplicity. Assuming that the boundary of Ω is C 2 , we show that there exist α > 0, θ 0 ∈ (0, 1] such that the following holds: For all k ∈ N * , there exists C k > 0 such that, as h → 0,

θ 0 C k h -k+1 e -2α/h (1 + o(1)) λ k (h) C k h -k+1 e -2α/h (1 + o(1)) .
In particular, this result establishes the simplicity of the eigenvalues in this regime. The constants α > 0 and C k are directly related to the magnetic field and the geometry of Ω and C k is expressed in terms of SegalBargmann and Hardy norms that are naturally associated to the magnetic field. In the case when Ω is a disk and B is radially symmetric we compute C k explicitly and find that θ 0 = 1. This improves by large the known results about the Dirichlet-Pauli operator [START_REF] Erdős | Rayleigh-type isoperimetric inequality with a homogeneous magnetic field[END_REF][START_REF] Helffer | On the semi-classical analysis of the ground state energy of the Dirichlet Pauli operator[END_REF] (for details see Section 1.3.2).

These results may be reformulated in terms of the large magnetic field limit by a simple scaling argument. Indeed, µ k (b) = b 2 λ k (1/b), where µ k (b) is the k-th eigenvalue of [σ • (-i∇ -bA)] 2 .

Our results can also be used to describe the spectrum of the magnetic Laplacian with constant magnetic field B 0 . For instance, when Ω is bounded, strictly convex with a boundary of class C 1,γ (γ > 0), the k-th eigenvalue of (-ih∇ -A) 2 with Dirichlet boundary conditions, denoted by µ k (h), satisfies, for some c, C > 0 and h small enough, B 0 h + ch -k+1 e -2α/h µ k (h) B 0 h + Ch -k+1 e -2α/h .

(1.1)

In particular, the first eigenvalues of the magnetic Laplacian are simple in the semiclassical limit. This asymptotic simplicity was not known before and (1.1) is the most accurate known estimate of the magnetic eigenvalues in the case of the constant magnetic field and Dirichlet boundary conditions (See [START_REF] Helffer | Magnetic bottles in connection with superconductivity[END_REF]Section 4] and Section 1.3.2).

Our study presents a new approach that establishes several connections with various aspects of analysis as Cauchy-Riemann operators, uniformisation, and, to some extent, Toeplitz operators. We may hope that this work will cast a new light on the magnetic Schrödinger operators.

1.1. Setting and main results. Let Ω ⊂ R 2 be an open set. All along the paper Ω will satisfy the following assumption.

Assumption 1.1. Ω is bounded and simply connected.

Consider a magnetic field B ∈ C ∞ (Ω, R). An associated vector potential A : Ω -→ R 2 is a function such that B = ∂ 1 A 2 -∂ 2 A 1 . We will use the following special choice of vector potential. Definition 1.2. Let φ be the unique (smooth) solution of ∆φ = B, on Ω , φ = 0, in ∂Ω .

(1.

2)

The vector field A = (-∂ 2 φ, ∂ 1 φ) T := ∇φ ⊥ is a vector potential associated with B.

In this paper, B will be positive (and thus φ subharmonic) so that max

x∈Ω φ = max x∈∂Ω φ = 0 .
In particular, the minimum of φ will be negative and attained in Ω. Note also that the exterior normal derivative of φ, denoted by ∂ n φ, is positive on ∂Ω if Ω is C 2 [7, Hopf's Lemma, Section 6.4.2].

Notation 1. We denote •, • the C n (n 1) scalar product (antilinear w.r.t. the left argument), •, • L 2 (U ) the L 2 scalar product on the set U, • L 2 (U ) the L 2 norm on U and • L ∞ (U ) the L ∞ norm on U. We use o and O for the standard Laudau symbols.

1.2. The Dirichlet-Pauli operator. This paper is devoted to the Dirichlet-Pauli operator (P h , Dom(P h )) defined for all h > 0 on Dom(P h ) := H 2 (Ω; C 2 ) ∩ H 1 0 (Ω; C 2 ) , and whose action is given by the second order differential operator

P h = [σ • (p -A)] 2 = | p -A| 2 -hB 0 0 | p -A| 2 + hB = L - h 0 0 L + h . (1.3) 
Here p = -ih∇, and

| p -A| 2 := (p -A) • (p -A) = -h 2 ∆ -A • p -p •A + |A| 2 ,
and σ = (σ 1 , σ 2 , σ 3 ) are the Pauli matrices:

σ 1 = 0 1 1 0 , σ 2 = 0 -i i 0 , σ 3 = 1 0 0 -1 ,
and σ•x = σ 1 x 1 +σ 2 x 2 +σ 3 x 3 for x = (x 1 , x 2 , x 3 ) and σ•x = σ 1 x 1 +σ 2 x 2 for x = (x 1 , x 2 ). In terms of quadratic form, we have by partial integration, for all ψ ∈ Dom(P h ),

ψ, P h ψ L 2 (Ω) = σ • (p -A)ψ 2 L 2 (Ω) = (p -A)ψ 2 L 2 (Ω) -ψ, σ 3 hBψ L 2 (Ω) . (1.4) 
Note that we have the following relation, for all x, y ∈ R 3 ,

(σ • x)(σ • y) = x • y1 2 + iσ • (x × y) , (1.5) 
where 1 2 is the identity matrix of C 2 . The operator P h is selfadjoint and has compact resolvent. This paper is mainly devoted to the investigation of the lower eigenvalues of P h .

Notation 2. Let (λ k (h)) k∈N * (h > 0) denote the increasing sequence of eigenvalues of the operator P h , each one being repeated according to its multiplicity. By the min-max theorem,

λ k (h) = inf V ⊂ Dom(P h ) , dim V = k , sup ψ ∈ V \ {0} , σ • (p -A)ψ 2 L 2 (Ω) ψ 2 L 2 (Ω)
.

(1.6)

Under the assumption that B > 0 on Ω, the lowest eigenvalues of P h are the eigenvalues of L - h . More precisely, our main result states that for any fixed k ∈ N * and h > 0 small enough, λ k (h) is the k-th eigenvalue of the Schrödinger operator L - h . 1.3. Results and relations with the existing literature. 

B 2 (C) = {u ∈ H (C) : N B (u) < +∞} ,
where

N B (u) = R 2 u (y 1 + iy 2 )
2 e -Hessx min φ(y,y) dy

1/2 .
We also introduce a weighted Hardy space

H 2 (Ω) = {u ∈ H (Ω) : N H (u) < +∞} ,
where

N H (u) = ∂Ω u (y 1 + iy 2 ) 2 ∂ n φdy 1/2 .
Here, x min ∈ Ω and Hess x min φ ∈ R 2×2 are defined in Theorem 1.3 below, n(s) is the outward pointing unit normal to Ω, and ∂ n φ(s) is the normal derivative of φ on ∂Ω at s ∈ ∂Ω. We also define for

P ∈ H 2 (Ω), A ⊂ H 2 (Ω), dist H (P, A) = inf N H (P -Q) , for all Q ∈ A ,
and for P ∈ B 2 (C), A ⊂ B 2 (C), dist B (P, A) = inf N B (P -Q) , for all Q ∈ A .
The main results of this paper are gathered in the following theorem.

Theorem 1.3. We define

φ min = min x∈Ω φ .
Assume that Ω is C2 , satisfies Assumption 1.1, and (a) B 0 := inf{B(x), x ∈ Ω} > 0, (b) the minimum of φ is attained at a unique point x min , (c) the minimum is non-degenerate, i.e., the Hessian matrix Hess x min φ at x min (or z min if seen as a complex number) is positive definite.

Then, there exists θ 0 ∈ (0, 1] such that for all fixed k ∈ N * ,

(i) λ k (h) C sup (k)h -k+1 e 2φ min /h (1 + o h→0 (1)), with C sup (k) = 2 dist H (z -z min ) k-1 , H 2 k (Ω) dist B z k-1 , P k-2 2 , where P k-2 = span 1, . . . , z k-2 ⊂ B 2 (C), P -1 = {0} and H 2 k (Ω) = {u ∈ H 2 (Ω), u (n) (z min ) = 0, for n ∈ {0, . . . , k -1}} . (1.7) (ii) λ k (h) C inf (k)h -k+1 e 2φ min /h (1 + o h→0 (1)), with C inf (k) = C sup (k)θ 0 .
A precise definition of θ 0 is given in Remark 1.10. Assuming that Ω is the disk of radius 1 centered at 0, and that B is radial, we have

C sup (k) = C inf (k) = C rad (k) = B(0) k Φ 2 k-2 (k -1)! , (θ 0 = 1) , Φ = 1 2π Ω B(x)dx = 1 2π ∂Ω ∂ n φds .
Remark 1.4. Assume that B = B 0 > 0 and that Ω is strictly convex, then φ has a unique and non-degenerate minimum (see [START_REF] Kawohl | Rearrangements and convexity of level sets in PDE[END_REF][START_REF] Kawohl | When are solutions to nonlinear elliptic boundary value problems convex?[END_REF] and also [START_REF] Helffer | On the semi-classical analysis of the ground state energy of the Dirichlet Pauli operator[END_REF]Proposition 7.1 and below]). Thus, our assumptions are satisfied in this case.

Remark 1.5. The main properties of the space H 2 (Ω) can be found in [4, Chapter 10]. Note that whenever ∂Ω is supposed to be Dini continuous (in particular C1,α boundaries, with α > 0, are allowed), the set W 

|u (n) (z min )| n! 2π √ min ∂Ω ∂ n φ N H (u) ∂Ω |dz| |z -z min | 2(n+1) 1/2 ,
for n ∈ N and u ∈ H 2 (Ω) (see also the proof of Lemma 3.5). This ensures that the space

H 2 k (Ω) defined in (1.7) is a closed vector subspace of H 2 (Ω) and that dist H (z -z min ) k-1 , H 2 k (Ω) > 0 (see [3, Corollary 5.4]) since (z -z min ) k-1 / ∈ H 2 k (Ω).
Remark 1.7. In the case when B is radial on the unit disk Ω = D(0, 1), we get, using Fourier series, that (z n ) n 0 is an orthogonal basis for N B and N H which are up to normalization factors, the Szegö polynomials [START_REF] Duren | Theory of H p Spaces[END_REF]Theorem 10.8]. In particular,

H 2 k (Ω) is N H -orthogonal to z k-1 so that dist H z k-1 , H 2 k (Ω) 2 = N H (z k-1 ) 2 = ∂Ω ∂ n φ = 2πΦ . In addition, P k-2 is N B -orthogonal to z k-1 so that dist B z k-1 , P k-2 2 = N B (z k-1 ) 2 = 2π 2 k-1 (k -1)! B(0) k ,
and the radial case part of Theorem 1.3 follows.

Remark 1.8. The proof of the upper bound can easily be extended to the case where Ω is not necessarily simply connected (see Remark 3.4).

Remark 1.9. Theorem 1.3 is concerned with the asymptotics of each eigenvalues λ k (h) of the operator P h , (k ∈ N * ) as h → 0. In particular, λ k (h) tends to 0 exponentially. Of course, this does not mean that all the eigenvalues go to 0 uniformly with respect to k. For h > 0, consider for example

ν 1 (h) = inf v∈H 1 0 (Ω;C)\{0} u, L + h u v 2 L 2 (Ω)
, the lowest eigenvalue of the operator L + h . For fixed h > 0, there exists k(h) ∈ N * such that ν 1 (h) = λ k(h) (h). By (1.3), we have ν 1 (h) 2B 0 h and thus ν 1 (h) does not converge to 0 with exponential speed. Actually, Theorem 1.3 ensures that lim

h→0 card{j ∈ N * , λ j (h) ν 1 (h)} = +∞ , lim h→0 k(h) = +∞ .
This accumulation of eigenvalues near 0 in the semiclassical is related to the fact that the corresponding eigenfunctions are close to be functions in the SegalBargmann space B 2 (C) which is of infinite dimension.

Remark 1.10. The constant θ 0 introduced in Theorem 1.3 does not depend on k ∈ N * and is equal to 1 in the radial case. We conjecture that the upper bounds in Theorem 1.3 (i) are optimal, that is θ 0 = 1 in the general case. More precisely, let Ω be a C 2 set satisfying Assumption 1.1. We introduce

M Ω := {G : Ω → D(0, 1) biholomorphic s.t. c 1 |G ′ (•)| c 2 , for some c 1 , c 2 > 0} .
Remark that M Ω is non-empty by the Riemann mapping theorem. Then, the constant θ 0 can be defined by

θ 0 := min ∂D(0,1) |(G -1 ) ′ (y)|∂ n φ(G -1 (y)) max ∂D(0,1) |(G -1 ) ′ (y)|∂ n φ(G -1 (y)) ∈ (0, 1] ,
for some G ∈ M Ω (see Lemma 5.6). 2 2 We can even choose θ0 := sup

G∈MΩ min ∂D(0,1) |(G -1 ) ′ (y)|∂ n φ(G -1 (y)) max ∂D(0,1) |(G -1 ) ′ (y)|∂ n φ(G -1 (y)) .
Actually, we can even see from our analysis that there is a class of magnetic fields for which θ 0 = 1. We introduce

B := B ∈ C ∞ (D(0, 1); R * + ) , ∃ φ ∈ H 1
0 (D(0, 1); R) , ∆ φ = B on D(0, 1) , ∂ 2 ns φ = 0 on ∂D(0, 1)} .

(1.8)

Here, ∂ s denotes the tangential derivative. Then, for any B ∈ B and G ∈ M Ω , we get θ 0 = 1 and lim inf

h→0 e -2φ min /h h k-1 λ k (h) C sup (k) ,
for the magnetic field

B = |G ′ (z)| 2 B • G(z)
. This follows from the fact that the function

y ∈ ∂D(0, 1) → |(G -1 ) ′ (y)|∂ n φ(G -1 (y))
is constant. Here, φ is defined in (1.2).

Using the Riemann mapping theorem, we can deduce the following lower bound for Ω with Dini-continuous boundary. Its proof can be found in Section 5.4.

Corollary 1.11. Assume that Ω is bounded, simply connected and that ∂Ω is Dinicontinuous. Assume also (a)-(c) of Theorem 1.3. Let k ∈ N * . Then, there exist c k , C k > 0 and h 0 > 0 such that, for all h ∈ (0, h 0 ),

c k h -k+1 e 2φ min /h λ k (h) C k h -k+1 e 2φ min /h .
Remark 1.12. Note also that our proof ensures that the constants C k , c k can be chosen so that C k /c k does not depend on k ∈ N * .

Our results can be used to describe the spectrum of the magnetic Laplacian with constant magnetic field (see Remark 1.4).

Corollary 1.13. Assume that Ω is bounded, strictly convex and that ∂Ω is Dinicontinuous. Assume also that (a)-(c) of Theorem 1.3 hold and that B is constant.

Then, the k-th eigenvalue of (-ih∇-A) 2 with Dirichlet boundary conditions, denoted by µ k (h), satisfies, for some c, C > 0 and h small enough, Bh + ch -k+1 e 2φ min /h µ k (h) Bh + Ch -k+1 e 2φ min /h .

(1.9)

In particular, the first eigenvalues of the magnetic Laplacian are simple in the semiclassical limit. ii. In [START_REF] Helffer | On the semi-classical analysis of the ground state energy of the Dirichlet Pauli operator[END_REF] (simply connected case) and [START_REF] Helffer | On the semi-classical analysis of the groundstate energy of the Dirichlet Pauli operator in non-simply connected domains[END_REF] Note that Theorem 1.3 (i) provides a better upper bound even for k = 1. They also establish the following lower bound by means of rough considerations:

∀h > 0 , λ 1 (h) h 2 λ Dir 1 (Ω)e 2φ min /h
, where λ Dir 1 (Ω) is the first eigenvalue of the corresponding magnetic Dirichlet Laplacian. This estimate is itself an improvement of [START_REF] Ekholm | Estimates for the lowest eigenvalue of magnetic Laplacians[END_REF]Theorem 2.1].

Corollary 1.11 is an optimal improvement in terms of the order of magnitude of the pre-factor of the exponential. It also improves the existing results by considering the excited eigenvalues. Describing the behavior of the prefactor is not a purely technical question. Indeed, it is directly related to the simplicity of the eigenvalues and even governs the asymptotic behavior of the spectral gaps. This simplicity was not known before, except in the case of constant magnetic field on a disk. iii. The problem of estimating the spectrum of the Dirichlet-Pauli operator is closely connected to the spectral analysis of the Witten Laplacian (see for instance [START_REF] Helffer | On the semi-classical analysis of the ground state energy of the Dirichlet Pauli operator[END_REF]Remark 1.6] and the references therein). For example, in this context, the ground state energy is min

v∈H 1 0 (Ω) v =0 Ω |h∇v| 2 e -2φ/h dx Ω e -2φ/h |v| 2 dx , (1.10) 
whereas, as known in the literature in the present paper, we will focus on min

v∈H 1 0 (Ω) v =0 Ω |h(∂ x 1 + i∂ x 2 )v| 2 e -2φ/h dx Ω e -2φ/h |v| 2 dx , (1.11) 
(see also Lemma 2.4). Considering real-valued functions v in (1.11) reduces to (1.10). In this sense, (1.11) gives rise to a "less elliptic" minimization problem.

1.4. About the intuition and strategy of the proof. In this paragraph we discuss the main lines of our strategy. It is intended to reveal the intuition behind some of our proofs. We will focus mostly on the ground-state energy, which is given by (1.6) as

λ 1 (h) = min ψ∈H 1 0 (Ω;C 2 )\{0} σ • (p -A)ψ 2 L 2 (Ω) ψ 2 L 2 (Ω)
.

(1.12)

It is easy to guess from (1.3) that the ground state energy has to have the form ψ = (u, 0) T . This is consistent with the physical intuition that, for low energies, the spin of the particle should be parallel to the magnetic field.

The variational problem above can be re-written by means of a suitable transformation as

λ 1 (h) = h 2 min v∈H 1 0 (Ω) v =0 Ω |2∂ z v| 2 e -2φ/h dx Ω |v| 2 e -2φ/h dx =: h 2 min v∈H 1 0 (Ω) v =0 F h (v, φ) G h (v, φ) , (1.13) 
where, ∂ z = (∂ 1 + i∂ 2 )/2 and φ is the unique solution to ∆φ = B in Ω with Dirichlet boundary conditions (see Definition 1.2). This connection between the spectral analysis of the Dirichlet-Pauli and Cauchy-Riemann operators is known in the literature (see e.g. [START_REF] Erdős | Rayleigh-type isoperimetric inequality with a homogeneous magnetic field[END_REF][START_REF] Helffer | On the semi-classical analysis of the ground state energy of the Dirichlet Pauli operator[END_REF][START_REF] Bonthonneau | WKB constructions in bidimensional magnetic wells[END_REF] and [START_REF] Thaller | The Dirac equation[END_REF]), and we describe it in Section 2.

In order to study the problem in (1.13) it is helpful to consider the following heuristics concerning F h (v, φ).

Observation 1.14. A minimizer v h wants to be an analytic function in the interior of Ω but, due to the boundary conditions, has to have a different behaviour close to the boundary. So, if we set Ω δ := {x ∈ Ω, dist(x, ∂Ω) δ} for δ > 0, we expect that v h behaves almost as an analytic function on U with Ω δ ⊂ U ⊂ Ω. Moreover, this tendency is enhanced in the semiclassical limit when the presence of the magnetic field becomes stronger. Hence, we also expect that δ → 0 as h → 0 in some way.

We comment below how we make Observation 1.14 more precise, for the moment let us just mention that throughout this discussion we work with δ such that

δ 2 /h → 0 and δ/h → ∞ as h → 0 . (1.14) 
As a consequence of Observation 1.14 we expect that

F h (v h , φ) ∼ T δ |2∂ z v h | 2 e -2φ/h dx , (1.15) 
where

T δ := Ω \ Ω δ .
An essential ingredient in our method is the analysis of the minimization problem associated with the RHS of (1.15). The main ideas go as follows: Assume first that Ω is the disk D(0, 1). By writing the integrand |∂ z v h | 2 e -2φ/h in tubular coordinates (see Item i. from the proof of Lemma 3.7 ) and Taylor expanding φ around any point at the boundary ∂Ω we get, for δ satisfying (1.14),

T δ |2∂ z v| 2 e -2φ/h dx = (1 + o(h)) 2π 0 δ 0 e 2t∂nφ/h |(∂ τ -i∂ s )v| 2 dsdτ (1.16) =: (1 + o(h))J h (v) (1.17)
(see also the proof of Lemma 5.5), where ∂ n φ ≡ ∂ n φ(s) is the normal derivative at the boundary (see Notation 3).

Observe that if ∂ n φ is a constant along the boundary, then it equals the flux Φ. In this case, as explained in Item iv. of the proof of Lemma 5.5, the problem of finding a non-trivial solution of inf

v∈H 1 (T δ ) J h (v) with v ↾ ∂Ω δ = v δ , v ↾ ∂Ω = 0 , (1.18) 
can be reduced to a sum (labeled in the Fourier index) of one-dimensional problems that we solve explicitly in Lemma A.1.

For the particular case of v having only the non-negative Fourier modes on ∂Ω δ (i.e., v δ = m 0 vδ,m e ims ) we find that (see Lemma 5.5)

J h (v) Φ/h 1 -e -2δΦ/h v 2 L 2 (∂D(0,1-δ)) = (1 + o(h))2Φ/h v 2 L 2 (∂D(0,1-δ)) (1.19)
where the last equality is a trivial consequence of (1.14). Moreover, by Lemma A.1, the latter inequality is saturated when v δ = vδ,0 . Concerning, the assumption on v, recall that analytic functions on the disk have only Fourier modes for m 0.

Notice that if B is rotationally symmetric

∂ n φ is constant. If ∂ n φ
is not a constant we can give a suitable estimate using that min ∂Ω ∂ n φ > 0. We extend the previous analysis to more general geometries by using the Riemann mapping theorem.

There is another important point to take into account, this time concerning G h (v, φ).

Observation 1.15. Recall that φ 0 has an absolute, non-degenerate, minimum at x min . Hence, the weighted norm of v h , G h (v, φ), should have a tendency to concentrate around x min . This is made precise in Lemma 5.3 below. Moreover, observe that using Laplace's method, one formally gets that, as h → 0,

G h (v, φ) ∼ hπ|v(x min )| 2 e -2φ min /h (det Hess x min φ) -1 2 .
(1.20) Observations 1.14 and 1.15 reveal the importance of the behaviour of a minimizer around the boundary and close to x min , respectively. In addition, this behaviour is naturally captured through the norms N H and N B given in Definition 3, which, in turn, provide a natural Hilbert space structure to select linear independent test functions which are used to estimate the excited energies.

In order to show our result we give upper and lower bound to the variational problem (1.13). This is done in Sections 3 and 5, respectively. Concerning the upper bound: In view of the previous discussion it is natural to choose a trial function (at least for the disk, see Remark 3.2) v = ωχ where ω is an analytic function in Ω and χ is such that χ ↾ Ω δ = 1 and decays smoothly to zero towards ∂Ω. We pick χ ↾ T δ as an optimizer of the problem (1.18). For λ k (h), we choose ω to be a polynomial of degree (k -1). In particular, for the ground-state energy, ω is constant and in view of (1.22) and (1.20) we readily see how the claimed upper bound (at least for the disk with radial magnetic field) is obtained.

As for the lower bound, as a preliminary step, we discuss in Section 4 some ellipticity properties related to the magnetic Cauchy-Riemann operators. Our main result there is Theorem 4.6. It provides elliptic estimates for the magnetic Cauchy-Riemann operators on the orthogonal of the kernel which consists, up to an exponential weight, in holomorphic functions. The findings of Section 4 are crucial to prove Proposition 5.4, which gives estimates on the behaviour described in Observation 1.14. Indeed, Proposition 5.4, together with the upper bound, roughly states that the non-analytic part of v h on any open set contained in Ω is, in the semiclassical limit, exponentially small in a sufficiently strong norm. At least for the disk with radial magnetic field, we can argue on how to get the lower bound if we assume v h to be analytic on an open set U with D(0, 1 -δ) ⊂ U ⊂ D(0, 1). Notice that (1.22) holds. Moreover, by Cauchy's Theorem we have 2π|v

h (x min )| 2 = 2π|v h (0)| 2 (1 + o(h)) v h 2 ∂D(0,1-δ) .
In this way we see that the lower bound appears by combining (1.22) and (1.20).

Let us finally remark that actually, since the function v in (1.20) depends on h, Laplace's method cannot be performed so easily. Instead, after the change of scale y = x-x min h 1/2 , one has formally the Bargmann norm appearing:

G h (v, φ) ∼ he -2φ min /h |v(x min + h 1/2 y)| 2 e -Hessx min φ(y,y) dy . (1.21)
Ultimately, in the case of the disk with radial magnetic field, Problem 1.13 reduces formally to

λ 1 (h) e 2φ min /h inf v∈H (Ω) v =0 2 N H (v) N B (v(x min + h 1/2 •)) 2 , (1.22) 
which can be computed easily due to the orthogonality of the polynomials (z n ) n 0 in the Hilbert spaces H 2 (Ω) and B 2 (C) (see Remark 1.7). Of course, special attention has to be paid on the domains of integration and the sets where the holomorphic tests functions live. In the non-radial case however, we strongly use the multi-scale structure of (1.22) to get the result of Theorem 1.3 (see Section 5.3). Note that the constant θ 0 of Theorem 1.3 which appears in the computation of (1.22) somehow measures a symmetry breaking rate (see Remark 1.10 and Lemma 5.6).

Change of gauge

The following result allows to remove the magnetic field up to sandwiching the Dirac operator with a suitable matrix. Proposition 2.1. We have

e σ 3 φ/h σ • p e σ 3 φ/h = σ • (p -A) , (2.1) 
as operators acting on H 1 (Ω, C 2 ) functions.

The proof follows from the next two lemmas and Definition 1.2 (see also [START_REF] Thaller | The Dirac equation[END_REF]Theorem 7.3]). Lemma 2.2. Let f : C → C be an entire function and A, B be two square matrices such that AB = -BA. Then, Proof. By Lemma 2.2, we have for k = 1, 2 that

Af (B) = f (-B)A .
e σ 3 Φ σ k = σ k e -σ 3 Φ .
Thus, by the Leibniz rule,

e σ 3 Φ (σ • p) e σ 3 Φ = (σe -σ 3 Φ • p)e σ 3 Φ = σ • (p -ihσ 3 ∇Φ) .
It remains to notice that -iσσ 3 = σ ⊥ := (-σ 2 , σ 1 ) so that

e σ 3 Φ (σ • p) e σ 3 Φ = σ • p +hσ ⊥ • ∇Φ = σ • p -hσ • ∇Φ ⊥ . We let ∂ z := ∂ x -i∂ y 2 , ∂ z := ∂ x + i∂ y 2 .
We obtain then the following result.

Lemma 2.4. Let k ∈ N * be such that λ k (h) < 2B 0 h. Then, we have

λ k (h) = inf V ⊂ H 1 0 (Ω; C) , dim V = k , sup v ∈ V \ {0} , 4 Ω e -2φ/h |h∂ z v| 2 dx Ω |v| 2 e -2φ/h dx . (2.2)
We recall that λ k (h) is defined in (1.6).

Proof. By (1.3) and (1.6), we get since

L + h 2B 0 h, λ k (h) = inf V ⊂ H 1 0 (Ω; C) , dim V = k , sup u ∈ V \ {0} , σ • (p -A) u 0 2 L 2 (Ω) u 2 L 2 (Ω)
.

Let u ∈ H 1 0 (Ω; C) and h > 0. Letting u = e -φ/h v, we have, by Proposition 2.1,

σ • (p -A) u 0 2 L 2 (Ω) = e σ 3 φ/h σ • p v 0 2 L 2 (Ω) = 4 Ω e -2φ/h |h∂ z v| 2 dx , and 
u 2 L 2 (Ω) = Ω
|v| 2 e -2φ/h dx .

Upper bounds

This section is devoted to the proof of the following upper bounds.

Proposition 3.1. Assume that Ω is C 2 and satisfies Assumption 1.1. For all k ∈ N * , we have λ k (h) C sup (k)h -k+1 e 2φ min /h (1 + o(1)) , (3.1 
) where λ k (h) and C sup (k) are defined in (1.6) and in Theorem 1.3 respectively.

3.1.

Choice of test functions. Let k ∈ N * and m ∈ N. By Formula (2.2), we look for a k-dimensional subspace V h of H 1 0 (Ω; C) such that sup

v∈V h \{0} 4h 2 Ω |∂ z v| 2 e -2φ/h dx Ω |v| 2 e -2(φ-φ min )/h dx C sup (k)h -k+1 (1 + o(1)) .
Using the min-max principle, this would give (3.1). Formula (2.2) suggests to take functions of the form v(x) = χ(x)w(x) , where i. w is holomorphic on a neighborhood on Ω, ii. the function χ : Ω → [0, 1] is a Lipschitzian function satisfying the Dirichlet boundary condition and being 1 away from a fixed neighborhood of the boundary. In particular, there exists ℓ 0 ∈ (0, d(x min , ∂Ω)) such that

χ(x) = 1, for all x ∈ Ω such that d(x, ∂Ω) > ℓ 0 , (3.2) 
where d is the usual Euclidean distance.

Remark 3.2. The most naive test functions set could be the following

V h = span(χ h (z), . . . , χ h (x)(z -z min ) k-1 ) ,
where (χ h ) h∈(0,1] satisfy (3.2). With this choice, one would get sup

v∈V h \{0} 4h 2 Ω |∂ z v| 2 e -2φ/h dx Ω |v| 2 e -2(φ-φ min )/h dx C sup (k)h -k+1 (1 + o(1)) ,
where

C sup (k) = 2 N H (z -z min ) k-1 dist B z k-1 , P k-2 2 C sup (k) .
Note however that in the radial case C sup (k) = C sup (k). We will rather use functions compatible with the Hardy space structure to get the bound of Proposition 3.1, as explained below.

Notation 4. Let us denote by (P n ) n∈N the N B -orthogonal family such that P n (Z) = Z n + n-1 j=0 b n,j Z j obtained after a Gram-Schmidt process on (1, Z, . . . , Z n , . . . ). Since P n is N B -orthogonal to P n-1 , we have

dist B (Z n , P n-1 ) = dist B (P n , P n-1 ) = inf{N B (P n -Q) , Q ∈ P n-1 } = inf{ N B (P n ) 2 + N B (Q) 2 , Q ∈ P n-1 } = N B (P n ) , for n ∈ N . (3.3) Let Q n ∈ H 2 k (Ω) be the unique function such that dist H (z -z min ) n , H 2 k (Ω) = N H ((z -z min ) n -Q n (z)) , for n ∈ {0, . . . , k -1}, (see Remark 1.6). We recall that N B , N H , P n-1 , and H 2 k (Ω) are defined in Section 1.3.1. Lemma 3.3. For all n ∈ {0, . . . , k -1}, there exists a sequence (Q n,m ) m∈N ⊂ H 2 k (Ω) ∩ W 1,∞ (Ω) that converges to Q n in H 2 (Ω). Proof. We can write Q n (z) = (z -z min ) k-1 Q n (z). Here, Q n is an holomorphic function on Ω. Since z → (z -z min ) 1-k ∈ L ∞ (∂Ω), we get Q n ∈ H 2 (Ω). By Lemma C.1, there exists a sequence ( Q n,m ) m∈N ⊂ H 2 (Ω) ∩ W 1,∞ (Ω) converging to Q n in H 2 (Ω). We have N H ((z -z min ) k-1 ( Q n,m -Q n )) (z -z min ) k-1 L ∞ (∂Ω) N H ( Q n,m -Q n ) , so that the sequence (Q n,m ) m∈N = ((z -z min ) k-1 Q n,m ) m∈N ⊂ H 2 k (Ω) converges to Q n in H 2 (Ω). Since z → (z -z min ) k-1 ∈ L ∞ (∂Ω), Q n,m ∈ H 2 k (Ω).
Let us now define the k-dimensional vector space V h,k,sup by V h,k,sup = span(w 0,h , . . . , w k-1,h ) , (3.4)

w n,h (z) = h -1 2 P n z -z min h 1/2 -h -1+n 2 Q n,m (z), for n ∈ {0, . . . , k -1} .
At the end of the proof, m will be sent to +∞. Note that we will not need the uniformity of the semiclassical estimates with respect to m. That is why the parameter m does not appear in our notations. Note that w n,h , being a non trivial holomorphic function, does not vanish identically at the boundary. To fulfill the Dirichlet condition, we have to add a cutoff function (see below).

Remark 3.4. Consider ω n,h (z) = h -1 2 P n z -z min h 1/2 -h -1+n 2 Q n (z) . Since Q n belongs to H 2 (Ω) ⊂ H 1 (Ω; C), the functions w n,h : x → ω n,h (x 1 + ix 2
) and χ w n,h do not belong necessarily to H 1 (Ω; C) and H 1 0 (Ω; C) respectively. That is why we introduced Q n,m . Note that to get H 1 0 (Ω; C) test functions, it suffices to impose that χ is compactly supported in Ω. With this strategy, our proof can be adapted to the case where Ω is non necessarily simply connected.

3.2.

Estimate of the L 2 -norm. The aim of this section is to prove the following estimate.

Lemma 3.5. Let h ∈ (0, 1], v h = χ k-1 j=0 c j w j,h with c 0 , . . . c k-1 ∈ C, χ satisfying (3.2) and (w j,h ) j∈{0,...,k-1} defined in (3.4). We have

Ω |v h | 2 e -2(φ(x)-φ min )/h dx = (1 + o(1)) k-1 j=0 |c j | 2 N B (P j ) 2 , (3.5) 
where N B is defined in Notation 3 and o(1) does not depend on c = (c 0 , . . . , c k-1 ) and χ.

Proof. Let α ∈ 1 3 , 1 2 , n, n ′ ∈ {0, . . . , k -1}. In the proof, three types of terms will appear after a change of scale around x min :

P n , P n ′ B , P n , Q n ′ ,m B and Q n,m , Q n ′ ,m B where •, • B is the scalar product associated with N B . Since the polynomials (P n ) n∈N are N B -orthogonal, we have P n , P n ′ B = 0 if n = n ′ and we will prove that Q n,m , Q n ′ ,m B = O(h) and by Cauchy-Schwarz inequality P n , Q n ′ ,m B = O(h 1/2
). More precisely, we have: i. Let us estimate the weighted scalar products related to P n for the weighted L 2 -norm.

Using the Taylor expansion of φ at x min , we get, for all x ∈ D(x min , h α ),

φ(x) -φ min h = 1 2h Hess x min φ(x -x min , x -x min ) + O(h 3α-1 ) . (3.6)
By using the change of coordinates

Λ h : x -→ x -x min h 1/2 , (3.7) 
we find

D(x min ,h α ) h -1 P n P n ′ x 1 + ix 2 -z min h 1/2 e -2(φ(x)-φ min )/h dx = (1 + O(h 3α-1 )) D(x min ,h α ) h -1 P n P n ′ x 1 + ix 2 -z min h 1/2 e -1 h Hessx min φ(x-x min ,x-x min ) dx = (1 + O(h 3α-1 )) D(0,h α-1/2 )
P n P n ′ (y) e -Hessx min φ(y,y) dy

= (1 + O(h 3α-1 )) P n , P n ′ B - C\D(0,h α-1/2 )
P n P n ′ (y) e -Hessx min φ(y,y) dy

= (1 + O(h 3α-1 )) P n , P n ′ B + O(h ∞ ) , (3.8) 
where the last equality follows from Assumption (c) in Theorem 1.3. We recall Assumptions (b) and (c) of Theorem 1.3. Then, by the Taylor expansion of φ at x min , we deduce that inf

Ω\D(x min , h α ) φ φ min + λ min 2 h 2α (1 + O(h α )) , (3.9) 
where λ min > 0 is the lowest eigenvalue of Hess x min φ. Since P n is of degree n, there exists C > 0 such that

sup x∈Ω h -1 2 P n x 1 + ix 2 -z min h 1/2 Ch -n+1 2 .
Using this with (3.9), we get

Ω\D(x min ,h α ) h -1 χ 2 P n P n ′ x 1 + ix 2 -z min h 1/2 e -2(φ(x)-φ min )/h dx Ch -n+1 2 h -n ′ +1 2 e -λ min h 2α-1 (1+O(h α )) = O(h ∞ ) . (3.10)
From (3.8) and (3.10), we find

Ω h -1 χ 2 P n P n ′ x 1 + ix 2 -z min h 1/2 e -2(φ(x)-φ min )/h dx = (1 + O(h 3α-1 )) P n , P n ′ B + O(h ∞ ) . (3.11)
ii. Let us now deal with the weighted scalar products related to the Q n,m . Let u ∈ H 2 (Ω) and z 0 ∈ D(z min , h α ). By the Cauchy formula (see [START_REF] Duren | Theory of H p Spaces[END_REF]Theorem 10.4]) and the Cauchy-Schwarz inequality,

|u (k) (z 0 )| = k! 2π ∂Ω u(z) (z -z 0 ) k+1 dz k! 2π √ min ∂Ω ∂ n φ N H (u) ∂Ω |dz| |z -z 0 | 2(k+1) 1/2 k! 2π √ min ∂Ω ∂ n φ N H (u) ∂Ω |dz| (|z -z min | -h α ) 2(k+1) 1/2 CN H (u) . (3.12)
With the Taylor formula for u = Q n,m at z min , this gives

|Q n,m (z 0 )| C|z 0 -z min | k N H (Q n,m ) .
Using (3.6), this implies

D(x min ,h α ) |h -1+n 2 Q n,m (x 1 + ix 2 )| 2 e -2(φ(x)-φ min )/h dx Ch -(1+n) D(x min ,h α ) |(x 1 + ix 2 ) -z min | 2k e -2(φ(x)-φ min )/h dx Ch k-n N B (z k ) 2 Ch .
(3.13)

Using (3.9) and Q n,m ∈ W 1,∞ (Ω) ⊂ L 2 (Ω), we get Ω\D(x min ,h α ) |h -1+n 2 χQ n,m (x 1 + ix 2 )| 2 e -2(φ(x)-φ min )/h dx Ch -(n+1) Q n,m 2 
L 2 (Ω) e -λ min h 2α-1 (1+O(h α )) = O(h ∞ ) . (3.14) 
With (3.13) and (3.14), we deduce

Ω |h -1+n 2 χQ n,m (x 1 + ix 2 )| 2 e -2(φ(x)-φ min )/h dx = O(h) . (3.15) 
With the Cauchy-Schwarz inequality, and (3.15),

Ω χ 2 h -1+n 2 Q n,m (x 1 + ix 2 ))h -1+n ′ 2 Q n ′ ,m (x 1 + ix 2 )e -2(φ(x)-φ min )/h dx = O(h) . (3.16)
iii. Let us now consider the scalar products involving the P n and the Q n ′ ,m . Using (3.11), (3.16), and the Cauchy-Schwarz inequality, we get

Ω χ 2 h -1 2 P n x 1 + ix 2 -z min h 1/2 h -1+n ′ 2 Q n ′ ,m (x 1 + ix 2 )e -2(φ(x)-φ min )/h dx = O(h 1/2 ) .
(3.17)

The conclusion follows by expanding the square in the left-hand-side of (3.5) and by using (3.11), (3.16), (3.17) .

Remark 3.6. From Lemma 3.5, we deduce that the vectors {χw j,h , 0 j k -1} are linearly independent for h small enough.

3.3.

Estimate of the energy. The aim of this section is to bound from above the energy on an appropriate subspace.

Lemma 3.7. There exists a family of functions (χ h ) h∈(0,1] which satisfy (3.2) and such that, for all

w h = k-1 j=0 c j w j,h ∈ V h,k,sup with c 0 , . . . c k-1 ∈ C, 4 Ω h 2 e -2φ/h |∂ z (χ h w h )| 2 dx 2h 1-k |c k-1 | 2 N H (z -z min ) k-1 -Q k-1,m + o(1)h 1-k c 2 ℓ 2 .
Here, o(1) does not depend on c 0 , . . . c k-1 .

Proof. Let χ be any function satisfying (3.2). We have

4 Ω h 2 e -2φ/h |∂ z χw h | 2 dx = h 2 Ω |w h | 2 e -2φ/h |∇χ| 2 dx = h 2 supp∇χ |w h | 2 e -2φ/h |∇χ| 2 dx ,
where we have used that |∇χ| 2 = 4|∂ z χ| 2 since χ is real and ∂ z w h = 0. The proof is now divided into three steps. First, we introduce tubular coordinates near the boundary, then we make an explicit choice of χ, and finally, we control the remainders.

i. We only need to define χ in a neighborhood of Γ = ∂Ω. To do this, we use the tubular coordinates given by the map η : R/ |Γ|Z × (0, t 0 ) → Ω (s, t) → γ(s) -tn(s)

for t 0 small enough, γ being a parametrization of Γ with |γ ′ (s)| = 1 for all s, and n(s) the unit outward pointing normal at point γ(s) (see e.g. [8, §F]). We let η -1 (x) = (s(x), t(x)) , for all x ∈ η R/ |Γ|Z × (0, t 0 ) , the inverse map to η. We let, for all x ∈ Ω,

χ(x) = ρ s(x), d(x, ∂Ω) if d(x, ∂Ω) ε , 1 otherwise.
The parameter ε > 0 and the function ρ are to be determined. We assume that ρ(s, 0) = 0 and ρ(s, t) = 1 when t ε. We will choose ε = o(h

). Since the metric induced by the change of variable is the Euclidean metric modulo O(ε), we get

h 2 supp∇χ |w h | 2 e -2φ/h |∇χ| 2 dx (1 + O(ε))h 2 Γ ε 0 | wh | 2 e -2 φ(s,t)/h (|∂ t ρ| 2 + |∂ s ρ| 2 )dsdt ,
where wh = w h • η and φ = φ • η. Thus, by using the Taylor expansion of φ at t = 0, we get uniformly in s ∈ Γ, φ(s, t) = t∂ t φ(s, 0) + O(t 2 ) = -t∂ n φ(s, 0) + O(ε 2 ) , and

h 2 supp∇χ |w h | 2 e -2φ/h |∇χ| 2 dx (1 + O(ε + ε 2 /h))h 2 Γ ε 0 | wh | 2 e 2t∂nφ(s)/h (|∂ t ρ| 2 + |∂ s ρ| 2 )dsdt . Since Q n,m ∈ W 1,∞ (Ω), we have ∂ t Qn,m • η ∈ L ∞ (Γ × (0, ε))
and by using the Taylor expansion of w near t = 0, we get wh (s, t)

=   k-1 j=0 c j w j,h   • η(s, t) = wh (s, 0) + t 0 ∂ t wh (s, t ′ )dt ′ = wh (s, 0) + O(ε) c h ℓ 2 ,
where 

c h = (h -1 2 c 0 , . . . , h -k 2 c k-1 ) , (3.18) and • ℓ 2 is the canonical Euclidian norm on C k . Then, h 2 supp∇χ |w h | 2 e -2φ/h |∇χ| 2 dx (1 + O(ε + ε 2 /h))h 2 Γ | wh (s, 0)| 2 ε 0 e 2t∂nφ(s)/h (|∂ t ρ| 2 + |∂ s ρ| 2 )dsdt + Ch 2 ε c h 2 ℓ 2 Γ ε 0 e 2t∂nφ(
e 2t∂nφ/h |∂ s ρ| 2 dt = |∂ s α| 2 ε 0 e 2t∂nφ/h ∂ α ρ α,ε 2 dt Ch -2 α -3 + e -αε ε 2 α -1 C h + e -ε2∂nφ/h ε 2 h -1 .
We can choose ε = h| log h| so that 

Γ ε 0 | wh (s, 0)| 2 e 2t∂nφ(s)/h |∂ t ρ| 2 dsdt = (1 + o(1))h -1 Γ 2∂ n φ|
N h : c ∈ C k →    Γ ∂ n φ k-1 j=0 c j h 1+j 2 wj,h (s, 0) 2 ds    1/2
, where we recall that

w j,h (z) = h -1 2 P j z -z min h 1 2 -h -j+1 2 Q j,m (z) .
The application

C k × [0, 1] ∋ (c, h) → N h (c
) is well defined and continuous (since the degree of P j is j). Note, in particular, that

N 0 (c) =    Γ ∂ n φ k-1 j=0 c j [(z -z min ) j -Q j,m (z)] 2 ds    1/2 .
Notice that

N h (c h ) 2 = Γ ∂ n φ| wh (s, 0)| 2 ds = N 2 H (w h ) , (3.21) 
where c h is defined in (3.18). Since N H is a norm, and recalling Remark 3.6, we see that the application N h is a norm when h ∈ (0, h 0 ]. N 0 is also a norm (as we can see by using the Hardy norm and

Q j,m ∈ H 2 k (Ω)). Let us define C 0 = min h ∈ [0, h 0 ] c ℓ 2 =1 N h (c) > 0 .
so that, for all h ∈ [0, h 0 ], and all c ∈ C k , Let us now estimate N H (w h ). From the triangle inequality, we get

C 0 c ℓ 2 N h (c) . ( 3 
N H (w h ) |c k-1 |N H (w k-1,h ) + k-2 j=0 |c j |N H (w j,h ) .
Then, from degree considerations and the triangle inequality, we get, for 1 j k -2,

N H (w j,h ) = O h 1-k 2 ,
and

N H (w k-1,h ) = (1 + o(1))h -k 2 N H (z -z min ) k-1 -Q k-1,m .
Then,

N H (w h ) 2 |c k-1 | 2 h -k N H (z -z min ) k-1 -Q k-1,m 2 + o(h -k ) c 2 ℓ 2 .
This ends the proof.

Proof of Proposition 3.1. Let us define

V h,k,sup = {χ h w h , w h ∈ V h,k,sup }, where V h,k,sup
is defined in (3.4) and χ h in Lemma 3.7. By Lemmas 3.5 and 3.7, we get

4 Ω h 2 e -2φ/h |∂ z (w h χ h )| 2 dx Ω |w h χ h | 2 e -2(φ-φ min )/h dx 2h 1-k |c k-1 | 2 N H (z -z min ) k-1 -Q k-1,m 2 k-1 j=0 |c j | 2 N B (P j ) 2 + o(h 1-k ) , for all w h = k-1 j=0 c j w j,h ∈ V h,k,sup with c ∈ C k \ {0}.
From the min-max principle3 , it follows

λ k (h) 2h 1-k N H (z -z min ) k-1 -Q k-1,m 2 sup c∈C k \{0} |c k-1 | 2 k-1 j=0 |c j | 2 N B (P j ) 2 e 2φ min /h +o(h 1-k ) . Since sup c∈C k \{0} |c k-1 | 2 k-1 j=0 |c j | 2 N B (P j ) 2 = N B (P k-1 ) -2 , we deduce lim sup h→0 h k-1 e -2φ min /h λ k (h) 2 N H (z -z min ) k-1 -Q k-1,m dist B z k-1 , P k-2 2 .
Taking the limit m → +∞, it follows lim sup h→0 h k-1 e -2φ min /h λ k (h) C sup (k) .

3.5.

Computation of C sup (k) in the radial case. Let k ∈ N * . Let us assume that Ω is the disk of radius R centered at 0, and that B is radial. In this case x min = 0, ∂ n φ is constant and Hess x min φ = B(0)Id/2. Thus,

dist H ((z -z min ) k-1 , H 2 k (Ω)) = dist H (z k-1 , H 2 k (Ω)) = N H (z k-1 ) 2 = 2π∂ n φR 2k-1
, and we notice that P n (z) = z n (see Notation 4) so that

dist B z k-1 , P k-2 = N B (P k-1 ) 2 = R 2 |y| 2(k-1) e -Hessx min φ(y,y) dy = 2π +∞ 0 ρ 2k-1 e -B(0)ρ 2 /2 dρ = 2π2 k B(0) k +∞ 0 ρ 2k-1 e -ρ 2 dρ = 2π2 k-1 Γ(k) B(0) k = 2π2 k-1 (k -1)! B(0) k , We get C sup (k) = B(0) k ΦR 2k-2 2 k-2 (k -1)! .
Note that this formula extends the upper bound obtained in [START_REF] Helffer | On the semi-classical analysis of the ground state energy of the Dirichlet Pauli operator[END_REF] for constant magnetic fields on the disc.

On the magnetic Cauchy-Riemann operators

In this section, U will denote an open bounded subset of R 2 . It will be either Ω itself, or a smaller open set.

As we already observed (see (1.3)), the Dirichlet-Pauli operator, considered only as a differential operator, is the square of the magnetic Dirac operator σ • (p -A). It can be written as

σ • (p -A) = 0 d h,A d × h,A 0 (4.1)
where d h,A and d × h,A are the magnetic Cauchy-Riemann operators: In this part, we study the operators d h,A and d * h,A in the non-magnetic case B = 0 with h = 1 in order to get describe their properties in this simplified setting in which -∆ = d * 1,0 d 1,0 . Various aspects of this section can be related to the spectral analysis of the "zig-zag" operator (see [START_REF] Schmidt | A remark on boundary value problems for the Dirac operator[END_REF]). The next section will be related to the magnetic case that is needed in our study. andd * 1,0 acts as d × 1,0 . In particular,

d h,A = -2ih∂ z -A 1 + iA 2 , d × h,A = -2ih∂ z -A 1 -iA 2 . Let (d h,A , Dom(d h,A )) be the operator on L 2 (U, C) acting as d h,A on Dom(d h,A ) = H 1 0 (U; C).
Dom(d * 1,0 ) = {u ∈ L 2 (U; C) , ∂ z u ∈ L 2 (U; C)} = {u ∈ L 2 (U; C) , ∂ z u = 0} + H 1 (U; C) ,
ker(d * 1,0 ) = {u ∈ L 2 (U; C) , ∂ z u = 0} . (c) We have ker(d * 1,0 ) ⊥ ∩ Dom(d * 1,0 ) = {d 1,0 w , w ∈ H 1 0 (U; C) ∩ H 2 (U; C)} ⊂ H 1 (U; C) ,
and there exists C > 0 such that, for all v ∈ ker(d * 1,0

) ⊥ ∩ Dom(d * 1,0 ), v H 1 (U ) C d * 1,0 v L 2 (U ) . Proof. Let u ∈ Dom(d 1,0 ) = H 1 0 (U; C). One easily checks that d 1,0 u 2 L 2 (U ) = ∇u 2 L 2 (U )
. Hence, the Poincaré inequality ensures that (d 1,0 , Dom(d 1,0 )) is a closed operator with closed range. Then, by definition of the domain of the adjoint,

Dom(d * 1,0 ) ⊂ {u ∈ L 2 (U; C) , ∂ z u ∈ L 2 (U; C)} . Conversely, if v ∈ {u ∈ L 2 (U; C) , ∂ z u ∈ L 2 (U; C)}, we have, for all w ∈ C ∞ 0 (U), v, -2i∂ z w L 2 (U ) = -2i∂ z v, w L 2 (U ) .
By density, this equality can be extended to w ∈ H 1 0 (U; C). This shows, by definition,

that v ∈ Dom(d * 1,0 ) and d * 1,0 v = -2i∂ z v. Moreover, we have ker(d * 1,0 ) ⊥ ∩ Dom(d * 1,0 ) = ran(d 1,0 ) ∩ Dom(d * 1,0 ) = {d 1,0 w , w ∈ H 1 0 (U; C) and -2i∂ z (d 1,0 w) = -∆w ∈ L 2 (U; C)} = {d 1,0 w , w ∈ H 1 0 (U; C) ∩ H 2 (U; C)} ⊂ H 1 (U; C)
, where the last equality follows from the elliptic regularity of the Laplacian. In particular, we get, for all w ∈ H 1 0 (U;

C) ∩ H 2 (U; C), w H 2 (U ) C ∆w L 2 (U ) . Now, take v ∈ ker(d * 1,0 ) ⊥ ∩ Dom(d * 1,0 ). We can write v = d 1,0 w with w ∈ H 2 (U; C) ∩ H 1 0 (U; C). We have d * 1,0 v = -∆w so that v H 1 (U ) C d * 1,0 v L 2 (U )
.

Properties of d h,A and d *

h,A . Let us introduce some notations related with the Riemann mapping theorem.

In the following, we gather some standards properties related with d h,A and d * h,A . We will use the following lemma. Lemma 4.2. For all u ∈ C ∞ 0 (U; C), we have

d h,A u 2 L 2 (U ) = (p -A)u 2 L 2 (U ) + h U B|u| 2 dx d × h,A u 2 L 2 (U ) = (p -A)u 2 L 2 (U ) -h U B|u| 2 dx
.

These formulas can be extended to u ∈ H 1 0 (U; C). 

Proof. It follows from integrations by parts and the fact that d

h,A d × h,A = | p -A| 2 -hB and d × h,A d h,A = | p -A|
Dom(d * h,A ) = {u ∈ L 2 (U) : ∂ z u ∈ L 2 (U)} = ker(d * h,A ) + H 1 (U; C) and ker(d * h,A ) = {e -φ/h v , v ∈ L 2 (U), ∂ z v = 0} . (c) We have ker(d * h,A ) ⊥ ∩ Dom(d * h,A ) = {d h,A w , w ∈ H 1 0 (U; C) ∩ H 2 (U; C)}.
d h,A u 2 L 2 (U ) h U 2B|u| 2 dx .
With Assumption (a) of Theorem 1. 

(d * h,A ) ⊥ ∩ Dom(d * h,A ) = ran(d h,A ) ∩ Dom(d * h,A ) = {d h,A w , w ∈ H 1 0 (U; C) and d * h,A d h,A w = (|p -A| 2 + hB)w ∈ L 2 (U; C)} = {d h,A w , w ∈ H 1 0 (U; C) and -∆w ∈ L 2 (U; C)} = {d h,A w , w ∈ H 1 0 (U; C) ∩ H 2 (U; C)} .
. Definition 4.5. We define the self-adjoint operators (L ± h , Dom(L ± h )) as the operators acting as

L - h = d h,A d × h,A = | p -A| 2 -hB , L + h = d × h,A d h,A = | p -A| 2 + hB , (4.2) 
on the respective domains

Dom(L - h ) = {u ∈ Dom(d * h,A ) , d * h,A u ∈ Dom(d h,A )} , Dom(L + h ) = {u ∈ Dom(d h,A ) , d h,A u ∈ Dom(d * h,A )} = H 1 0 (U; C) ∩ H 2 (U; C) .

4.3.

Semiclassical elliptic estimates for the magnetic Cauchy-Riemann operator. Notation 6. By the Riemann mapping theorem, and since ∂Ω is assumed to be C 2 , it is Dini-continuous (see [15, Theorem 2.1, and Section 3.3]) and we can consider a biholomorphic function F between D(0, 1) and Ω such that F (∂D(0, 1)) = ∂Ω. We write x = F (y). We notice that

∂ y 1 + i∂ y 2 = F ′ (y)(∂ x 1 + i∂ x 2 )
,

and dx = |F ′ (y)| 2 dy .
By [START_REF] Pommerenke | Boundary behaviour of conformal maps, volume 299 of Grundlehren der Mathematischen Wissenschaften[END_REF]Theorem 3.5], this biholomorphism can be continuously extended to D(0, 1), and there exist c 1 , c 2 > 0 such that, for all y ∈ D(0, 1),

c 1 |F ′ (y)| c 2 .
For δ ∈ (0, 1), we also let

Ω δ = F (D(0, 1 -δ)) .
Note that Ω δ is actually an analytic manifold.

The following theorem is a crucial ingredient in the proof of the lower bound of λ k (h). It is intimately related to the spectral supersymmetry of Dirac operators [17, Theorem 5.5 and Corollary 5.6].

Theorem 4.6. There exist δ 0 , h 0 > 0 and c > 0 such that, for all δ ∈ [0, δ 0 ), for all h ∈ (0, h 0 ), and for all u ∈ Dom(d

* h,A,Ω δ ) ∩ ker(d * h,A,Ω δ ) ⊥ d * h,A,Ω δ u L 2 (Ω δ ) 2hB 0 u L 2 (Ω δ ) , d * h,A,Ω δ u L 2 (Ω δ ) ch 2 ∇u L 2 (Ω δ ) + u L 2 (∂Ω δ )
, where we used Notation 6. Theorem 4.6 follows from the following two lemmas.

Lemma 4.7. For all u ∈ Dom(d * h,A,Ω δ ) ∩ ker(d * h,A,Ω δ ) ⊥ , we have d * h,A,Ω δ u L 2 (U ) 2hB 0 u L 2 (U ) .
Proof. For notational simplicity, we let U = Ω δ and we write Remark 4.3). Thus, we get

d h,A for d h,A,U . Let u ∈ Dom(d * h,A ) ∩ ker(d * h,A ) ⊥ . By Proposition 4.4, there exists w ∈ H 1 0 (U; C) ∩ H 2 (U; C) such that u = d h,A w and d * h,A u = L + h w. The spectrum of L + h is a subset of [2hB 0 , +∞) (see
L + h w L 2 (U ) 2hB 0 w L 2 (U )
. By integration by parts and the Cauchy-Schwarz inequality, we have

2hB 0 d h,A w 2 L 2 (U ) 2hB 0 w, L + h w L 2 (U ) 2hB 0 w L 2 (U ) L + h w L 2 (U ) L + h w 2 L 2 (U ) .
This ensures that

2hB 0 d h,A w L 2 (U ) L + h w L 2 (U ) = d * h,A d h,A w L 2 (U )
and the conclusion follows.

Lemma 4.8. There exist δ 0 , h 0 > 0 and c > 0 such that, for all δ ∈ [0, δ 0 ), for all h ∈ (0, h 0 ), and for all u ∈ Dom(d

* h,A,Ω δ ) ∩ ker(d * h,A,Ω δ ) ⊥ , we have d * h,A,Ω δ u L 2 (Ω δ ) ch 2 ∇u L 2 (Ω δ ) + ch 2 u L 2 (∂Ω δ ) . Proof.
For notational simplicity, we let U = Ω δ and we write d h,A for d h,A,U .

With the same notations as in the proof of Lemma 4.7 (u = d h,A w), we have

d * h,A u = d * h,A d h,A w = L + h w , w ∈ H 1 0 (U) ∩ H 2 (U) . i. From Lemma 4.2, d h,A w 2 L 2 (U ) = (p -A)w 2 L 2 (U ) + h U B|w| 2 dx = d * h,A u, w L 2 (U ) d * h,A u L 2 (U ) w L 2 (U ) .
Using Assumption (a), we get

B 0 h w 2 L 2 (U ) h U B|w| 2 dx d * h,A u L 2 (U ) w L 2 (U ) , and 
h w L 2 (U ) B -1 0 d * h,A u L 2 (U ) . (4.3) Since h U B|w| 2 dx (p -A)w 2 L 2 (U ) , we deduce that B 1/2 0 h 1/2 w L 2 (U ) (p -A)w L 2 (U ) , and 
(p -A)w 2 L 2 (U ) d * h,A u L 2 (U ) w L 2 (U ) d * h,A u L 2 (U ) B -1/2 0 h -1/2 (p -A)w L 2 (U ) , (4.4 
) so that using (4.3) and (4.4), there exists C > 0 such that

h 1 2 (p -A)w L 2 (U ) + h w L 2 (U ) C d * h,A u L 2 (U )
.

Since A is bounded,

h 3/2 ∇w L 2 (U ) C d * h,A u L 2 (U ) + Ch 1/2 w L 2 (U ) Ch -1/2 d * h,A u L 2 (U )
. Thus,

h 2 ∇w L 2 (U ) + h w L 2 (U ) C d * h,A u L 2 (U ) . (4.5) 
ii. Let us now deal with the derivatives of order two. From the explicit expression of

L + h w, we get -h 2 ∆w = d * h,A u -2ihA • ∇w -|A| 2 w + hBw .
Taking the L 2 -norm and using (4.5), we get

h 2 ∆w L 2 (U ) d * h,A u L 2 (U ) + -2ihA • ∇w L 2 (U ) + |A| 2 w L 2 (U ) + hBw L 2 (U ) C(1 + h -1 ) d * h,A u L 2 (U )
.

Using a standard ellipticity result for the Dirichlet Laplacian, we find

h 3 w H 2 (U ) + h 2 ∇w L 2 (U ) + h w L 2 (U ) C d * h,A u L 2 (U ) . (4.6) 
The uniformity of the constant with respect to δ ∈ (0, δ 0 ) can be checked in the classical proof of elliptic regularity. Alternatively, using Riemann mapping theorem, we send Ω on the unit disk. Then, we perform a change of scale for each δ to send D(0, 1 -δ) onto D(0, 1) and use a standard ellipticity result on D(0, 1). Here, δ appears as a regular parameter in the coefficients of the elliptic operator. Note that d h,A = L 1 -iL 2 where L j = -ih∂ j -A j . Using (4.6), we deduce that

∇d h,A w L 2 (U ) Ch w H 2 (U ) + C w L 2 (U ) + C ∇w L 2 (U ) Ch -2 d * h,A u L 2 (U )
, and, since u = d h,A w,

h 2 ∇u L 2 (U ) C d * h,A u L 2 (U ) . (4.7) 
iii. A classical trace result combined with (4.7) and Lemma 4.7 gives

u L 2 (∂U ) C u H 1 (U ) Ch -2 d * h,A u L 2 (U )
, where it can again be checked using the same techniques that C does not depend on δ ∈ (0, δ 0 ).

Lower bounds

The aim of this section is to establish the following proposition. Proposition 5.1. Assume that Ω is C 2 and satisfies Assumption 1.1. There exists a constant θ 0 ∈ (0, 1] such that for all k ∈ N * ,

lim inf h→0 e -2φ min /h h k-1 λ k (h) C sup (k)θ 0 = C inf (k) .
If Ω = D(0, 1) and B is radial, we have

lim inf h→0 e -2φ min /h h k-1 λ k (h) 4Φ (k -1)! det(Hess x min φ) k 2 .
5.1. Inside approximation by the zero-modes. Let k ∈ N * . Let us consider an orthonormal family (v j,h ) 1 j k (for the scalar product of L 2 (e -2φ/h dx)) associated with the eigenvalues (λ j (h)) 1 j k . We define

E h = span 1 j k v j,h .
In this section, we will see that the general upper bound proved in the last section implies that all v h ∈ E h wants to be holomorphic inside Ω.

5.1.1. Concentration of the groundstate.

Lemma 5.2. There exist C, h 0 > 0 such that for all v h ∈ E h and h ∈ (0, h 0 ), we have,

v h 2 L 2 (Ω) Ch -(1+k) e 2φ min /h Ω e -2φ/h |v h | 2 dx .
This result will be used in the proof of Lemma 5.3 to compute the weighted L 2 norm of v h on Ω in term of its weighted L 2 norm on a shrinking neighborhood of x min .

Proof. We have λ k (h) = h -k+1 O(e 2φ min /h ) (see Proposition 3.1). By using the orthogonality of the v j,h , one gets We can now prove a concentration lemma. Lemma 5.3. Let α ∈ (0, 1/2). We have

Ω e -2φ/h |2h∂ z v h | 2 dx λ k (h) Ω e -2φ/h |v h | 2 dx Ch -k+1 e 2φ min /h Ω e -2φ/h |v h | 2 dx .
lim h→0 sup v h ∈E h \{0} D(x min , h α ) e -2φ/h |v h (x)| 2 dx Ω e -2φ/h |v h (x)| 2 dx -1 = 0 , and 
lim h→0 sup δ∈(0,δ 0 ] sup v h ∈E h \{0} Ω δ e -2φ/h |v h (x)| 2 dx Ω e -2φ/h |v h (x)| 2 dx -1 = 0 ,
where δ 0 is defined in Proposition 4.4.

Proof. Let us remark that the second limit is a consequence of the first one. We have

D(x min ,h α ) e -2φ/h |v h (x)| 2 dx Ω e -2φ/h |v h (x)| 2 dx = 1 - Ω\D(x min , h α ) e -2φ/h |v h (x)| 2 dx Ω e -2φ/h |v h (x)| 2 dx
. By (3.9) and Lemma 5.2, we deduce that

Ω\D(x min , h α ) e -2φ/h |v h (x)| 2 dx e -2φ min /h-λ min h 2α-1 (1+O(h α )) Ω |v h (x)| 2 dx Ch -(1+k) e -λ min h 2α-1 (1+O(h α )) Ω e -2φ/h |v h | 2 dx = O(h ∞ ) Ω e -2φ/h |v h | 2 dx ,
and the conclusion follows. We notice that, if u = e -φ/h v, we have

Π h,A,Ω δ u = e -φ/h Π h,δ v ,
where Π h,A,Ω δ was defined in Notation 5.

Proposition 5.4. There exist C, h 0 > 0 such that for all δ ∈ (0, δ 0 ] and h ∈ (0, h 0 ), we have for all

v h ∈ E h , (a) e -φ/h (Id -Πh,δ )v h L 2 (Ω δ ) Ch -1 2 λ k (h) e -φ/h v h L 2 (Ω δ ) , (b) e -φ/h (Id -Π h,δ )v h L 2 (∂Ω δ ) Ch -2 λ k (h) e -φ/h v h L 2 (Ω δ ) , (c) dim Π h,δ E h = k.
Here, δ 0 is defined in Theorem 4.6.

Proof. For all v h ∈ E h , we have

4 e -φ/h h∂ z v h 2 L 2 (Ω δ ) 4 e -φ/h h∂ z v h 2 L 2 (Ω) λ k (h) e -φ/h v h 2 L 2 (Ω) (1 + o(1))λ k (h) e -φ/h v h 2 L 2 (Ω δ ) ,
where we used Lemma 5.3 to get the last inequality. With u h = e -φ/h v h , we have

4 e -φ/h h∂ z v h 2 L 2 (Ω δ ) = 4 e -φ/h h∂ z (Id -Πh,δ )v h 2 L 2 (Ω δ ) = d * h,A,Ω δ (Id -Π h,A,Ω δ )u h 2 L 2 (Ω δ )
. Applying Theorem 4.6, we get (a) and (b).

Let v h ∈ E h be such that Π h,δ v h = 0. Recalling Proposition 3.1, we have

e -φ/h v h L 2 (Ω δ ) e -φ/h (Id -Π h,δ )v h L 2 (Ω δ ) + e -φ/h Π h,δ v h L 2 (Ω δ ) Ch -k/2 e φ min /h e -φ/h v h L 2 (Ω δ ) , so that e -φ/h v h L 2 (Ω δ )
(1 -Ch -k/2 e φ min /h ) 0 , and v h = 0 on Ω δ so that Π h,δ is injective on E h and (c) follows.

5.2.

A reduction to a holomorphic subspace. In the following, we assume that δ ∈ (0, δ 0 ) and h ∈ (0, h 0 ).

Notation 8. We will use the so-called Szegö projection

Π + : L 2 (D(0, 1)) ∋   n∈Z a n (r)e ins   →   n∈N a n (r)e ins   ∈ L 2 (D(0, 1)) .
Note that the Szegö projection preserves the L 2 holomorphic functions.

Notation 9. We let

E := min ∂D(0,1) |F ′ (y)|∂ n φ(F (y)) c 1 min Γ (∇φ • n) ,
where F , c 1 are defined in Notation 6.

Lemma 5.5. Assume that δ/h → +∞ and δ → 0. Then, for all

v h ∈ E h , 2hE Π + (v h • F ) 2 L 2 (∂D(0,1-δ)) (1 + o(1)) 4h 2 Ω e -2φ/h |∂ z v h | 2 dx . Proof. i. For all v ∈ H 1 0 (Ω), we let v = v • F ∈ H 1 0 (D(0, 1)) and φ = φ • F . We get that 4h 2 Ω e -2φ/h |∂ z v| 2 dx = 4h 2 D(0,1)
e -2 φ/h |∂ y v| 2 dy .

ii. In the polar coordinates, the Cauchy-Riemann operator is

- i 2 (∂ 1 + i∂ 2 ) = -iγ ′ 2 ∂ s 1 -t + i∂ t .
We write ψ(s, t) = ψ(η(s, t)) for any function ψ defined on D(0, 1). We have, for all v ∈ H 1 0 (D(0, 1)), 4h

D(0,1) e -2 φ/h |∂ z v| 2 dx 4h 2 D(0,1)\D(0,1-δ) e -2 φ/h |∂ z v| 2 dx = h 2 2π 0 δ 0 (1 -t) -1 ((1 -t)∂ t -i∂ s )ṽ 2 e -2 φ/h dsdt . (5.2) 2 
iii. Let us notice that

∂ ň φ(y) = |F ′ (y)|∂ n φ(F (y)) , (5.3 
) where x ∈ ∂Ω, n(x) is the outward pointing unit normal to Ω at x, and ň(y) is outward pointing unit normal to D(0, 1) at y.

By using the Taylor expansion of φ, there exists C > 0 such that, for all (s, t) ∈ Γ × (0, δ),

-φ(s, t) = -t∂ t φ(s, 0) + O(t 2 ) (1 -Cδ)Et ,
where 0 < E = min ∂D(0,1) ∂ ň φ. We have

4h 2 D(0,1) e -2 φ/h |∂ z v| 2 dx h 2 2π 0 δ 0 (1 -t) -1 ((1 -t)∂ t -i∂ s )ṽ 2 e 2(1-Cδ)Et/h dsdt .
Consider the new variable τ = -ln |1 -t|, we get 4h 2

D(0,1) e -2 φ/h |∂ z v| 2 dx h 2 2π 0 -ln |1-δ| 0 (∂ τ -i∂ s )v(s, τ ) 2 e 2(1-Cδ)E(1-e -τ )/h dsdτ , where v(s, τ ) = ṽ(s, 1 -e -τ ). Since 1 -e -τ = τ + O(τ 2 ) = τ + O(δτ ), there exists C > 0 such that e 2(1-Cδ)E(1-e -τ )/h e 2E(1-Cδ)τ /h . Let Ẽ = E(1 -Cδ) and δ = -ln |1 -δ| so that 4h 2 D(0,1) e -2 φ/h |∂ z v| 2 dx h 2 2π 0 δ 0 (∂ τ -i∂ s )v(s, τ )
2 e 2 Ẽτ /h dsdτ .

iv. Using the Fourier series and the Parseval formula, we get where w(τ ) = e m( δ-τ ) ρ(τ ) for all τ ∈ (0, δ), ρ(0) = 0 and ρ( δ) = 1. Since m → Qm (ρ) is an increasing function, we get that Qm (ρ) Q0 (ρ) for all m 0 and, by Lemma A.1,

Q m (w) Λ 0 (h) , where Λ 0 (h) = 2 Ẽ/h 1 -e -2 δ Ẽ/h 0 .
We get, by forgetting the negative m, we find

4h 2 Ω e -2φ/h |∂ z v| 2 dx 2πh 2 Λ 0 (h) m 0 |v m (δ)| 2 = h 2 Λ 0 (h) Π + (v • F ) 2 L 2 (∂D(0,1-δ)) .
In the following, we choose δ = h 3/4 . Using Proposition 5.4, we show in the following lemma that we can replace v h by Π h,δ v h in Lemma 5.5. Lemma 5.6. Assume that δ = h 3/4 and that α ∈ 1 3 , 1 2 . Then,

2θ 0 he 2φ min /h Π h,δ v h 2 H 2 (Ω δ ) (1+o(1)) λ k (h) e -1 2h Hessx min φ(x-x min ,x-x min ) Π h,δ v h 2 L 2 (D(x min ,h α ))
, where

θ 0 = min ∂D(0,1) |F ′ (y)|∂ n φ(F (y)) max ∂D(0,1) |F ′ (y)|∂ n φ(F (y)) ∈ (0, 1] ,
and where we used the notation

w 2 H 2 (Ω δ ) := ∂D(0,1-δ) |w • F | 2 (∂ n φ • F )|F ′ |ds .
Remark 5.7. Taking δ = 0 in the definition of w 2 H 2 (Ω δ ) above, gives

w 2 H 2 (Ω 0 ) = ∂D(0,1) |w • F | 2 (∂ n φ • F )|F ′ |ds = ∂Ω |w| 2 ∂ n φdy = N H (w) 2 ,
for w ∈ H 2 (Ω).

Proof of Lemma 5.6. i. From Lemma 5.5 and the definition of v h , we have

2Eh Π + (v h • F ) 2 L 2 (∂D(0,1-δ)) (1 + o(1)) h 2 Ω e -2φ/h |∂ z v h | 2 dx λ k (h) Ω e -2φ/h |v h | 2 dx .
Thus, by Lemma 5.3,

2Eh Π + (v h • F ) 2 L 2 (∂D(0,1-δ)) (1 + o(1)) λ k (h) D(x min ,h α ) e -2φ/h |v h | 2 dx . (5.4) 
ii. Consider Πh,δ is the orthogonal projection on H (D(0, 1 -δ)) for the scalar product L 2 (e -2 φ/h dy). Note that Πh,δ Π + = Π + Πh,δ = Πh,δ (see Notation 8). Let us now replace Π + by Πh,δ . Proposition 5.4 ensures that

e -φ/h (Id -Πh,δ )v h • F L 2 (∂D(0,1-δ)) Ch -2 λ k (h) e -φ/h v h L 2 (Ω δ ) ,
Using the Taylor expansion of φ near the boundary and (5.3), we have, on ∂D(0, 1 -δ), e -φ/h (1 + o( 1))e Eh -1/4 , so that

(Id -Πh,δ )v h • F L 2 (∂D(0,1-δ)) Ch -2 λ k (h)e -Eh -1/4 e -φ/h v h L 2 (Ω δ ) .
(5.5)

Since Π + is a projection and Πh,δ is valued in the holomorphic functions,

(Id -Πh,δ )v h • F L 2 (∂D(0,1-δ)) Π + (Id -Πh,δ )v h • F L 2 (∂D(0,1-δ)) Π + v h • F -Πh,δ v h • F L 2 (∂D(0,1-δ)) | Π + v h • F L 2 (∂D(0,1-δ)) -Πh,δ v h • F L 2 (∂D(0,1-δ)) | .
Then, with (5.5),

Π + v h • F L 2 (∂D(0,1-δ)) Πh,δ v h • F L 2 (∂D(0,1-δ)) -O(h ∞ ) λ k (h) e -φ/h v h L 2 (Ω δ ) .
By (5.4) and Lemma 5.3,

√ 2Eh Πh,δ v h • F L 2 (∂D(0,1-δ)) (1 + o(1)) λ k (h) e -φ/h v h L 2 (D(x min ,h α )) . (5.6) 
Thus, coming back to Ω δ (without forgetting the Jacobian of F ),

√ 2Eh |F ′ (F (•))| -1/2 Π h,δ v h L 2 (∂Ω δ ) (1 + o(1)) λ k (h) e -φ/h v h L 2 (D(x min ,h α )) .
Then, by using the (weighted) Hardy norm, we have

2θ 0 h Π h,δ v h H 2 (Ω δ ) (1 + o(1)) λ k (h) e -φ/h v h L 2 (D(x min ,h α )) . (5.7) 
iii. Using Proposition 5.4 and Lemma 5.3, we get

e -φ/h v h L 2 (D(x min ,h α )) e -φ/h Π h,δ v h L 2 (D(x min ,h α )) + e -φ/h (Id -Π h,δ )v h L 2 (D(x min ,h α )) e -φ/h Π h,δ v h L 2 (D(x min ,h α )) + e -φ/h (Id -Π h,δ )v h L 2 (Ω δ ) e -φ/h Π h,δ v h L 2 (D(x min ,h α )) + Ch -1 2 λ k (h) e -φ/h v h L 2 (D(x min ,h α )) .
Combing this with (5.7) and Proposition 3.1, we find

2θ 0 h Π h,δ v h 2 H 2 (Ω δ ) (1 + o(1)) λ k (h) e -φ/h Π h,δ v h 2 L 2 (D(x min ,h α )) .
iv. Using the Taylor expansion of φ at x min , we get, for all for x ∈ D(x min , h α ) ,

φ(x) -φ min h = 1 2h
Hess x min φ(x -x min , x -x min ) + O(h 3α-1 ) , and the conclusion follows.

Remark 5.8. Lemma 5.6 shows in particular that

2(1 + o(1))θ 0 h λk (h) λ k (h) , where λk (h) = inf V ⊂ H 2 (Ω δ ) dim V = k sup v∈V \{0} v 2 H 2 (Ω δ ) e -1 2h Hessx min φ(x-x min ,x-x min ) v 2 L 2 (D(x min ,h α ))
.

In the next section, we will essentially provide a lower bound of λk (h). Note that if we could replace H 2 (Ω δ ) by the set of polynomials, then, we would get the bound presented in Remark 3.2. Nevertheless, there is no hope to do so since in general,

dist H ((z -z min ) k-1 , H 2 k (Ω)) < N B ((z -z min ) k-1
) , (This inequality is an equality in the radial case). We still have to work to get the lower bound of Theorem 1.3. i. By using (3.12), there exists C > 0, h 0 > 0 such that, for all h ∈ (0, h 0 ), for all w ∈ H 2 (Ω δ ), all z 0 ∈ D(x min , h α ), and all n ∈ {0, . . . k},

|w (n) (z 0 )| C w H 2 (Ω δ ) . (5.8) 
Let us define, for all w ∈ H 2 (Ω δ ),

N h (w) = e -1 2h Hessx min φ(x-x min ,x-x min ) w L 2 (D(x min ,h α ))
.

We let w h = Π h,δ v h . By the Taylor formula, we can write

w h = Tayl k-1 w h + R k-1 (w h ) , where Tayl k-1 w h = k-1 n=0 w (n) h (z min ) n! (z -z min ) n ,
and, for all z ∈ D(z min , h α ),

|R k-1 (w h )(z)| C|z -z min | k sup D(z min ,h α ) |w (k) h | .
With (5.8) and a rescaling, the Taylor remainder satisfies

N h (R k-1 (w h )) Ch k 2 h 1 2 w h H 2 (Ω δ ) .
Thus, by the triangle inequality,

N h (w h ) N h (Tayl k-1 w h ) + Ch k 2 h 1 2 w h H 2 (Ω δ ) .
Thus, with Lemma 5.6, we get (1+o( 1))e φ min /h 2θ 0 h w h H 2 (Ω δ ) λ k (h)N h (Tayl k-1 w h )+C λ k (h)h 1+k 2

w h H 2 (Ω δ ) , so that, thanks to Proposition 3.1,

(1 + o( 1))e φ min /h 2θ 0 h w h H 2 (Ω δ ) λ k (h)N h (Tayl k-1 w h ) λ k (h) Nh (Tayl k-1 w h ) , (5.9) with Nh (w) = e -1 2h Hessx min φ(x-x min ,x-x min ) w

L 2 (R 2 )
.

This inequality shows in particular that Tayl k-1 Π δ,h is injective on E h and dimTayl k-1 ( Π δ,h E h ) = k .

(5.10)

ii. Let us recall that H 2 k (Ω δ ) = {ψ ∈ H 2 (Ω δ ) : ∀n ∈ {0, . . . , k -1} , ψ (n) (x min ) = 0} .

Since (w h -Tayl k-1 w h ) ∈ H 2 k (Ω δ ), we have, by the triangle inequality,

w h H 2 (Ω δ ) w (k-1) h (z min ) (k -1)! (z -z min ) k-1 + (w h -Tayl k-1 w h ) H 2 (Ω δ ) -Tayl k-2 w h H 2 (Ω δ ) |w (k-1) h (z min )| (k -1)! dist H,δ ((z -z min ) k-1 , H 2 k (Ω δ )) -Tayl k-2 w h H 2 (Ω δ ) ,
where

dist H,δ ((z -z min ) k-1 , H 2 k (Ω δ )) = inf (z -z min ) k-1 -Q(z) H 2 (Ω δ )
, for all Q ∈ H 2 k (Ω δ ) .

Using again the triangle inequality, We find

Tayl k-2 w h H 2 (Ω δ ) C k-2 n=0 |w (n) h (z min )| . Moreover, k-2 n=0 |w (n) h (z min )| h -k-2 2 k-2 n=0 h n 2 |w (n) h (z min )| h -k-2 2 k-1 n=0 h n 2 |w (n) h (z min )| Ch -k-2 2 h -
w h H 2 (Ω δ ) |w (k-1) h (z min )| (k -1)! dist H,δ ((z -z min ) k-1 , H 2 k (Ω δ )) -Ch -k-2 2 h -1 2 Nh (Tayl k-1 w h ) ,
and thus, by (5.9),

(1 + o( 1))e φ min /h 2θ 0 h |w iii. Since we have (5.10), we deduce that (1 + o( 1))e φ min /h 2θ 0 hdist H,δ ((z -z min ) k-1 , H 2 k (Ω δ )) sup .

c∈C k |c k-1 | Nh ( k-1 n=0 c n (z -z min ) n ) λ k (h) + Ch
Since N1 is related to the Segal-Bargmann norm N B via a translation, and recalling Notation 4, we get sup

c∈C k |c k-1 | N1 ( k-1 n=0 c n (z -z min ) n ) = sup c∈C k |c k-1 | N B ( k-1 n=0 c n z n ) = 1 N B (P k-1 )
.

Thus,

(1 + o(1))h 1-k 2 e φ min /h 2θ 0 dist H,δ ((z -z min ) k-1 , H 2 k (Ω δ )) N B (P k-1 )
λ k (h) .

(5.14) iv. Since Ω is regular enough, the Riemann mapping theorem ensures that

lim h→0 dist H,δ (z -z min ) k-1 , H 2 k (Ω δ ) = dist H (z -z min ) k-1 , H 2 k (Ω) .
The conclusion follows. This ensures that any minimizing sequence (ρ n ) n∈N ⊂ V is bounded in H 1 (I) and any H 1 -weak limit is a minimizer of inf{F α,ε (ρ) , ρ ∈ V }. ii. F 1/2 α,ε is an euclidian norm on V so that F α,ε is strictly convex and the minimizer is unique. iii. At a minimum ρ, the Euler-Lagrange equation is (e αℓ ρ ′ ) ′ = 0 .

Thus, there exist (c, d) ∈ R 2 such that, for all ℓ ∈ I, ρ(ℓ) = d -cα -1 e -αℓ , so that, with the boundary conditions we find the function ρ α,ε . iv. We have Note that ∂ n φ is bounded by Lemma B.1. By Lebesgue's theorem, we get that (u ε ) ε∈(0,1) converges to u in H 2 (Ω). Let us also remark that (u ε ) ε∈(0,1) ⊂ W 1,∞ (Ω) so that the result follows.
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1. 3 . 1 .Notation 3 .

 313 Main theorem. Let us denote by H (Ω) and H (C) the sets of holomorphic functions on Ω and C. We consider the following (anisotropic) Segal-Bargmann space

1 2 ( 1 +

 11 (general case), Helffer and Sundqvist have proved, under assumption (a), that lim h→0 h ln λ 1 (h) = 2φ min . Moreover, under the assumptions (a), (b) and (c) of Theorem 1.3, their theorem [11, Theorem 4.2], implies the following upper bound for the first eigenvalue λ 1 (h) 4Φ det(Hess x min φ) o(1))e 2φ min /h .

Lemma 2 . 3 (

 23 Change of gauge for the Dirac operator). Let Φ : Ω → R be a regular function. We have e σ 3 Φ (σ • p) e σ 3 Φ = σ • (p -h∇Φ ⊥ ) as operators acting on H 1 (Ω, C 2 ) functions and where ∇Φ ⊥ is defined in Definition 1.2.

4. 1 .

 1 Properties of d 1,0 and d * 1,0 .

Lemma 4 . 1 .

 41 Assume that U is of class C 2 . The following properties hold. (a) The operator (d 1,0 , Dom(d 1,0 )) is closed with closed range. (b) The domain of d * 1,0 is given by

  3 and the fact that the operator is closed, the range is closed. (b) We have Dom(d * h,A ) = Dom(d * 1,0 ) , and d * h,A acts as d × h,A . By Proposition 2.1 and Lemma 4.1, we deduce ker(d * h,A ) = {e -φ/h v , v ∈ L 2 (U), ∂ z v = 0} . (c) As in the proof of Lemma 4.1, we get ker

( 5 . 1 )

 51 Now, we use φ 0 to getΩ |2∂ z v h | 2 dx Ch -(1+k) e 2φ min /h Ω e -2φ/h |v h | 2 dx .Since v h satisfies the Dirichlet boundary condition and by integration by parts, we findΩ |∇v h | 2 dx Ch -(1+k) e 2φ min /h Ω e -2φ/h |v h | 2 dx .It remains to use the Poincaré inequality.

0 (e 0 (∂ τ + m)w 2 e 2 0 |∂ τ ρ| 2 e

 00202 τ -i∂ s )v(s, τ ) 2 e 2 Ẽτ /h dsdτ = 2π m∈Z δ ∂ τ + m)v m (τ ) 2 e 2 Ẽτ /h dτ , -ims v(s, τ )ds .Let us consider the quadratic formQ m (w) =δ Ẽτ /h dτ with boundary conditions w(0) = 0 and w( δ) = 1.Let us notice that Q m (w) = Qm (ρ) = δ 2τ Ẽ/h+2( δ-τ )m dτ ,

5. 3 .

 3 Reduction to a polynomial subspace: Proof of Proposition 5.1. We can now prove Proposition 5.1.

1 2

 1 Nh (Tayl k-1 w h ) , of the norms in finite dimension:∃C > 0 , ∀d ∈ C k , C -1

(k- 1

 1 ) h (z min )| (k -1)! dist H,δ ((z -z min ) k-1 , H 2 k (Ω δ )) λ k (h) + Ch 2-k 2 e φ min /hNh (Tayl k-1 w h ) . (5.12)

1 |2

 1 Nh ( k-1 n=0 c n (z -z min ) n ) |c k-1 | N1 ( k-1 n=0 c n (z -z min ) n )

5. 4 . 0 e

 40 Proof of Corollary 1.11. We recall Notation 6 where F , c 1 and c 2 are defined. Let us notice that we can choose F such that F (0) = x min .For all v ∈ H 1 0 (Ω), we let v = v • F ∈ H 1 0 (D(0, 1)), and we get,1 c 2 D(0,1) e -2 φ/h |∂ y v| 2 dy D(0,1) e -2 φ/h |v| 2 dy D(0,1) e -2 φ/h |∂ y v| 2 dy D(0,1) e -2 φ/h |v| 2 |F ′ (y)| 2 dy = Ω e -2φ/h |∂ z v| 2 dx Ω e -2φ/h |v| 2 dx, where φ = φ • F has a unique and non-degenerate minimum at y = 0 and φ(0) = φ min .In the same way, we getΩ e -2φ/h |∂ z v| 2 dx Ω e -2φ/h |v| 2 dx 1 c 1 D(0,1) e -2 φ/h |∂ y v| 2 dy D(0,1) e -2 φ/h |v| 2 dy .These inequalities, the min-max principle, and Theorem 1.3 imply Corollary 1.11.Lemma A.1. For α and ε > 0, we let I = (0, ε) andV = {ρ ∈ H 1 (I) : ρ(0) = 0 , ρ(ε) = 1} .Let us consider, for all ρ ∈ V ,F α,ε (ρ) := ε αℓ |ρ ′ (ℓ)| 2 dℓ .(a) The minimization probleminf{F α,ε (ρ) , ρ ∈ V } has a unique minimizer ρ α,ε (ℓ) = 1 -e -αℓ 1 -e -αε , (b) We have inf{F α,ε (ρ) , ρ ∈ V } = α 1 -e -εα , (c) Let c 0 > 0. Assume 1 -e -αε c 0 . There exists C > 0 such that ε 0 e αℓ |∂ α ρ α,ε | 2 dℓ C α -3 + e -αε ε 2 α -1 . Proof. i. Since α > 0, we have that F α,ε (ρ) ε 0 |ρ ′ (ℓ)| 2 dℓfor all ρ ∈ V . There exists C > 0 such that, for all ρ ∈ V , ε 0 |ρ ′ (ℓ)| 2 dℓ C ε 0 |ρ(ℓ)| 2 dℓ .

ε 0 e 0 ℓ 2 e 0 e

 0020 αℓ |ρ ′ (ℓ)| 2 dℓ = α 2 (1 -e -εα ) -2 ε 0 e -αℓ dℓ = α 1 -e -εα .v. We also have∂ α ρ α,ε (ℓ) = 1 (1 -e -αε ) 2 ℓe -αℓ (1 -e -αε ) -(1 -e -αℓ )εe -αε , for ℓ ∈ (0, ε) and ε 0 e αℓ |∂ α ρ α,ε | 2 dℓ 1 (1 -e -αε ) 4 ε -αℓ dℓ 1 -e -αε 2 + ε 0 e -αℓ dℓ εe -αε 2 + ε αℓ dℓ εe -αε 2 C α -3 + e -αε ε 2 α -1 .

  2 + hB. The extension to u ∈ H 1 0 (U; C) follows by density. Remark 4.3. From Lemma 4.2, we deduce 4 , that for all u ∈ H 1 Proposition 4.4. Assume that U is of class C 2 . (a) The operator (d h,A , Dom(d h,A )) is closed with closed range. (b) The adjoint (d * h,A , Dom(d * h,A )) acts as d × h,A on

0 (U; C), (p -A)u 2 L 2 (U ) U hB|u| 2 dx .

  Notation 5. The notation d h,A,U for d h,A emphasizes the dependence on U. We denote by Π h,A,U (or simply Π h,A if there is no ambiguity) the orthogonal projection on ker(d * h,A ). Proof. (a) By Lemma 4.2, the graph norm of d h,A and the usual H 1 -norm are equivalent. Thus, the graph of d h,A is a closed subspace of L 2 (U) × L 2 (U). From Lemma 4.2 and Remark 4.3, we get, for all u ∈ H 1 0 (U),

  5.1.2. Interior approximation. Now that we know that v h is localized inside Ω, let us explain why it is close to be a holomorphic function.Notation 7. Let us denote by Π h,δ the orthogonal projection on the kernel of -i∂ z (i.e. the SegalBargmann functions on Ω δ which is defined in Theorem 4.6) for the L 2 -scalar product •, e -2φ/h • L 2 (Ω δ ) .

Note also that we do not use here the stronger notion of Smirnov domain in which the set of polynomials in the complex variable is dense in H

(Ω) (see[START_REF] Duren | Theory of H p Spaces[END_REF] Theorem 10.6]). Starlike domains and domains with analytic boundary are Smirnov domains.

By Remark 3.6, dim V h,k,sup = k for h small enough.

It may also be found in[START_REF] Fournais | Spectral methods in surface superconductivity[END_REF] Lemma 1.4.1].
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The goal of this section is to minimize, for each fixed s, the quantity,

This leads to the following lemma.

Appendix B. Hopf's Lemma with Dini regularity

In the following lemma, we present a simple proof of an extension of Hopf's Lemma to the case when Ω is Dini regular. The standard version of Hopf's Lemma given for instance in [7, Hopf's Lemma, section 6.4.2] requires essentially C 2 regularity. However, the regularity can be lowered up to Dini (see [START_REF] Apushkinskaya | A counterexample to the Hopf-Oleinik lemma (elliptic case)[END_REF] and the references therein).

Lemma B.1. Let Ω being a simply connected, Dini regular, bounded open set. Then, if φ is the solution of (1.2), the function s ∈ ∂Ω → ∂ n φ(s) is continuous and

Proof. Let φ be the solution of (1.2). By the Riemann mapping Theorem [START_REF] Pommerenke | Boundary behaviour of conformal maps, volume 299 of Grundlehren der Mathematischen Wissenschaften[END_REF], there exists a bi-holomorphic map F :

Corollary .36], we get that φ is C 1,1 on D(0, 1) and Hopf's Lemma [7, Hopf's Lemma, Section 6.4.2] ensures that ∂ n φ > 0. The result follows from the fact that

Appendix C. A density result

Lemma C.1. Assume that Ω is bounded, simply connected and that ∂Ω is Dini-continuous. Then, the set