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ON THE SEMICLASSICAL SPECTRUM
OF THE DIRICHLET-PAULI OPERATOR

J.-M. BARBAROUX, L. LE TREUST, N. RAYMOND, AND E. STOCKMEYER

ABSTRACT. This paper is devoted to semiclassical estimates of the eigenvalues of the
Pauli operator on a bounded open set whose boundary carries Dirichlet conditions.
Assuming that the magnetic field is positive and a few generic conditions, we establish
the simplicity of the eigenvalues and provide accurate asymptotic estimates involving
Segal-Bargmann and Hardy spaces associated with the magnetic field.
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1. INTRODUCTION

In this article we consider the magnetic Pauli operator defined on a bounded and
simply-connected domain 2 C R? subject to Dirichlet boundary conditions. This oper-
ator is the model Hamiltonian of a non-relativistic spin—% particle, constraint to move
in §2, interacting with a magnetic field that is perpendicular to the plane.

Formally the Pauli operator acts on two-dimensional spinors and it is given by

Py, = o (—ihV — A)]2,

where h > 0 is a semiclassical parameter and o is a two-dimensional vector whose
components are the Pauli matrices o; and o,. The magnetic field B enters in the
operator through an associated magnetic vector potential A = (A;, As) that satisfies
0145 — b A7 = B. Assuming that the magnetic field is positive and few other mild
conditions we provide precise asymptotic estimates for the low energy eigenvalues of
), in the semiclassical limit (i.e., as h — 0).

Let us roughly explain our results. Let \x(h) be the k-th eigenvalue of &), counting
multiplicity. Assuming that the boundary of Q is €, we show that there exist a > 0,
0o € (0,1] such that the following holds: For all k& € N*, there exists Cj > 0 such that,
as h — 0,

0oCh ¥ e 29M(1 4 0(1)) < Ap(h) < Cph e 2/ (1 + 0(1)) .

In particular, this result establishes the simplicity of the eigenvalues in this regime. The
constants a > 0 and C} are directly related to the magnetic field and the geometry of
Q) and C}, is expressed in terms of SegalBargmann and Hardy norms that are naturally
associated to the magnetic field. In the case when € is a disk and B is radially symmetric
we compute C}, explicitly and find that 6, = 1. This improves by large the known results
about the Dirichlet-Pauli operator [6, 11] (for details see Section 1.3.2).

These results may be reformulated in terms of the large magnetic field limit by a
simple scaling argument. Indeed, yy(b) = b*\x(1/b), where 1 (b) is the k-th eigenvalue
of [0+ (—=iV — bA)|%.

Our results can also be used to describe the spectrum of the magnetic Laplacian
with constant magnetic field By. For instance, when €2 is bounded, strictly convex with
a boundary of class €7 (v > 0), the k-th eigenvalue of (—ihV — A)? with Dirichlet
boundary conditions, denoted by u(h), satisfies, for some ¢, C' > 0 and h small enough,

Boh + ch™*e=2/" < 111 (h) < Boh + Ch™F+le=2a/h (1.1)

In particular, the first eigenvalues of the magnetic Laplacian are simple in the semi-
classical limit. This asymptotic simplicity was not known before and (1.1) is the most
accurate known estimate of the magnetic eigenvalues in the case of the constant mag-
netic field and Dirichlet boundary conditions (See [10, Section 4] and Section 1.3.2).

Our study presents a new approach that establishes several connections with various
aspects of analysis as Cauchy-Riemann operators, uniformisation, and, to some extent,
Toeplitz operators. We may hope that this work will cast a new light on the magnetic
Schrodinger operators.
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1.1. Setting and main results. Let 2 C R? be an open set. All along the paper
will satisfy the following assumption.

Assumption 1.1. Q is bounded and simply connected.

Consider a magnetic field B € C>°(Q, R). An associated vector potential A : Q — R?
is a function such that
B = 0,45 — 0,A,;.
We will use the following special choice of vector potential.
Definition 1.2. Let ¢ be the unique (smooth) solution of
A¢p =B, on (),
¢ =0, in 09).

The vector field A = (—0y¢, 019)T := V¢t is a vector potential associated with B.

(1.2)

In this paper, B will be positive (and thus ¢ subharmonic) so that

max¢ —=maxo = 0.
zeQ) ¢ €0 ¢

In particular, the minimum of ¢ will be negative and attained in ). Note also that the
exterior normal derivative of ¢, denoted by d,¢, is positive on 9 if 2 is €2 7, Hopf’s
Lemma, Section 6.4.2].

Notation 1. We denote (-,-) the C" (n > 1) scalar product (antilinear w.r.t. the left
argument), (-, )72y the L? scalar product on the set U, || - ||z the L? norm on U
and || - || ey the L norm on U. We use o and & for the standard Laudau symbols.

1.2. The Dirichlet-Pauli operator. This paper is devoted to the Dirichlet-Pauli op-
erator (), Dom(Z;,)) defined for all h > 0 on

Dom(22,) := H*(Q; C*) N Hy(Q;C?),

and whose action is given by the second order differential operator

—Al> - hB 0 < 0
2=l -ap= (P n ) = (T 4) s
Here p = —ihV, and
Ip—AP = (p—A)- (p-A) = —I*A-A-p-p-A+]|AP,

and o = (01,09, 03) are the Pauli matrices:

0 1 0 —i 10
7\ 1ro) 27 oo )0 7o -1 )

and 0-X = 01X1+09X2+03X3 for x = (X1, Xy, X3) and 0-Xx = 01X +09Xs for x = (X1, X3).
In terms of quadratic form, we have by partial integration, for all v € Dom(Z?,),

(W, Pr) 2y = llo - (P =AYl T2y = (P =A) P 72q) — (¥, 03hBY) 21y - (1.4)
Note that we have the following relation, for all x,y € R3,
(0-x)(c-y)=x-ylotio-(xXxYy), (1.5)
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where 1, is the identity matrix of C2. The operator &2, is selfadjoint and has compact
resolvent. This paper is mainly devoted to the investigation of the lower eigenvalues of

Py,

Notation 2. Let (Ag(h))ren+ (b > 0) denote the increasing sequence of eigenvalues of
the operator &7, each one being repeated according to its multiplicity. By the min-max
theorem,

HU -(p _A)wHi?(Q)

Ai(h) = inf sup 5 (1.6)
V. .CDom(Z). eV \{0}, 191720y
dimV =k,

Under the assumption that B > 0 on Q, the lowest eigenvalues of 2, are the eigenvalues
of Z,~. More precisely, our main result states that for any fixed £ € N* and h > 0 small
enough, A, (h) is the k-th eigenvalue of the Schrédinger operator .2 .

1.3. Results and relations with the existing literature.
1.3.1. Main theorem.

Notation 3. Let us denote by .2 (£2) and .7 (C) the sets of holomorphic functions on
2 and C. We consider the following (anisotropic) Segal-Bargmann space

B*(C) = {u € #(C) : Ng(u) < +oo},

where

1/2
Np(u) = (/2 }u (y1 + z’yg)}z e""esswmmqﬁ(y,y)dy) .
R
We also introduce a weighted Hardy space
H(Q) = {u € H#(Q) : Ny(u) < +00},

where

1/2
N(u) = ( [l +zy2>\28n¢dy) |

Here, Tpmin € Q and Hess, . ¢ € R?*? are defined in Theorem 1.3 below, n(s) is the

outward pointing unit normal to €, and Jd,¢(s) is the normal derivative of ¢ on 0 at
s € 002. We also define for P € s#%(Q), A C #*(Q),

disty (P, A) = inf {NH(P —Q), forall Q € A} ,
and for P € #*(C), A c #*(C),
distg(P, A) = inf {NB(P —Q), forall Q € A} .
The main results of this paper are gathered in the following theorem.

Theorem 1.3. We define

¢min = 1'I11£l (b .
e

Assume that Q is €2, satisfies Assumption 1.1, and
(a) By :=inf{B(x), x € Q} >0,
(b) the minimum of ¢ is attained at a unique point Ty,
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(c) the minimum is non-degenerate, i.e., the Hessian matriz Hess, . ¢ at Tmin (07 Zmin
if seen as a complex number) is positive definite.

Then, there exists 0y € (0, 1] such that for all fized k € N* |
(1) Me(h) < Cuup (k)R FHL2bmin/P(1 + o) 0(1)), with

diStH ((Z - Zmin)k_lv %2(9» ) i

where Py_y = span (1,...,2F72) c #*(C), P_1 = {0} and
Q) = {u € A*Q), u'" (i) =0, forn e {0,... k—1}}. (1.7)
(ii) Ag(h) = Cinp(k)h=FFLe2emn/h(1 4 o), o(1)), with
Cint (k) = Caup ()b .

A precise definition of 6y is given in Remark 1.10.
Assuming that S is the disk of radius 1 centered at 0, and that B is radial, we have

_ _ rad . B(O)kCI) .
Csup(k) - Cinf(k) - C (k) - 2k_2(kf . 1)' ) (90 - 1)7
1 1

Remark 1.4. Assume that B = By > 0 and that Q is strictly convex, then ¢ has
a unique and non-degenerate minimum (see [13, 14] and also [11, Proposition 7.1 and
below]). Thus, our assumptions are satisfied in this case.

Remark 1.5. The main properties of the space %) can be found in [4, Chapter
10]. Note that whenever 92 is supposed to be Dini continuous (in particular &1
boundaries, with a > 0, are allowed), the set W1°(Q) N #2() is dense in S22(2) (see
Lemma C.1). This assumption is in particular needed in the proof of Theorem 1.3(i)
(see Remark 3.4)'. The definition of Dini-continuous functions is recalled in the context
of the boundary behavior of conformal maps in [15, Section 3.3]. It is essentially an
integrability property of the derivative of a parametrization of 0).

Remark 1.6. The Cauchy formula [4, Theorem 10.4] and the Cauchy-Schwarz inequal-
ity ensure that

0 ()| € e N(u) / 9\
u Zmin - u 9
= 2my/mingg On @ " 90 |2 — Zmin| 2D

for n € N and u € #72(Q) (see also the proof of Lemma 3.5). This ensures that
the space J£2(Q) defined in (1.7) is a closed vector subspace of #2(2) and that
disty ((z — zmin) 71, HG2()) > 0 (see [3, Corollary 5.4]) since (2 — zmin)" ' & F2(Q).

Note also that we do not use here the stronger notion of Smirnov domain in which the set of
polynomials in the complex variable is dense in J#2(2) (see [4, Theorem 10.6]). Starlike domains and
domains with analytic boundary are Smirnov domains.
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Remark 1.7. In the case when B is radial on the unit disk = D(0,1), we get,
using Fourier series, that (2"),>¢ is an orthogonal basis for Nz and N3 which are up to
normalization factors, the Szegd polynomials [4, Theorem 10.8]. In particular, J#2(€2)
is Ny-orthogonal to 2¥~! so that

2
disty, (zk_l, j‘(jf(Q)) = Np(2F1)2 = / Ons = 27D .
0N

In addition, P;_» is Ng-orthogonal to z~! so that
2 2F=1(k —1)!
diStB (Zk_l, Pk_Q) = NB(Zk_1)2 = QWW )

and the radial case part of Theorem 1.3 follows.

Remark 1.8. The proof of the upper bound can easily be extended to the case where
(2 is not necessarily simply connected (see Remark 3.4).

Remark 1.9. Theorem 1.3 is concerned with the asymptotics of each eigenvalues A (h)
of the operator &, (k € N*) as h — 0. In particular, \;(h) tends to 0 exponentially.
Of course, this does not mean that all the eigenvalues go to 0 uniformly with respect to
k. For h > 0, consider for example

(u, Z"u)

vi(h) =
1(h) = veHl(QC\{O} v

||L2(Q) 7

the lowest eigenvalue of the operator .£,". For fixed h > 0, there exists k(h) € N* such
that 1 (h) = Agny(h). By (1.3), we have vy (h) = 2Byh and thus v (h) does not converge
to 0 with exponential speed. Actually, Theorem 1.3 ensures that

lim card{j € N*, \;(h) < v1(h)} = +o0, lim k(h) = +o00.
h—0 h—0

This accumulation of eigenvalues near 0 in the semiclassical is related to the fact that
the corresponding eigenfunctions are close to be functions in the SegalBargmann space
2*(C) which is of infinite dimension.

Remark 1.10. The constant 6y introduced in Theorem 1.3 does not depend on k € N*
and is equal to 1 in the radial case. We conjecture that the upper bounds in Theorem
1.3 (i) are optimal, that is #y = 1 in the general case.

More precisely, let Q be a €2 set satisfying Assumption 1.1. We introduce

Mg :={G : Q — D(0,1) biholomorphic s.t. ¢; < |G'(-)| < ¢z, for some ¢y, ¢y > 0} .

Remark that Mg is non-empty by the Riemann mapping theorem. Then, the constant
0y can be defined by

mingn [(G) (1) 0a8(G(9))
maxypo,1) | (G) (¥)[0ad(G~H(y))
for some G € Mg (see Lemma 5.6).2

90 = S (07 1] )

2 We can even choose

oo s 10000 /(G (0)10(G )
7 6N maxanion 16V (1) 0ad(G (1)
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Actually, we can even see from our analysis that there is a class of magnetic fields for
which 6, = 1. We introduce

B:={Be€%>~(D(0,1);R%),
3¢ € HY(D(0,1);R),A¢ = B on D(0,1),0%.6 =0 on dD(0,1)}.

rns

(1.8)

Here, 0, denotes the tangential derivative. Then, for any B € B and G € Mg, we get
0y =1 and
lim inf e~ 2¢min/ PRI\ (B) > Clp(k)

h—0

for the magnetic field B = |G/(2)|? BoG(2). This follows from the fact that the function
y €0D(0,1) = [(G™1) ()|0ad(G~ (1))
is constant. Here, ¢ is defined in (1.2).

Using the Riemann mapping theorem, we can deduce the following lower bound for
2 with Dini-continuous boundary. Its proof can be found in Section 5.4.

Corollary 1.11. Assume that Q is bounded, simply connected and that 0X) is Dini-
continuous. Assume also (a)—(c) of Theorem 1.3. Let k € N*. Then, there exist
¢k, Cr > 0 and hyg > 0 such that, for all h € (0, hy),

Ckh—k+1€2¢min/h < )\k(h') < Ckh—k'f'lezd)min/h .

Remark 1.12. Note also that our proof ensures that the constants Cy, ¢ can be chosen
so that C/cx does not depend on k € N*.

Our results can be used to describe the spectrum of the magnetic Laplacian with
constant magnetic field (see Remark 1.4).

Corollary 1.13. Assume that €2 is bounded, strictly convex and that OS2 is Dini-
continuous. Assume also that (a)—(c) of Theorem 1.8 hold and that B is constant.

Then, the k-th eigenvalue of (—ihV — A)? with Dirichlet boundary conditions, denoted
by i (h), satisfies, for some ¢,C > 0 and h small enough,

Bh + Ch—k—l-le?(i’min/h < Nk(h) < Bh + Ch—k'i‘lezd)min/h' (19)

In particular, the first eigenvalues of the magnetic Laplacian are simple in the semiclas-
sical limit.

1.3.2. Relations with the literature. Let us compare our result with the existing litera-
ture.

i. When B = 1, our results improve the bound obtained by Erdés for A (h) [6, Theo-
rem 1.1 & Proposition A.1] and also the bound by Helffer and Morame [10, Propo-
sitions 4.1 and 4.4]. Indeed, (1.9) gives us the optimal behavior of the remainder.
When B =1 and Q2 = D(0, 1), the asymptotic expansion of the next eigenvalues
is considered in [11, Theorem 5.1, ¢)]. Note that, in this case, ¢ = WT_l and that

Theorem 1.3 allows to recover [11, Theorem 5.1, ¢)] by considering radial magnetic
fields.
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In [11] (simply connected case) and [12] (general case), Helffer and Sundqvist have
proved, under assumption (a), that

lim A 10 Ay (h) = 200

Moreover, under the assumptions (a), (b) and (c) of Theorem 1.3, their theorem
[11, Theorem 4.2], implies the following upper bound for the first eigenvalue

A(h) < 40 det(Hessxmingb)%(l + o(1))2min/h

Note that Theorem 1.3 (i) provides a better upper bound even for k = 1.
They also establish the following lower bound by means of rough considerations:

Vh >0, M(h) > h2\DIr(Q)e2dmn/

where AP (Q) is the first eigenvalue of the corresponding magnetic Dirichlet Lapla-
cian. This estimate is itself an improvement of [5, Theorem 2.1].

Corollary 1.11 is an optimal improvement in terms of the order of magnitude of the

pre-factor of the exponential. It also improves the existing results by considering
the excited eigenvalues. Describing the behavior of the prefactor is not a purely
technical question. Indeed, it is directly related to the simplicity of the eigenvalues
and even governs the asymptotic behavior of the spectral gaps. This simplicity was
not known before, except in the case of constant magnetic field on a disk.
The problem of estimating the spectrum of the Dirichlet-Pauli operator is closely
connected to the spectral analysis of the Witten Laplacian (see for instance [11,
Remark 1.6] and the references therein). For example, in this context, the ground
state energy is

Jo |hVv|2e 20/ dy

min 1.10
veHi(Q) [, €72¢/Mv|2dx (1.10)
v#0
whereas, as known in the literature in the present paper, we will focus on
WOy, + 10, v|2e~20/"dy
min fQ‘ ( 1 ¢ 2)1]‘ € : (111)
veEHL () Jo €720/ v]2dx
v#0

(see also Lemma 2.4). Considering real-valued functions v in (1.11) reduces to
(1.10). In this sense, (1.11) gives rise to a “less elliptic” minimization problem.

1.4. About the intuition and strategy of the proof. In this paragraph we discuss
the main lines of our strategy. It is intended to reveal the intuition behind some of our
proofs. We will focus mostly on the ground-state energy, which is given by (1.6) as

A(h) = lo- (0=l

o 2 (1.12)
YEHE (UC2)\{0} 1Y 72(0)

It is easy to guess from (1.3) that the ground state energy has to have the form ¢ =
(u,0)T. This is consistent with the physical intuition that, for low energies, the spin of
the particle should be parallel to the magnetic field.
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The variational problem above can be re-written by means of a suitable transforma-
tion as

20.v|?e 2/ dy Fy(v, ¢)
Ai(h) = h* mi Jo [20- = h? min ——< 1.13
1) vé%z?m [ [o2e20/hdz vé%z?m Gn(v,0) (1.13)

where, 0z = (0 + i02)/2 and ¢ is the unique solution to A¢ = B in 2 with Dirichlet
boundary conditions (see Definition 1.2). This connection between the spectral analysis
of the Dirichlet-Pauli and Cauchy-Riemann operators is known in the literature (see
e.g. [6, 11, 2] and [17]), and we describe it in Section 2.

In order to study the problem in (1.13) it is helpful to consider the following heuristics
concerning Fy, (v, ¢).

Observation 1.14. A minimizer v, wants to be an analytic function in the interior of
Q2 but, due to the boundary conditions, has to have a different behaviour close to the
boundary. So, if we set Qs := {x € Q,dist(x,0Q) > §} for § > 0, we expect that vy,
behaves almost as an analytic function on U with €25 C U C 2. Moreover, this tendency
is enhanced in the semiclassical limit when the presence of the magnetic field becomes
stronger. Hence, we also expect that 6 — 0 as h — 0 in some way.

We comment below how we make Observation 1.14 more precise, for the moment let
us just mention that throughout this discussion we work with ¢ such that

6*/h -0 and §/h—o00 as h—0. (1.14)

As a consequence of Observation 1.14 we expect that

Fy(vp, @) ~ | |20z04|%e**/Mdz (1.15)
Ts
where Ty := Q\ Qs.

An essential ingredient in our method is the analysis of the minimization problem
associated with the RHS of (1.15). The main ideas go as follows: Assume first that €2
is the disk D(0,1). By writing the integrand |dsv,|2e~2/" in tubular coordinates (see
Item i. from the proof of Lemma 3.7 ) and Taylor expanding ¢ around any point at the
boundary 02 we get, for § satisfying (1.14),

2 o
120:0)%e7 2"z = (1 + o(h)) / / 2l (9, — i0,)v|*dsdr (1.16)
o Jo

Ts

=: (14 o(h))Jn(v) (1.17)

(see also the proof of Lemma 5.5), where 0,¢ = 0n,¢(s) is the normal derivative at the
boundary (see Notation 3).

Observe that if 0,¢ is a constant along the boundary, then it equals the flux ®. In
this case, as explained in Item iv. of the proof of Lemma 5.5, the problem of finding a
non-trivial solution of

inf J, ith = =0 1.18

vellﬁ(n) n(v)  wi v o= vs, v a0 ) ( )

can be reduced to a sum (labeled in the Fourier index) of one-dimensional problems
that we solve explicitly in Lemma A.1.
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For the particular case of v having only the non-negative Fourier modes on Qs (i.e.,
Vs = Y o Us.m€™®) we find that (see Lemma 5.5)

®/h

Jn(v) = m”“”i%ap(og_a)) = (14 0(h))2®/hl|v[I7> 0 p01—s) (1.19)

where the last equality is a trivial consequence of (1.14). Moreover, by Lemma A.1, the
latter inequality is saturated when vs = 050. Concerning, the assumption on v, recall
that analytic functions on the disk have only Fourier modes for m > 0.

Notice that if B is rotationally symmetric 0, ¢ is constant. If 0,,¢ is not a constant we
can give a suitable estimate using that mingg d,¢ > 0. We extend the previous analysis
to more general geometries by using the Riemann mapping theorem.

There is another important point to take into account, this time concerning G, (v, ¢).

Observation 1.15. Recall that ¢ < 0 has an absolute, non-degenerate, minimum at
Tmin- Hence, the weighted norm of vy, Gy (v, ¢), should have a tendency to concentrate
around x.,;,. This is made precise in Lemma 5.3 below. Moreover, observe that using
Laplace’s method, one formally gets that, as h — 0,

Gu(v, ) ~ hr|v(Zmin ) |2e ™2/ (det Hess,, . ¢) 72 . (1.20)

Observations 1.14 and 1.15 reveal the importance of the behaviour of a minimizer
around the boundary and close to xn,, respectively. In addition, this behaviour is
naturally captured through the norms Ny and Ng given in Definition 3, which, in turn,
provide a natural Hilbert space structure to select linear independent test functions
which are used to estimate the excited energies.

In order to show our result we give upper and lower bound to the variational problem
(1.13). This is done in Sections 3 and 5, respectively. Concerning the upper bound: In
view of the previous discussion it is natural to choose a trial function (at least for the
disk, see Remark 3.2) v = wy where w is an analytic function in  and x is such that
X lo,= 1 and decays smoothly to zero towards 02. We pick x [, as an optimizer of
the problem (1.18). For Ax(h), we choose w to be a polynomial of degree (k —1). In
particular, for the ground-state energy, w is constant and in view of (1.22) and (1.20)
we readily see how the claimed upper bound (at least for the disk with radial magnetic
field) is obtained.

As for the lower bound, as a preliminary step, we discuss in Section 4 some ellipticity
properties related to the magnetic Cauchy-Riemann operators. Our main result there
is Theorem 4.6. It provides elliptic estimates for the magnetic Cauchy-Riemann oper-
ators on the orthogonal of the kernel which consists, up to an exponential weight, in
holomorphic functions. The findings of Section 4 are crucial to prove Proposition 5.4,
which gives estimates on the behaviour described in Observation 1.14. Indeed, Propo-
sition 5.4, together with the upper bound, roughly states that the non-analytic part of
v, on any open set contained in €2 is, in the semiclassical limit, exponentially small in a
sufficiently strong norm. At least for the disk with radial magnetic field, we can argue
on how to get the lower bound if we assume v, to be analytic on an open set U with
D(0,1—46) Cc U C D(0,1). Notice that (1.22) holds. Moreover, by Cauchy’s Theorem
we have 27|vp(Tmin)|> = 27[0n(0)* < (1 4 o(h))[[vnll3p1_s)- In this way we see that
the lower bound appears by combining (1.22) and (1.20).
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Let us finally remark that actually, since the function v in (1.20) depends on h,
Laplace’s method cannot be performed so easily. Instead, after the change of scale

ZL—Tmin

y = S, one has formally the Bargmann norm appearing:

(v, ) ~ he~20mn/h / [0(Trin + R 2y) [PeHeS W) dy (1.21)

Ultimately, in the case of the disk with radial magnetic field, Problem 1.13 reduces
formally to

s Nou(v) i
>\ h > 2¢m1n/h f 2 H 122
1( ) ~ ¢ UG%(Q) NB(U(zmin + h1/2)) 7 ( )
v#0

which can be computed easily due to the orthogonality of the polynomials (2"),>o in
the Hilbert spaces #2(Q2) and %?%(C) (see Remark 1.7). Of course, special attention
has to be paid on the domains of integration and the sets where the holomorphic tests
functions live. In the non-radial case however, we strongly use the multi-scale structure
of (1.22) to get the result of Theorem 1.3 (see Section 5.3). Note that the constant
0y of Theorem 1.3 which appears in the computation of (1.22) somehow measures a
symmetry breaking rate (see Remark 1.10 and Lemma 5.6).

2. CHANGE OF GAUGE

The following result allows to remove the magnetic field up to sandwiching the Dirac
operator with a suitable matrix.

Proposition 2.1. We have
¢70/hg . pem/h = 5. (p—A), (2.1)
as operators acting on H(), C?) functions.

The proof follows from the next two lemmas and Definition 1.2 (see also [17, Theorem
7.3]).

Lemma 2.2. Let f : C — C be an entire function and A, B be two square matrices
such that AB = —BA. Then,

Af(B) = f(~B)A.

Lemma 2.3 (Change of gauge for the Dirac operator). Let ® : Q@ — R be a regular
function. We have

e (0 -p)e”® =g (p—hVOH)
as operators acting on H'(Q, C?) functions and where V®* is defined in Definition 1.2.

Proof. By Lemma 2.2, we have for k£ = 1,2 that

603(1) o3P )

O = o€
Thus, by the Leibniz rule,

™ (0 -p)e™® = (0™ - p)e™® =0 - (p —iho3 VD) .
[t remains to notice that —iocos = o+ := (—09,01) so that

e®(0-p)e® =0 -p+hot - VO =0-p—ho Vo,
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0
We let 0, —id 0, + id
_ Yz — 10y ._ Yz T 10y
0, = 5 , O : 5
We obtain then the following result.
Lemma 2.4. Let k € N* be such that \p(h) < 2Boh. Then, we have
4 —2¢/h hag 2d
Ae(h) = inf sup Joc . _|2 . /h“| ‘ (2.2)
V CHy(C), wev {0}, Jo [v]2e2¢/hdx
dimV =k
We recall that \i(h) is defined in (1.6).
Proof. By (1.3) and (1.6), we get since .%," > 2Byh,
2
o-(p—4) ( 0 )
Ai(h) = inf sup 5 LA@)
VCHN(QC), yev \ {0}, [l 720)
dimV = k.
Let u € H(Q;C) and h > 0. Letting u = e~?"v, we have, by Proposition 2.1,
2 2
u —_ || o300/ v _ —2¢/h 2
O’-(p—A)(O) =|le U-p(o) —4/6 |hozv|“dx,
12(Q) 12(Q) @
and
Jully = [ oe .
U

3. UPPER BOUNDS
This section is devoted to the proof of the following upper bounds.

Proposition 3.1. Assume that Q2 is €% and satisfies Assumption 1.1. For all k € N*,
we have

A(h) < Cap (k)R /M(1 4+ o(1)) (3.1)
where \g(h) and Ceyp(k) are defined in (1.6) and in Theorem 1.3 respectively.

3.1. Choice of test functions. Let £ € N* and m € N. By Formula (2.2), we look
for a k-dimensional subspace V}, of H}(Q; C) such that

4h? fQ |8§U|2€_2¢/hdx
iy . < Cq (k;)h—k—i-l(l + 0(1)) .
eV \0) o |02 20— bmn) /Ay S TP

Using the min-max principle, this would give (3.1). Formula (2.2) suggests to take
functions of the form

where
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i. w is holomorphic on a neighborhood on (2,
ii. the function x : 2 — [0, 1] is a Lipschitzian function satisfying the Dirichlet bound-
ary condition and being 1 away from a fixed neighborhood of the boundary.

In particular, there exists €y € (0, d(Zmin, 02)) such that
x(z) =1, for all z € Q such that d(z,0Q) > £y, (3.2)
where d is the usual Euclidean distance.
Remark 3.2. The most naive test functions set could be the following
Vi, = span(xn(2), ..., xa(2) (2 = 2zmim)" 1),
where (X1 )ne(oq] satisfy (3.2). With this choice, one would get
4n* [ |ozvPe 2 dy

sup Y7 < Csu (k?)h‘k—l—l(l + 0(1))7

where
NH ((Z - Zmin)k_l)
distg (Zk_l, Pk_g)

Coup(k) =2 ( ) > Cup(k) .

Note however that in the radial case é;;)(k) = Csup(k). We will rather use functions
compatible with the Hardy space structure to get the bound of Proposition 3.1, as
explained below.

Notation 4. Let us denote by (P,)nen the Np-orthogonal family such that P,(Z) =
VAES Z;:& bnjZ? obtained after a Gram-Schmidt process on (1,Z,...,2Z",...). Since
P, is Ng-orthogonal to P,,_1, we have

dists (27, Po_1) = dists (Po, Po_1) = inf{Ng(Py — Q),Q € Pp_1}
= inf{\/Ns(P,)? + Ns(Q)2,Q € P,_1} = N3(P,), forn € N.
Let Q,, € 7£%(Q) be the unique function such that
disty ((2 = 2min)", 747(Q)) = Npu((2 = 2zin)" = Qu(2))

for n € {0,...,k—1}, (see Remark 1.6). We recall that Ng, Ny, P,_1, and 542(2) are
defined in Section 1.3.1.

Lemma 3.3. For alln € {0,...,k—1}, there exists a sequence (Qnm)men C J62(Q) N
Wheo(Q) that converges to @Q,, in F*(S2).

(3.3)

Proof. We can write Qn(2) = (2 — zmin)* "1 Qn(2). Here, Q,, is an holomorphic function
on Q. Since z > (2 — zmin) ' 7" € L2(IQ), we get Q,, € #*(Q2). By Lemma C.1, there
exists a sequence (Qnm)men C H2(Q2) N WH>(Q) converging to @, in S22(Q2). We
have

No(z = 2min ™ @ = @) |2 = zuan) | M@= G,

so that the sequence (Qnm)men = ((2 — zmin)k_lémm)meN C H2(Q2) converges to @,
in J2(Q). Since z + (2 — zm) 1 € L®(0Q), Qnm € H2(Q). O
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Let us now define the k-dimensional vector space Vj, i sup by
Viksup = span(Wop, - ., We—1,4) , (3.4)

Wy p(2) = hzp, (%) - h_HTanm(z), forme{0,....,k—1}.

At the end of the proof, m will be sent to +o0o. Note that we will not need the
uniformity of the semiclassical estimates with respect to m. That is why the parameter
m does not appear in our notations. Note that w,, , being a non trivial holomorphic
function, does not vanish identically at the boundary. To fulfill the Dirichlet condition,
we have to add a cutoff function (see below).

Remark 3.4. Consider
~ _1 Z — Zmin _14n
Wnn(2) =h"2 P, (W) —h7 7 Qu(2).

Since @, belongs to J%(Q) ¢ H'(Q;C), the functions w, p, :  — W, (21 + iz2) and
XWn 1, do not belong necessarily to H'(Q; C) and H;(2; C) respectively. That is why we
introduced @, . Note that to get Hj(Q; C) test functions, it suffices to impose that x
is compactly supported in 2. With this strategy, our proof can be adapted to the case
where €2 is non necessarily simply connected.

3.2. Estimate of the L?-norm. The aim of this section is to prove the following
estimate.

Lemma 3.5. Let h € (0,1], vy, = XZ?;& c;w;ip with co, ... c—1 € C, x satisfying (3.2)
and (w;p)jefo,.k—1} defined in (3.4). We have

k-1

[l 20t — (14 0(1) 3 e Na( P (35
where Ng is defined in Notation 3 and o(1) does not depend on ¢ = (co, ..., cx—1) and
X-

Proof. Let o € (%,%), n,n’ €{0,...,k—1}.

In the proof, three types of terms will appear after a change of scale around x,;, :
(Prs Por)gs (P, Qurim) g and (Qp o, Qurm) 3 where (-, -) 5 is the scalar product associated
with Np. Since the polynomials (P,),en are Ng-orthogonal, we have (P,, P,),; = 0 if
n # n' and we will prove that (Qy ., Qn.m) s = O(h) and by Cauchy-Schwarz inequality
(Py, Qu m) g = O(h'/?). More precisely, we have:

i. Let us estimate the weighted scalar products related to P, for the weighted L*-norm.
Using the Taylor expansion of ¢ at x;,, we get, for all © € D(zyin, h*),

(b(x) ; ¢min B %HessxminQS(z — Tmin, T — xmin) + ﬁ(hi’)a—l) : (36)

By using the change of coordinates
T — Tmin

h1/2 Y (37)

Ay —
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we find

D(xmimha)

B1/2

T + ’i!L’Q — Zmin
h1/2

— (o) [

h='P,P, (
D(Z‘mimho‘)

1
) e n Hesszmin A(T—Tmin,T—Tmin) dz

— @+ o) [ PP (y) e et g
D(0,ho—1/2)

= (1 + ﬁ(h’sa_1>> ((Pn7 PTL,>B - / PnPn’ (y) e_Hesszmi“d)(y’y)dy)
C\D(O,ha71/2)
= (1+ (W) (Pa, Pur)s + O (1),
(3.8)

where the last equality follows from Assumption (c¢) in Theorem 1.3.
We recall Assumptions (b) and (c¢) of Theorem 1.3. Then, by the Taylor expansion
of ¢ at x,;,, we deduce that

Ao
i > . min ; 2¢ o |
Q\D(:iﬂi,, he) ¢ 2 Guin + ——h(1+ O(h7)), (3.9)

where Ay, > 0 is the lowest eigenvalue of Hess, . ¢. Since P, is of degree n, there
exists C' > 0 such that

sup
zef)

_1 X + i$2 — Zmin
h™ 2P, < RYE )

Using this with (3.9), we get

/ WP, Py (zl i Zmin) R
O\D(2min,h®) hi/2

n+1 _n’+1

S Ch™"% p="2 ¢ mn 1 1H00N) — g (p>) | (3.10)

From (3.8) and (3.10), we find

. T1 + 19 — Zmin —2(¢(x)—dmin)/h
/Qh XPnPn’< hl/2 )e dz

= (1+ OR** YY) P, Py)g+ O(h™). (3.11)

ii. Let us now deal with the weighted scalar products related to the @, ,,. Let u €
H*(Q) and zg € D(2min, h*). By the Cauchy formula (see [4, Theorem 10.4]) and
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the Cauchy-Schwarz inequality,

(k) —

4 (z0)] = o
k! |dz| 12

< N B L B 3.12

2my/mingg On ¢ u(w) </89 |z — ZO|2(k+1)) (3.12)

el |dZ‘ 1/2
27T\/ming)g 0n¢ H(U) (/{)Q (|Z - Zmin| - ha)2(k+1)) H(U)

With the Taylor formula for « = @), ,,, at zmin, this gives

|Qn,m(20)| < C|ZO - Zmin|kNH(Qn,m) .
Using (3.6), this implies

/ ‘h Qn m(xl +x )‘ 6_2(¢(x)_¢111111)/hdx
D(zmin,h™)

C’h (14n) / |($1 —i—ixz) _ me‘2k6—2(¢>(r)—¢mm)/hdx (3-13)
D(Zmin,h®)

< ChF"Ng(2F)> < Ch.
Using (3.9) and Q,,,, € WH(Q) C L*(Q), we get

/ |h_1+7nXQn m(l'l + ZIL’2)| 6_2(¢(x)_¢min)/hdz
Q\D(wmln )

(3.14)
—(n 2 2a—1 a 0o
< Ch™ Q[ oy € OO = G(h).
With (3.13) and (3.14), we deduce
/ \h__xQnm 1 + 1) 2o 2(0(@)=0min) [hq g = O(h). (3.15)

With the Cauchy-Schwarz inequality, and (3.15),

/ = Qo1 + 0 )b Q@1 1 i) e 2@ —0mn) /ey — G(R).  (3.16)
Q

iii. Let us now consider the scalar products involving the P, and the (), ,,. Using
(3.11), (3.16), and the Cauchy-Schwarz inequality, we get
" (:(;‘1 -+ ix2)e_z((z)(w)_d)min)/hdx — ﬁ(h1/2) .

2,1 1+ T2 — Zmin
/QX h 2P, ( RVE )
(3.17)

The conclusion follows by expanding the square in the left-hand-side of (3.5) and by
using (3.11), (3.16), (3.17) . O

Remark 3.6. From Lemma 3.5, we deduce that the vectors {xw;,0 < j < k—1} are
linearly independent for h small enough.
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3.3. Estimate of the energy. The aim of this section is to bound from above the
energy on an appropriate subspace.

Lemma 3.7. There exists a family of functions (Xn)ne(o,) which satisfy (3.2) and such
that, for all wy, = Z?;S cjWip € Vigsup With co, ...cx—1 € C,

4/h26_2¢/h|8;(xhwh)\2dx
Q

20 F| 1P Ny ((z — Zmin)" ! — Qk—l,m) + o(1)R*||c||% .
Here, o(1) does not depend on cy, .. .cp_1.

Proof. Let x be any function satisfying (3.2). We have

" / B2e2/h| Qo2 = h? / lon 2620/ Ty 2 = b / lon|2e=20/4 Vy 2de
Q Q

suppVx

where we have used that |Vy|? = 4]|0;x|? since x is real and d;wy, = 0.

The proof is now divided into three steps. First, we introduce tubular coordinates
near the boundary, then we make an explicit choice of y, and finally, we control the
remainders.

i. We only need to define x in a neighborhood of I' = 0€). To do this, we use the
tubular coordinates given by the map

- R/(ITZ) x (0,t0) = ©
T (5,1) = 2(s) — tn(s)

for ty small enough, v being a parametrization of I" with |y/(s)|
n(s) the unit outward pointing normal at point y(s) (see e.g. [8,

§F
0~V (@) = (s(z), t(z)), for all z € (R/ (IT1Z) x (0, ty) )
the inverse map to 1. We let, for all z € €2,
s(x),d(x, 02 if d(z,00) <«
nwz{”()( ) if d(z,00)

1 for all s, and
]). We let

1 otherwise.

The parameter ¢ > 0 and the function p are to be determined. We assume that
p(s,0) = 0 and p(s,t) = 1 when t > £. We will choose & = o(h2).

Since the metric induced by the change of variable is the Euclidean metric modulo
O(e), we get

h2/ , lwp|?e” 2| Vx| 2dx
suppVx

<+ 0@ [ [ anfe e 0m o + o.pPisit
0

where w, = wy on and b =do 7. Thus, by using the Taylor expansion of b at
t =0, we get uniformly in s € T,

O(s,t) = td,d(s,0) + Ot?) = —tdud(s,0) + O(e?),
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and

h2/ , lwp|?e” 2| Vx| 2dx
suppVx

<(1+ﬁ(e+ez/h))h2// || 2?00 (19,0 4 |Dsp|*)dsdt .
rJo

Since Q. € WH(Q), we have 0,Q,,.mon € L(I'x (0,¢)) and by using the Taylor
expansion of w near t = 0, we get

k—1 t
Wn(s,t) = | D cjwin | onls,t) = dn(s,0) + / Dytiy(s,t)dt!
=0 0

= wn(s,0) + O(e)lenlle

where ) .
cn=(h"2co,...,h 2¢,1), (3.18)
and |||, is the canonical Euclidian norm on C*. Then,

h2/ , lwp|?e” 2| Vx| 2dx
suppVx

< (1+6"(5+52/h))h2/|111h(s,0)|2/ 20/ (|9, % + |0, p|?)dsdt
I

0

+ ChPe el / / 2Pnd)/ (|0, p]% + |0,p|?)dsdt . (3.19)
rJo

ii. For the right hand side of (3.19) to be small, we choose p to minimize 0;p far from
the boundary. The optimization of

€
pH/ 2O 0ypl* dt
0

gives us the weight 0,¢. More precisely, Lemma A.1 with o = 20,¢/h > 0 suggests
to consider the trial state defined, for ¢t < e, by

1— 6—2t8r.¢(s)/h
p(sa t) = 1 — 6_256n¢(5)/h )

and by 1 otherwise. By Lemma A.1, we get

20,6/h

€
€ )
/0 [0l 1 — e=20a9/h

and

€ €
/ e2tond/h |08p|2 dt = |8Sa|2/ 2tond/h }&xpa,a}Q dt < Ch™2 (a_3 + 6_%820&_1)
0 0

<C (h + 6_828“¢/h52h_1) .

We can choose € = h|logh| so that

// |wh(s,0)\2e2tan¢<8>/h\atp|2dsdt:(1+o(1))h—1/2an¢|wh(s,0)\2ds,
I"JoO T
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and (3.19) becomes

h2/ lon 2620/ Wy 2dz < (14 o(1))h (/ 200 8l1n (s, 0)|2ds +Cg||ch||§2) .
suppVx r

(3.20)
iii. Let us consider, for all h > 0,
) 1/2
k—1 _
Ny:cée CF /8n¢ Zthl%’LE%h(S,O) ds ,
r 0

where we recall that

-1 Z = Zmin _Jt1
wia) = hoE Py (25 ) < Q).

The application C* x [0,1] 3 (¢, h) — Ny(c) is well defined and continuous (since
the degree of P; is j). Note, in particular, that

E—1 2 i
N(](C) = /8n¢ ch[(z - Zmin)j - Qj,m(z>] ds
r e
Notice that
Np(cp)? = /an¢|wh(s,0)\2ds = N3 (wy), (3.21)
T

where ¢, is defined in (3.18). Since Ny is a norm, and recalling Remark 3.6, we see
that the application N, is a norm when h € (0, hg]. Np is also a norm (as we can
see by using the Hardy norm and Q;,, € 2(12)).

Let us define

Co = min  Np(c) > 0.
h € [0, o]
lellez=1
so that, for all h € [0, ho], and all ¢ € C¥,
Collell < Nul©). (322)

Using (3.20), (3.21), and replacing ¢ by ¢, in (3.22), we conclude that

h2/ lwn)2e 2"V x|?de < 2(1 + o(1)) ANy (wy)? .
suppVx

Let us now estimate Ny (wy,). From the triangle inequality, we get
k—2
Nyg(wp) < [ex—1|Ny(wi—rn) + Y le;| Ny(wjn) -
=0
Then, from degree considerations and the triangle inequality, we get, for 1 < j < k —2,

1—k

Nu(win) = 0 (h'3") |
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and
k
No(wi1) = (14 0(1)AE N3y (2 = 2in) ™ = Qrcim) -
Then,
2
Nyg(wp)? < Jex—1*h™" Ny ((Z — Zmin)" T — Qk—l,m) +o(h™")[lellZ -
This ends the proof. U

3.4. Proof of Proposition 3.1. Let us define Vh,k@up = {xnwn, Wy € Vi sup}, Where
Viksup 1s defined in (3.4) and xp, in Lemma 3.7. By Lemmas 3.5 and 3.7, we get

2
4 fQ h2€_2¢/h‘(‘lz(wh>(h)‘2dx 1—k |Ck—1|2N’H ((Z - Zmin)k_l - Qk—l,m)
2,—2 in)/h S 2h k—1
Jo lwnxn e~ 2= dmm)/hd > j=o l¢i[* N5 (P;)?

+o(h'™),

for all wy, = Z?;& cjwjn € Viksup wWith ¢ € CF\ {0}. From the min-max principle?, it
follows

1—k k=1 2 |Ck—1|2 2bmin/h 1—k
Ai(h) < 2R "Ny ((z — Zmin) Qk—l,m) 063180} Z;:é ‘CjPNB(F)j)ze +o(h ")
Since ,
sup ) o1 = Np(Pe1) 2,
ceC\{0} D 5o lci[PNB(P))?
we deduce

Na ((2 = 2min)* ™" = Qi—1,m) ’
lim sup hk—1€—2¢>min/h>\k(h> <2 ' min “1m .
h=0 distg (2%, Pr_s)

Taking the limit m — +o0, it follows

lim sup hF~te=20min/h ) (h) < Coup (k) -
h—0

3.5. Computation of Cy,,(k) in the radial case. Let & € N*. Let us assume that
Q2 is the disk of radius R centered at 0, and that B is radial. In this case z,;, = 0, On¢
is constant and Hess, . ¢ = B(0)Id/2.

Thus,

disty; ((z — 2min)* 7, SE2(Q)) = disty (2F71, S62(Q)) = Ny (2871 = 200,60 R*

and we notice that P,(z) = 2" (see Notation 4) so that

diStB <Zk_l, Pk_2> = NB(Pk_1)2

+o0
_ 2 |y|2(k—1) 6—Hessxmin¢(y,y)dy _ 271'/ p2k—16—B(0)p2/2dp
R 0

_2m2k /+°° 21— g,y 2m2F 10 (k) 2m2FY(k — 1)
“BOF S " P=7BOF T BOF

3By Remark 3.6, dim Vh,k,sup = k for h small enough.
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We get
B(o)kq)R2k—2
2F2() — 1)1

Note that this formula extends the upper bound obtained in [11] for constant magnetic
fields on the disc.

Coup(k) =

4. ON THE MAGNETIC CAUCHY-RIEMANN OPERATORS

In this section, U will denote an open bounded subset of R2. It will be either  itself,
or a smaller open set.

As we already observed (see (1.3)), the Dirichlet-Pauli operator, considered only as
a differential operator, is the square of the magnetic Dirac operator o - (p —A). It can
be written as

0 dy A)
og-(p—A) = ’ 4.1
(p ) (d;;A 0 ( )
where dj, 4 and d}i , are the magnetic Cauchy-Riemann operators:
d}%A - —22h02 - Al + ZAQ 5 d;;,A - —22}185 - Al - ZA2 .
Let (dj,.a,Dom(dp.4)) be the operator on L?(U,C) acting as dj, 4 on Dom(dj 4) =
H}(U;C).

4.1. Properties of d; and dj,. In this part, we study the operators dj 4 and dj, 4 in
the non-magnetic case B = 0 with A~ = 1 in order to get describe their properties in this
simplified setting in which —A = dj 4d; 0. Various aspects of this section can be related
to the spectral analysis of the “zig-zag” operator (see [16]). The next section will be
related to the magnetic case that is needed in our study.

Lemma 4.1. Assume that U is of class €*. The following properties hold.

(a) The operator (dy o, Dom(dy)) is closed with closed range.
(b) The domain of di , is given by

Dom(d; ) = {u € L*(U;C),0:u € L*(U; C)}
={u e L*(U;C),0:u =0} + H'(U;C),

and di o acts as dfy. In particular,
ker(d} ;) = {u € L*(U;C),8u = 0}.
(c) We have
ker(d; o) N Dom(d} ,) = {di,ow,w € Hy(U;C) N H*(U;C)} ¢ H'(U;C),

and there ezists C' > 0 such that, for all v € ker(d; ;)= N Dom(dj ),

*
dl’O/UH 2

Iollm oy < || iav]]
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Proof. Let u € Dom(dy ) = Hg(U;C). One easily checks that

Hdl,ouHiZ(U) =[IVull72 -

Hence, the Poincaré inequality ensures that (dy o, Dom(d;p)) is a closed operator with
closed range. Then, by definition of the domain of the adjoint,

Dom(d;,) C {u € L*(U;C),0:u € L*(U;C)} .
Conversely, if v € {u € L*(U;C),d:u € L*(U;C)}, we have, for all w € €5°(U),
(v, =2i0.w) 121y = (—210:0, W) 2y -

By density, this equality can be extended to w € H}(U;C). This shows, by definition,
that v € Dom(d; o) and dj yv = —2i0zv.
Moreover, we have

ker(d; o) N Dom(d} ;) = ran(dy,g) N Dom(d; )
= {diow,w € Hy(U;C) and — 2i0-(d;ow) = —Aw € L*(U;C)}
= {d1ow,w € Hy(U;C)N H*(U;C)} c H'(U;C),

where the last equality follows from the elliptic regularity of the Laplacian. In particular,
we get, for all w € Hy(U;C) N H*(U;C),

Hw||H2(U) < CHAme(U) :

Now, take v € ker(dj ;)= N Dom(d; ). We can write v = dyow with w € H*(U;C) N
H(U;C). We have dj yv = —Aw so that

&
dl,O'UH )

ol < Cldiot]

U

4.2. Properties of d, 4 and dj, 4. Let us introduce some notations related with the
Riemann mapping theorem.

In the following, we gather some standards properties related with dj 4 and dj, ,. We
will use the following lemma.

Lemma 4.2. For all u € 65°(U;C), we have

sy =N =)l + b [ Blufda

, :
‘ d L) :H(p —A)uHLZ(U) — h/UB|u|2dx

These formulas can be extended to uw € Hi(U;C).

X
h,AY

Proof. Tt follows from integrations by parts and the fact that dy adj; , = [P —Al> - hB
and dj; ydpa = |p—AJ]> + hB. The extension to u € Hy(U;C) follows by density.

Remark 4.3. From Lemma 4.2, we deduce?, that for all u € H} (U;C),

[(p—A)ulfp > / hBJuda

4Tt may also be found in [8, Lemma 1.4.1].
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Proposition 4.4. Assume that U is of class €>.

(a) The operator (dp.a, Dom(dy 4)) is closed with closed range.
(b) The adjoint (d;, 4, Dom(dy, 4)) acts as dj; 4 on

Dom(d}, 4) = {u € L*(U): 0zu € L*(U)} = ker(dj, 4) + HY(U;C)
and
ker(dj, 4) = {e=¢/hy v e LAU),0:v =0} .
(¢) We have ker(dj 4)* N Dom(d;, 4) = {dnaw,w € Hy(U;C) N H*(U;C)}.

Notation 5. The notation dj 4 for d, 4 emphasizes the dependence on U. We denote
by ITj 4,0 (or simply II;, 4 if there is no ambiguity) the orthogonal projection on ker(dj, ,).

Proof. (a) By Lemma 4.2, the graph norm of dj, 4 and the usual H'-norm are equivalent.
Thus, the graph of dj, 4 is a closed subspace of L*(U) x L*(U). From Lemma 4.2
and Remark 4.3, we get, for all u € HJ(U),

HdthuH%Z(U) = h/ QB|U|2dSL’
U

With Assumption (a) of Theorem 1.3 and the fact that the operator is closed, the
range is closed.
(b) We have

Dom(d;A) = Dom(dio) ,
and dj, 4 acts as d;; ,. By Proposition 2.1 and Lemma 4.1, we deduce
ker(dj, 4) = {e=¢/" v € LA(U),d5v = 0} .
(¢) As in the proof of Lemma 4.1, we get
ker(d;A)l N Dom(d;, 4) = ran(d, 4) N Dom(dj, 4)
= {dpaw,w € H)(U;C) and dj, qdy aw = (|p — A]* + hB)w € L*(U;C)}
= {dpaw,w € Hy(U;C) and — Aw € L*(U;C)} .
= {dp aw,w € Hy(U;C)N H*(U;C)}.
O

Definition 4.5. We define the self-adjoint operators (.Z;*, Dom(.%")) as the operators
acting as

Ly =dpad; 4 =P ~AP?-hB, %= dp 4dna=|p —AP? +hB, (4.2)
on the respective domains
Dom(.%,") = {u € Dom(d}, 4) ,d}, su € Dom(dy 4)},
Dom(%,") = {u € Dom(dy 4) , dp.au € Dom(d}, 4)}
= H}(U;C)N H*(U;C).
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4.3. Semiclassical elliptic estimates for the magnetic Cauchy-Riemann oper-
ator.

Notation 6. By the Riemann mapping theorem, and since 02 is assumed to be 6?2,
it is Dini-continuous (see [15, Theorem 2.1, and Section 3.3]) and we can consider a
biholomorphic function F' between D(0,1) and © such that F'(0D(0,1)) = 09Q. We
write x = F'(y). We notice that

Oy, + 10y, = F'(y)(0p, +10,) ,

and
da = [F'(y)[*dy .
By [15, Theorem 3.5], this biholomorphism can be continuously extended to D(0, 1),

and there exist ¢, co > 0 such that, for all y € D(0, 1),
a <|[F'(y)|<c.

For ¢ € (0,1), we also let
Qs = F(D(0,1-19)).
Note that €25 is actually an analytic manifold.

The following theorem is a crucial ingredient in the proof of the lower bound of A\ (h).
It is intimately related to the spectral supersymmetry of Dirac operators [17, Theorem
5.5 and Corollary 5.6].

Theorem 4.6. There exist dg, hg > 0 and ¢ > 0 such that, for all 6 € [0,0), for all
h € (0,hg), and for all u € Dom(d;, 4 o,) Nker(d}, 4 0,)"

|y a.0,ullL205) = vV 2hBollullL2(y) »

45, a05tllz200) > e (I9ll g,y +ltlogony))
where we used Notation 6.

Theorem 4.6 follows from the following two lemmas.

Lemma 4.7. For all u € Dom(d;, 4 o,) Nker(dj, 4 ,)", we have

|y 40,02y = v 2hBollul| L2y -

Proof. For notational simplicity, we let U = €5 and we write dj 4 for dj apy. Let
u € Dom(d; ,) Nker(d; 4)*. By Proposition 4.4, there exists w € Hy(U; C) N H*(U;C)
such that u = dj, qw and d}, yu = £, w. The spectrum of £ is a subset of [2h.By, +00)
(see Remark 4.3). Thus, we get

th—l—wHLZ(U) 2 2hB0||wHL2(U) .
By integration by parts and the Cauchy-Schwarz inequality, we have
2
2hBOHdh,AwHL2(U) < 20 By (w, L w) 1y < 2hBOy|w||L2(U)th+w}}L2(U)

< therHiz(U) :
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This ensures that
V2B dn | oy <[y = i ()|

and the conclusion follows. O

L2(U)

Lemma 4.8. There exist 6g,hg > 0 and ¢ > 0 such that, for all 6 € [0,0), for all
h € (0, ho), and for all u € Dom(d;, 4 o,) Nker(d}, 4 o,)", we have

dh 4 0stllz2(05) = ch? [Vl g2y + ch? [l p2oq,) -

Proof. For notational simplicity, we let U = ()5 and we write dj, 4 for dp, 4.v.
With the same notations as in the proof of Lemma 4.7 (u = dj, aw), we have

dy qu=dj qdpaw =Lfw,  we Hy(U)NH*(U).

i. From Lemma 4.2,

Hdh,AwHiz(U) = H(p —A)wHiQ(U) + h/UB|w\2dx

= <d2,Au7w>L2(U) < d;,Au LQ(U)Hw||L2(U) :
Using Assumption (a), we get
2 2 *
BOh||wHL2(U) < h/UB\w| dz < ‘ dh,Au‘ L2(U)Hw||L2(U) )
and
ol < By |dhau] ., (4.3)
Since

h/UB|w\2de <[lto=Awll7aqe

we deduce that
1/2
By 02w 2y <[ =A)w]] )

and

[0 =yl <]|d5 401

* —1/2; —
L2(U)||wHL2(U) <Hdh’f‘“‘ By *h 1/2H(p _A>wHL2(U> '

L2(U)
(4.4)
so that using (4.3) and (4.4), there exists C' > 0 such that
1 x
h2 H(P _A)wHLz(U) + h||w||L2(U) < C’ h,Au‘ 2w
Since A is bounded,
Pl < O]+ 0Py < 7], -

Thus,

RNVl g2y + Al ey < Cldian] (45)
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ii. Let us now deal with the derivatives of order two. From the explicit expression of
LFw, we get

—h*Aw = dj yu—2ihA-Vw — |APw + hBuw.
Taking the L?>-norm and using (4.5), we get

W28y < |diau| 1204wl [ APl s, +IABul 5z

<O(1+ h‘l)‘

%
.
h,A L2(U)

Using a standard ellipticity result for the Dirichlet Laplacian, we find

B0y + W21Vl oy + Bllwll oy < C

d;Au‘ (4.6)

L2(U)

The uniformity of the constant with respect to § € (0,dy) can be checked in the
classical proof of elliptic regularity. Alternatively, using Riemann mapping theorem,
we send (2 on the unit disk. Then, we perform a change of scale for each § to send
D(0,1 —¢) onto D(0,1) and use a standard ellipticity result on D(0,1). Here, §
appears as a regular parameter in the coefficients of the elliptic operator. Note that
dpa = Ly —iLy where L; = —ih0; — A;. Using (4.6), we deduce that

Hth,AwHLQ(U) < Chllwll oy + Cllwll oy + ClVwll 2y < Ch72

%k
h,Au‘

Y

L2(U)

and, since u = dj aw,

WVl oy < €|

d;AuHLQ(U) . (4.7)

iii. A classical trace result combined with (4.7) and Lemma 4.7 gives
||u||L2(8U) < CHUHHl(U) < Ch_2||d>;z,Au||L2(U) 5

where it can again be checked using the same techniques that C' does not depend
ono € (0, 50)

O

5. LOWER BOUNDS

The aim of this section is to establish the following proposition.

Proposition 5.1. Assume that Q) is €? and satisfies Assumption 1.1. There exists a
constant 0y € (0, 1] such that for all k € N*,

lim inf e_2¢min/hhk_l)\k(h) > Coup(k)0o = Cine (k) .

h—0

If Q= D(0,1) and B is radial, we have

[SIE

4P
lim inf e~ 20min/hpk=1y, (h) > T det(Hess,, . ¢)
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5.1. Inside approximation by the zero-modes. Let £ € N*. Let us consider an
orthonormal family (v;4)1<j<k (for the scalar product of L?(e=2¢/"dz)) associated with
the eigenvalues (\;(h))i1<j<k. We define

&}, = span vjp, .
1<j<k

In this section, we will see that the general upper bound proved in the last section
implies that all v, € &, wants to be holomorphic inside €.

5.1.1. Concentration of the groundstate.

Lemma 5.2. There exist C, hy > 0 such that for all v, € &, and h € (0, hy), we have,

||Uh||2L2(Q) < Ch—(1+k)e2¢mm/h/96—245/h‘vh|2dx_

This result will be used in the proof of Lemma 5.3 to compute the weighted L? norm
of vy, on Q in term of its weighted L? norm on a shrinking neighborhood of .

Proof. We have \,(h) = h=F+10(e*¥min/M) (see Proposition 3.1). By using the orthogo-
nality of the v;, one gets
/ e~ 2/ 2hd5v, [2dr < Ap(R) / e~ 2/h |y, |2dz < C’h_k+162¢mi“/h/ e~ 2/, |2dz .
Q Q Q

(5.1)
Now, we use ¢ < 0 to get

/|235vh|2dx<Ch_(1+k)62¢mi“/h/6_2¢/h|vh|2dx.
Q

Q
Since vy, satisfies the Dirichlet boundary condition and by integration by parts, we find

/\Vvh|2dx Ch (1+k) 2¢min/h/6_2¢/h|vh|2dx'
Q

It remains to use the Poincaré inequality. U
We can now prove a concentration lemma.

Lemma 5.3. Let o € (0,1/2). We have

1 m S fD(wmin, ha) €_2¢/h|vh([1j’> |2dx 0
1 Up - prm— 5
=0 yesnior | Jo e 2 M on(@)Pde

and
; f e 20/h |y (2)|?dx Ao
im sup sup — 1 =0,
h=0 52(0,60] vh€EH\{0} fQ —20/0 vy, (z)|2dx

where 0y is defined in Proposition 4.4.

Proof. Let us remark that the second limit is a consequence of the first one. We have

fD(meinth) 6_2¢/h|vh(x)‘2dx — 1 — fQ\D(-’Emin, ha) €_2¢/h|vh(,§(:>|2dx
Jo 72 on()Pdz Jo €72 on () Pd
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y (3.9) and Lemma 5.2, we deduce that

e~ 2oy, (z) 2z < 6—2¢mm/h—Aminh2“1(1+ﬁ(h“))/ o, () |2
0

< Ch~ 4R e Aminh?®~ 1(1+0’(h“))/e—2¢/h|vh|2dx: ﬁ(hm)/e‘2¢/h|vh|2dx,
Q Q

and the conclusion follows. O

5.1.2. Interior approximation. Now that we know that v, is localized inside €2, let us
explain why it is close to be a holomorphic function.

Notation 7. Let us denote by ﬁhﬁ the orthogonal projection on the kernel of —ids (i.e.
the SegalBargmann functions on €5 which is defined in Theorem 4.6) for the L2-scalar
product (-, e™2/") 2.

We notice that, if u = e~ %"y, we have
I a0,u = e~/ 50,
where 11, 4 o, was defined in Notation 5.

Proposition 5.4. There exist C, hg > 0 such that for all § € (0,d0] and h € (0, hy), we
have for all v, € &,

(a) [le=®/M(1d — ljh,a)?thLz(ﬂa) < Ch™2 /N (R)l|e= Mo | L2y
(b) He_(ﬁih(ld — ps)vnl L2 00s) < Ch_2\/)\k(h)||e—¢/hvh”m(96)’
(C) dim Hh,(g(g)h =k.
Here, ¢ is defined in Theorem 4.6.
Proof. For all v, € &,, we have
Al hdun] 3 ey < Al hOonl 2
el opl[Fa0) < (14 o(D)Ax(h) e on[F2(q,)
where we used Lemma 5.3 to get the last inequality. With uj, = e=%/"v),, we have

4H€_¢/hhazvh’|%2(95) = 4H€_¢/hh82(1d - ﬁh,é)vh||2L2(95) = ||dZ,A,Q(5(Id - Hh,A,Qa)Uh||2L2(95) :

<
<A

Applying Theorem 4.6, we get (a) and (b).
Let v;, € &, be such that IIj, sv;, = 0. Recalling Proposition 3.1, we have

[t
L2(Q5)

< Ch_k/26¢min/h ||6_¢/h

< He“’b/h(ld — ﬁh,(;)vhH + He_(b/hﬁh,svh’
Lz(Q(;) LQ(Q(;)

On |2 Q
so that

He“i’/hvh
L2(95)

and v, = 0 on 5 so that ﬁh,g is injective on &), and (c) follows. O



SPECTRUM OF THE DIRICHLET-PAULI OPERATOR 29

5.2. A reduction to a holomorphic subspace. In the following, we assume that
o€ (0,50) and h € (O, ho)

Notation 8. We will use the so-called Szego projection

I, : L*(D 5 an(r)e™ | = | D an(r)e™ | € LX(D(0,1)).

nez neN
Note that the Szego projection preserves the L? holomorphic functions.

Notation 9. We let
E = min |F'(y)|0n¢(F(y)) = clmm(V¢ n) ,

0D(0,1)

where F', ¢; are defined in Notation 6.

Lemma 5.5. Assume that §/h — 400 and § — 0. Then, for all vy, € &,

2hE(TL (v 0 F)H2L2(8D(o,1_5)) (1+0(1)) < 4h2/ e 2/ Ozvp | da .
Q

Proof. i. For all v € H}(Q), welet © = vo F € H}(D(0,1)) and ¢ = ¢ o F. We get
that

4h2/6_2¢/h|85v|2dx:4h2/ e_2$/h|8yz7|2dy.
Q D(0,1)

ii. In the polar coordinates, the Cauchy-Riemann operator is
) , —iv" [ O
—— (0 0y) = o | -
g (O1Fi0) == (1—t+“)

We write (s, ) = 9(n(s,t)) for any function 1) defined on D(0,1). We have, for
all v € HJ(D ( 1)),

AR / e 2" 052 > 4h? / e 2/ 0,02 A
D(0,1) D(0,1)\D(0,1—6)

2 -
_h2/ / (1 =07 (1 = 1), — id)o|” e /M dsdt . (5.2)

iii. Let us notice that )
9a0(y) = [F'(y)|0nd(F(y)) , (5.3)

where z € 09, n(x) is the outward pointing unit normal to {2 at x, and n(y) is
outward pointing unit normal to D(0, 1) at y.

By using the Taylor expansion of ¢, there exists C' > 0 such that, for all (s,t) €
x (0,9),

—o(s,t) = —td,(s,0) + O(?) > (1 — CO)Et

where 0 < E = mingp,) Oad. We have

2T
4h2/ —2¢/"|(3Lv|2dx>h2/ / (1)1 (1 — )8, — id,)o|* 2A-COERgsdt
D(0,1)
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Consider the new variable 7 = —In |1 — t|, we get
- 2 p—In|1-4]
4h* / e 2/ 0z0*dx > h? / / (0, — i0,)v(s, 7)| 20 CDPA=/hgsdr
D(0,1) o Jo

where v(s, 7) = (s, 1 —e77). Since 1 —e 7 =7+ O(7?) = 7+ O(07), there exists
C > 0 such that
p2(1-CO)E(1—e")/h > €2E(1—C~’6)'r/h'

Let E = FE(1 —C6) and § = —In |1 — §| so that

5 2 5 ~
4h2/ e Moo dr > hz/ / }(& —i0s)v(s, 7')}2 e?ET/hdsdr
D(0,1) o Jo

iv. Using the Fourier series and the Parseval formula, we get

2m 5 _ 5 -
/ / (0, — id)v(s, 7) }2 2Em/hqsdr = 21 Z / (0 + M)V (7) ‘2 e2Br/hqr
o Jo 0

meZ

where

1 27 ]
Vo (T) / e "v(s, T)ds.
0

"2

Let us consider the quadratic form

5 i
Qm(w) :/ ‘(&—i—m)w‘zezET/th
0

with boundary conditions w(0) = 0 and w(J) = 1.
Let us notice that

S ~ ~
Qm(w) = Qun(p) = / \3Tp\2 (27 B/h20-Tm q
0

where w(7) = ™) p(7) for all 7 € (0,0), p(0) = 0 and p(3) = 1.

Since m +— Q,(p) is an increasing function, we get that Q,,(p) = Qo(p) for all
m > 0 and, by Lemma A.1,

Qm(w) = Ao(h) ,

where B
2E/h
Ao(h) = m =
We get, by forgetting the negative m, we find

4h2/ e 29/M 002 dx > 2rh? Ao (h) Z Vi (0)]* = R*Ao(h)||TL (vo F
Q

m=0

2
)HL2(6D(0,1—6)) :

O

In the following, we choose § = h3/%.
__ Using Proposition 5.4, we show in the following lemma that we can replace v, by
I1}, svp, in Lemma 5.5.
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Lemma 5.6. Assume that 6 = h¥* and that o € (3,3). Then,

2 2

290h62¢’"‘i"/hHﬁh7gvh e (0(1) < Au(h)

5)

Y

1 ~
e 2h Hesszmin A(T—Tmin,T—Zmin) Hh,évh ‘
L2 (D(wminvha))

where

~ mingp) [F'(y)|[0ng(F(y))
% = axonon W) Gwe(F () < 01

and where we used the notation

oy = [ fwe FP@ude F)IFls,
8D(0,1-5)

Remark 5.7. Taking § = 0 in the definition of ||w||2%”2(95) above, gives
ul = [ fwo g0 PFls = [ [uloacdy = Nufw)?,
aD(0,1) Gle)

for w € A7?().

Proof of Lemma 5.6. i. From Lemma 5.5 and the definition of v, we have

2Eh||IL (v, o F)H;(aD(O 1_gy (LH0(1)) < h2/ e~ 2/M sy, |2 dar
’ Q

< Ai(h) / e~ 29/hyp2d .
Q
Thus, by Lemma 5.3,
2 _
2Eh||TL; (v, 0 F)HH@D(O,I_&)) (14 0(1)) < Ae(R) /D( » 2y 2dz . (5.4)
ii. Consider 11, 5 is the orthogonal projection on 2 (D(0,1—¢)) for the scalar product
L?(e=2¢/"dy). Note that IT, 511, = I, 11,5 = II,4 (see Notation 8). Let us now
replace II} by II, 5. Proposition 5.4 ensures that
le=®"(Id — Mhs)vn © Fllr20p(0,1-6) < Ch™ 2/ e(h) e vp | 12004 -
Using the Taylor expansion of ¢ near the boundary and (5.3), we have, on
0D(0,1 —9),
e > (14 o(1))e™" "
so that
- _ —ER-V4 -
||(Id — Hhﬁ)vh 9] FHLz((f)D(Ql_(g)) < Ch 2\/ )\k(h)e Eh— 4||6 d)/hUhHLQ(Q&) . (55)
Since I1, is a projection and ITj, s 1s valued in the holomorphic functions,
1(Id — I, 5)vn © Fllr20p01-8) = MLy (Id = I 5)vs © Fl120p0,1-8))
> ||ILyvp 0 F — I 5v1, 0 F | 1200(0,1-5))
> |||Itvn © Fllr20p©.1-s) — Hnsvs © F|l1200(0.1-6))| -
Then, with (5.5),

I v, 0 Fllz20p0.1-s)) = [Hhsvn © Fllr2@p01-s) — O(h) v/ A(B)le™ vp| 12 () -
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By (5.4) and Lemma 5.3,
V2EQ|T, 504 0 Fl|20p0.1-6y) (1 + 0(1)) < VM (R)|le™ " 0n | 22Dy o) - (5.6)
Thus, coming back to €25 (without forgetting the Jacobian of F),
V2EL||F'(F()|[~* T 50 1200, (1 + 0(1) < v/ Ae(B)lle™ " 0nl| 2D @yt
Then, by using the (weighted) Hardy norm, we have
V2000 [T 50n | 2 0y (14 0(1)) < v/ Ae(B)lle™ " 0nl| 2 (D(@sn o) - (5.7)
iii. Using Proposition 5.4 and Lemma 5.3, we get
le™ 0l 22D s ne)
< [le™ " T 50n]| 2D ey + €™ (X = T 5)0n | L2(D i )
< ||6_¢/hﬁh,5vhHL?(D(mmm,ha)) + [|e*/™(1d = T g)on| 20
Y _1 _
< e as0nll 2 (D iy + OB 2V Ak le™ " 0n ] 2D (@i h))

Combing this with (5.7) and Proposition 3.1, we find

~ 2 ~
260h[Thson |, (1 0(1) < M)l Tl 0 2 -

s)

iv. Using the Taylor expansion of ¢ at Zy,, we get, for all for x € D(zyin, h%) ,

QS(I’) - ¢min o 1 3a—1
h 2hHessgcmmgb(ZE Tamins T — Tmin) + O(R777),

and the conclusion follows.

Remark 5.8. Lemma 5.6 shows in particular that
2(1 4 0(1))Boh A, (h) < Ai(h),
where

2
X . HUHHQ(Q(;)

inf sup
V C ?%(Qs) vev\{0}
dimV =k

2
1
e_ °h Hessxmin ¢(x_xminyx_xmin) v

L2(D(2min,h®))

In the next section, we will essentially provide a lower bound of S\k(h) Note that if
we could replace #2(§2;) by the set of polynomials, then, we would get the bound
presented in Remark 3.2. Nevertheless, there is no hope to do so since in general,

disty (2 — zmin)“ ", Z47(Q)) < No((2 = 2min)* ) ,

(This inequality is an equality in the radial case). We still have to work to get the lower
bound of Theorem 1.3.
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5.3. Reduction to a polynomial subspace: Proof of Proposition 5.1. We can
now prove Proposition 5.1.

i. By using (3.12), there exists C' > 0, hg > 0 such that, for all h € (0, hg), for all
w € H%(Qs), all 29 € D(Tmin, h*), and all n € {0,. ..k},

W™ (20)] < Cllwll 20, (5.8)
Let us define, for all w € 5#%(8;),

1 Hess (e
Nh(w) :He 2hHeSS£mm¢(x LTmin,T xmln)w

L2(D(min,h®))
We let w;, = ﬁhﬁ'l}h. By the Taylor formula, we can write

wy, = Tayl,_ywp, + Rk_1(wp) ,

where
k-1 (n)
w (Zmin) n
Tayl,_ w, = Z hT(z — Zmin)"
n=0 '

and, for all z € D(zyn, h*),

|Ri_1(wn)(2)] < Clz = zan|®  sup ||,
D(Zmin,ha)

With (5.8) and a rescaling, the Taylor remainder satisfies
Ni(Bia(wn) < ChERE [lwnl ey -
Thus, by the triangle inequality,
ko1
Nh(wh) < Nh(Taylk_lwh) + Chzh? ||'U,]h||3f2(Q6) .

Thus, with Lemma 5.6, we get

1+k

(1+O(1))€¢"‘i“/h\/ 290h||wh]|%2(96) < v/ )\k(h)Nh(Taylk_lwh)—l—C\/ )\k(h)hT ||wh||%2(95) ,

so that, thanks to Proposition 3.1,

(1 + o(1))e? /" /200 Rl wn|2(as) < v/ Ak (R)Ni(Tayl_ywn) < v/Ae(h) Na(Tayl,_yws) |

(5.9)
with
N _ H —ﬁHessxmin¢(x—xmin,x—xmin) )
n(w) =|le w L)
This inequality shows in particular that Taylk_lﬁ(g,h is injective on &}, and
dimTayl, ,(II5 &) = k . (5.10)

ii. Let us recall that

%2(Q6) = {'l/) € %2(Q6) S {0’ e "k - 1} a,lvb(n)(xmin) = O} :
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Since (wy, — Tayl,_jwy,) € J42(Qs), we have, by the triangle inequality,

(k—1)
w (zmin) _
[wnl] e2(04) 2 h(k_il),(z — Zuin) "+ (wp, — Tayly,_qwy) — HTaylk—zwthfz(Qd)
. H%(Qs)
|'LU (= 1)(Zmin)| . k-1 9
2 Wdlstyﬁ((z - Zmin) ,%f (Q(s)) — HTaylk_?wth%Qé) ,
where

distse.s((2 — zmin)" 1, H42(Qs))
= inf { (z — Zmin>k_1 — Q(Z)H

Using again the triangle inequality;,

, forall Q € %2(95)} .

A2 (s

| Tayl,_ywall 20 < € wh" (zuuin)]
Moreover,

k—2 k—2
n _k—2 n _k—2

S 10 i) < ETZDY R E [0l ()| < BT Zh w0\ (i)

n=0 n=0

Ch 2 h 2Nh(Taylk 1wh)

where we used the rescaling property

k—1 k—1
Nh Z Cn(z — zZm)" | = h%]\Afl Z cnh%(z — Zmin)" | (5.11)
n=0 n=0

and the equivalence of the norms in finite dimension:

k—1 k—1 k—1
IC>0.VdeCr, CTY do| < Ny | D dn(z = zi)” | K C Y |dal
n=0 n=0 n=0

We find

(k1)
w Zmin . —
[wnll 205 = %dﬁtm((z — Zin) T, A2 (25))

_ Ch_%h_%Nh(Taylk_lwh) )
and thus, by (5.9),

(1 + o(1))e?m=/"/205h |w

. 1( )|
in dISt’H’(;((Z - Zmin)k_lu %2(95))

(\/ h) + Ch*3" ¢m'“/h)Nh(Taylk ). (5.12)

- 1!
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iii. Since we have (5.10), we deduce that

(1 + 0(1))6¢min/h\/MdiSt’H75((Z o Zmin)k_lu %2(95)) SUp — k_1|Ck—l|
ceCk Nh(Zn:O Cn(Z — Zmin)n)

< VAR(h) + Ch™ T efmin/h  (5.13)
By (5.11), we infer

_ h' | cp
h% Sup — 1] = sup o]

cecr No(nZgen(z = Zmin)")  ceck N1(Xprg en(z = zmin)?)

Since N; is related to the Segal-Bargmann norm Np via a translation, and recalling
Notation 4, we get

|ck—1] B |ck—1] 1
Sup — = sup

ceck N1 (XF b en(z — zmin)?)  cecr No(Xh_gcozn)  Np(Peo1)

Thus,

diSt’H’(;((Z - Zmin)k_lu %2(95)) <
Np(Pg-1) h

iv. Since € is regular enough, the Riemann mapping theorem ensures that
lim disty s ((z — zin)F L, ,%ﬁf(gzé)) — disty, ((z — in)F L %‘f(@)) .
%

The conclusion follows.

(14 o(1))h'2 ebmin/t /26,

Mol (5.14)

5.4. Proof of Corollary 1.11. We recall Notation 6 where F', ¢; and ¢y are defined.
Let us notice that we can choose F' such that F'(0) = Zyn.
For all v € H}(Q), we let o =vo F € H}(D(0,1)), and we get,
l fD(071) 6_2¢/h|&y@|2dy < fD(O’l) 6_2¢/h|&y{)|2dy . fQ 6_2¢/h|a§U|2dSL’
2 [por e Moy e 2o F (y)|2dy g e/ vlde

fD(o,l)

where ¢ = ¢ o I has a unique and non-degenerate minimum at y = 0 and (ﬁ(O) = Pumin-
In the same way, we get

L S B i
fQ e—2¢/h\v|2dx o fD(O,l) e—2¢/h|@|2dy

These inequalities, the min-max principle, and Theorem 1.3 imply Corollary 1.11.

APPENDIX A. A UNIDIMENSIONAL OPTIMIZATION PROBLEM

The goal of this section is to minimize, for each fixed s, the quantity,
€
/ e2t8n¢(s)/h |8tp‘2 dr .
0

This leads to the following lemma.
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Lemma A.1. For a and e > 0, we let I = (0,¢) and

V={pe H'(I):p(0) =0, p(e)=1}.
Let us consider, for all p € V',

Facl)i= [ el Par,

0

(a) The minimization problem

inf{Fo:(p),p € 7'}

has a unique minimizer

1— 6—04[
pa,a(f) = 1—76_0‘5 ?
(b) We have
inf{Fa,a(p) RS 7/} = $ ’

(c) Let cg > 0. Assume 1 — e~ > ¢q. There exists C' > 0 such that

€
/ €| Onpa’dl < C (a7 + e * ™) .
0

Proof. i. Since a > 0, we have that F,,.(p) > [ |¢/(¢)[*d¢ for all p € #. There exists
C > 0 such that, for all p € 7,

l/mwww>c/uwww.
0 0

This ensures that any minimizing sequence (p,)neny C ¥ is bounded in H(I)
and any H'-weak limit is a minimizer of inf{F, .(p),p € ¥}.

oo1/2 . - . . e

ii. Fa/g is an euclidian norm on 7 so that F, . is strictly convex and the minimizer is
unique.

iii. At a minimum p, the FEuler-Lagrange equation is

(6aépl)/ —0.
Thus, there exist (c,d) € R? such that, for all £ € I,
p(f) =d —cate ™,

so that, with the boundary conditions we find the function p, ..
iv. We have

/ e p/(0)Pdl = o*(1 — 6_8“)_2/ eotdg = %

0 0 IT—e=e

v. We also have

]- — —QE —Q —QE
006,00675(4@) = m (fe é(]_ —e ) — (]_ —e 6)56 ) )
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for £ € (0,¢) and

: al 2 1 : 2 —al —ae\2 : —al —ae\2
/Oe |8apa,€|d€<m(/0€e de(1—e )+/Oe Al (ee™*)

+/ etde (56_0‘8)2)
0

<C(a?4+eea).

APPENDIX B. HoPF’s LEMMA WITH DINI REGULARITY

In the following lemma, we present a simple proof of an extension of Hopf’s Lemma
to the case when () is Dini regular. The standard version of Hopf’s Lemma given for
instance in |7, Hopf’s Lemma, section 6.4.2] requires essentially ¢ regularity. However,
the regularity can be lowered up to Dini (see [1] and the references therein).

Lemma B.1. Let Q) being a simply connected, Dini reqular, bounded open set. Then, if
¢ 1is the solution of (1.2), the function s € 02— On¢(s) is continuous and

On® > 0 on 0.

Proof. Let ¢ be the solution of (1.2). By the Riemann mapping Theorem [15], there
exists a bi-holomorphic map F': D(0,1) — Q such that F” is continuous on D(0,1).
The function ¢ = ¢ o F' is the solution of (1.2) on D(0,1) for B = |F'|?B o F. By [9,
Corollary .36], we get that ¢ is €' on D(0,1) and Hopf’s Lemma [7, Hopf’s Lemma,
Section 6.4.2] ensures that d,¢ > 0. The result follows from the fact that

O = |(F1Y|0nd o F1.

APPENDIX C. A DENSITY RESULT

Lemma C.1. Assume that Q) is bounded, simply connected and that OS2 is Dini-continuous.
Then, the set 7%(Q) N W1L>2(Q) is dense in F2(Q).

Proof. We recall Notation 6. Let u € 5#2(2). Then, uo F =3, a;z* is holomorphic
on D(0,1) and (ag)x=0 € (*(N). Let € € (0,1). The function

. :D(0,1)3>z—uoF((1-¢)z) eC
is holomorphic on D(0,1/(1 —¢)). We denote by u. = u. o F~'. We have

s = el = / Jula) = (o) Oacila

- /8D(0 o Fly) mue (1= )Y PIF (1)|0ad o F(y)dy

< ]| 0nd]| 1 /

aD(0,1

< c2llOndll= Y Pl — (1 - )P

k>1

)|qu(y) —uo F((1—e)y)ldy
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Note that 9,¢ is bounded by Lemma B.1. By Lebesgue’s theorem, we get that (u.)ec(o,1)
converges to u in J%(). Let us also remark that (u.).co,1) C WH*(Q) so that the
result follows. O
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