On the semiclassical spectrum of the Dirichlet-Pauli operator - Archive ouverte HAL Access content directly
Journal Articles Journal of the European Mathematical Society Year : 2021

On the semiclassical spectrum of the Dirichlet-Pauli operator

Abstract

This paper is devoted to semiclassical estimates of the eigenvalues of the Pauli operator on a bounded open set whose boundary carries Dirichlet conditions. Assuming that the magnetic field is positive and a few generic conditions, we establish the simplicity of the eigenvalues and provide accurate asymptotic estimates involving Segal-Bargmann and Hardy spaces associated with the magnetic field.
Fichier principal
Vignette du fichier
Last_Dirichlet-Pauli.pdf (452.13 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-01889492 , version 1 (06-10-2018)
hal-01889492 , version 2 (22-01-2020)

Identifiers

Cite

Jean-Marie Barbaroux, Loïc Le Treust, Nicolas Raymond, Edgardo Stockmeyer. On the semiclassical spectrum of the Dirichlet-Pauli operator. Journal of the European Mathematical Society, 2021, 23 (10), pp.3279-3321. ⟨10.4171/JEMS/1085⟩. ⟨hal-01889492v2⟩
554 View
269 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More