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Abstract
This paper investigates canonical transducers for rational functions over infinite words, i.e., func-
tions of infinite words defined by finite transducers. We first consider sequential functions, defined
by finite transducers with a deterministic underlying automaton. We provide a Myhill-Nerode-
like characterization, in the vein of Choffrut’s result over finite words, from which we derive an
algorithm that computes a transducer realizing the function which is minimal and unique (up to
the automaton for the domain).

The main contribution of the paper is the notion of a canonical transducer for rational func-
tions over infinite words, extending the notion of canonical bimachine due to Reutenauer and
Schützenberger from finite to infinite words. As an application, we show that the canonical trans-
ducer is aperiodic whenever the function is definable by some aperiodic transducer, or equivalently,
by a first-order transduction. This allows to decide whether a rational function of infinite words
is first-order definable.
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Introduction

Machine models, such as automata and their extensions, describe mathematical objects
in a finite way. Finite automata, for instance, describe languages (of words, trees, etc).
A canonization function C is a function from and to machine models (not necessarily of
the same type) such that, whenever two machines M1,M2 describe the same object, then
CpM1q “ CpM2q. Accordingly, CpM1q is called the canonical model of the object described by
M1, and it does not depend on the initial representation of the object. A classical example of
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30:2 On Canonical Models for Rational Functions over Infinite Words

1 2

a|a

a|a

b|a

b|a

3 4
b|ε

a, b|ε b|b

F “ tt1u , t1, 2u , t4uu

Figure 1 Transducer with Muller sets F realizing the function f#a mapping any word with
infinitely many a to aω, otherwise to bω.

canonization is the function which associates with a finite automaton its equivalent minimal
deterministic automaton. A canonization function becomes interesting when it satisfies
additional constraints like being computable, preserving some algebraic properties, and
enjoying minimal models. Canonical models not only shed light on the intrinsic characteristics
of the class of objects they describe, but can also serve to decide definability problems. For
instance, it is well-known that the minimal DFA of a word language L is aperiodic if and only
if L is definable in first-order logic [18, 22]. Hence, this allows to decide whether a monadic
second-order formula has an equivalent first-order one over words. This result has been
extended to infinite words [24, 25, 1, 19], although there is no unique minimal automaton for
languages of infinite words (see also [10] for a survey).

Rational functions are functions defined by word transducers. A canonical model for
rational functions over finite words has been introduced in [21]. This result, which can be
considered as one of the jewels of transducer theory, states the existence of a procedure
that computes from a given transducer a canonical input-deterministic transducer with
look-ahead, called bimachine. For the subclass of functions realized by input-deterministic
transducers, called sequential functions, it is even possible to compute a unique and minimal
transducer realizing the function [8]. For rational functions, the procedure of [21], though
it preserves aperiodicity of the transition congruence of the transducer, does not preserve
other congruence varieties, in general. In [14, 15] it was shown how to adapt [21] to obtain a
canonization procedure which overcomes this issue. Later it was shown that the first-order
definability problem for rational functions is PSpace-c [13]. In a different setting, functions
with origin information realizable by two-way transducers were shown to have decidable
first-order definability [4]. In this paper, we extend the results of [21] and the decidability of
first-order definability of [13] to rational functions of infinite words.

Rational functions of infinite words We consider rational functions of infinite words, i.e.
functions defined by transducers with Muller acceptance condition. Such machines map
any ω-word for which there exists an accepting run to either a finite or an ω-word. Take
as example the function f#a over alphabet ta, bu mapping any word containing an infinite
number of a to aω, and to bω otherwise. This function is realized by the transducer of Fig. 1.

qb qa

a|ε

b|ε

b|ab

a|ε

Figure 2 Sequential transducer with Muller
condition F “ ttqbuu realizing the function fab

which maps any word containing a finite number
of a’s to the subsequence of ab factors, and is
undefined otherwise.

The class of sequential functions is of par-
ticular interest: they are realized by trans-
ducers whose underlying input Muller au-
tomaton is deterministic. Note that the
function f#a is not sequential, unlike the
function fab of Fig. 2. Sequential functions
over infinite words have been studied e.g. in
[2]. One difference between our setting and
[2] is that in the latter paper infinite words
are mapped to infinite words, whereas we
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need also functions that map infinite words to finite words. Deciding whether a rational
function is sequential can be done in PTime, as shown in [2]. Bimachines for infinite words
were introduced in [26] to define the particular class of total letter-to-letter rational functions,
and in their counter-free versions, a connection with linear temporal logic was established.

To the best of our knowledge, nothing is known about canonical models for sequential
and rational functions over infinite words, and their applications to definability problems in
logics.

Contributions p1q We provide a characterization of sequential functions by means of the
finiteness of a congruence. We give a PTime procedure which, for any sequential function f
given as a transducer whose domain is topologically closed, produces the minimal (and hence
canonical) sequential transducer Tf realizing f . When the domain of f is not topologically
closed, we extend f to a domain-closed sequential function f which coincides with f on
its domain. By intersecting Tf with some automaton D recognizing the domain of f , one
obtains a canonical transducer for f , as long as D can be obtained in a canonical way (such
a procedure exists, see e.g. [7]).
p2q Our main contribution (Theorem 29) is a notion of canonical sequential transducer

with look-ahead for any rational function. This canonical transducer is an effectively
computable bimachine. Hence we lift results of Reutenauer and Schützenberger [21] on
rational transductions from finite to infinite words.
p3q As a side result we lift a result by Elgot and Mezei [11] from finite to infinite words,

stating that a function f is rational if and only if f “ g1 ˝ h1 (resp. f “ g2 ˝ h2) such that
h1, h2 are letter-to-letter, g1, h2 are sequential and h1, g2 are right-sequential (i.e., realized
by a transducer whose underlying input automaton is prophetic [6]). The existence of such
g1, h1 was already shown in [5], but the one of g2, h2 was left open.
p4q Finally, we show that our procedure which computes a canonical bimachine for any

rational function given by a transducer, preserves aperiodicity. As an application, after
showing some correspondences between logics and transducers, we obtain the decidability of
FO-transductions in MSO-transductions over infinite words.

Overview of the canonization procedure for rational functions The main idea to get
a canonical object for a rational function, inspired by [21], is to add a canonical look-
ahead information to the input word, so that the function can be evaluated in a sequential
(equivalently, deterministic) manner. We say that the look-ahead “makes the function
sequential”. By doing so, we can reduce the problem to computing canonical machines for
sequential functions. The main difficulty is to define a canonical (and computable) notion of
look-ahead which makes the function sequential. Over finite words, the look-ahead information
is computed by a co-deterministic automaton, or equivalently, a deterministic automaton
reading the input word from right to left (called a right automaton). On infinite words we
need something different, so we use prophetic automata [6] to define look-aheads (called right
automata in this paper). Prophetic automata are a special form of co-deterministic automata
over infinite words. In Section 3, sequential transducers with look-ahead are formalized via
the notion of bimachines, consisting of a left automaton and a right automaton. We show
that bimachines over infinite words capture exactly the class of rational transductions. Our
goal is to obtain a canonical bimachine, fine enough to realize the function, but coarse enough
to preserve algebraic properties like aperiodicity.

Unlike the setting of finite words, some difficulties arise when prefix-independent properties
matter (such as for instance that a suffix contains an infinite number of a’s). We overcome
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30:4 On Canonical Models for Rational Functions over Infinite Words

this issue by defining two kinds of look-ahead information which we combine later on. This
decomposition simplifies the overall proof.

The first look-ahead information we define allows one to make any rational function
almost sequential, in the sense that it can be implemented by a transducer model which
can additionally output some infinite word after processing the whole input, depending
on the run (similar to so-called subsequential transducers in the case of finite words). We
call quasi-sequential functions realized by such transducers. They constitute a class with
interesting properties. We show that they correspond precisely to transducers satisfying
the weak twinning property, a syntactic condition defined in [2]. On the algebraic side, we
exhibit a congruence having finite index exactly for quasi-sequential functions.

We then define another kind of canonical look-ahead which makes any quasi-sequential
function sequential. Combined together, these two look-aheads turn any rational function
into a sequential one: the first one from rational to quasi-sequential, and the second one
from quasi-sequential to sequential.

The whole procedure does not yield a minimal bimachine in general. While the minimality
question is an important and interesting (open) question, our procedure still has the strong
advantages of being canonical, effective, and of preserving aperiodicity. This allows one to
answer positively the important question of the decidability of first-order definability for
rational functions of infinite words. Detailed proofs are provided in Appendix.

1 Regular languages and rational functions

Finite words, infinite words and languages An alphabet A is a finite set of symbols called
letters. A finite word is a finite sequence of letters, the empty sequence is called the empty
word and is denoted by ε. The set of (resp. non-empty) finite words over A is denoted by
A˚ (resp. A`). An infinite sequence of letters is called an ω-word (or just an infinite word),
we denote by Aω the set of ω-words and we write A8 “ A˚ Y Aω. For a word x P Aω we
denote by Infpxq the set of letters of x which appear an infinite number of times. The length
of a word w is written |w|, with |w| “ 8 if w P Aω. Throughout the paper, we often denote
finite words by u, v, . . . and infinite words by x, y . . .

For a non-empty word w and two integers 1 ď i ď j ď |w| we denote by wpiq the ith letter
of w, by wpi:q the suffix of w starting at the ith position, by wp:iq the prefix of w ending at
the ith position and by wpi:jq the infix of w starting at the ith position and ending at the
jth, both included. For two words u P A˚ and v P A8, we write u ă v if u is a strict prefix
of v, i.e. there exists a non-empty word w P A8 such that uw “ v, and we write u´1v for
w. For u, v P A8, we write u ĺ v if either u ă v, or u “ v. We denote by u^ v the longest
common prefix of u and v. The delay delpu, vq between two words u, v P A8 is the unique
pair pu1, v1q such that u “ pu ^ vqu1 and v “ pu ^ vqv1. For example, delpaab, abq “ pab, bq
and delpaω, aωq “ pε, εq.

A language is a set of words L Ď A8, and by
Ź

L we denote the longest common prefix of
all words in L (if L ‰ ∅). The closure L of L is tu P A8 | @i P N, i ď |u|, Dw s.t. up:iqw P Lu,
i.e. the set of words for which any finite prefix has a continuation in L. For instance
a˚bω “ a˚bω Y aω. A word is called regular if it is of the form uvω with u, v P A˚. In
particular any finite word is regular (since εω “ ε) and regular ω-words are also called
ultimately periodic. We say that a regular word uvω is in normal form if v has minimal
length and is minimal in the lexicographic order among all possible decompositions of uvω,
and v is not a suffix of u (if v ‰ ε). E.g. the normal form of pbaqω is bpabqω. In the sequel
we often assume regular words are in normal form.
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F “ tt1u , t1, 2u , t4uu

Figure 3 A right automaton (with Muller condition) recognizing pb˚aqω. Words with finitely
many b’s have final run with t1u, words with finitely many a’s have final run with t4u, and those
with infinitely many a’s and infinitely many b’s have final run with t1, 2u.

Automata A Muller1 automaton over an alphabet A is a tuple A “ pQ,∆, I, F q where Q
is a finite set of states, ∆ Ď Qˆ AˆQ is the set of transitions, I Ď Q is the set of initial
states, and F Ď PpQq is called the final condition. When there is no final condition, so
F “ PpQq, we will omit it. A run of A over a word w P A8 is itself a word r P Q8 of
length |w| ` 1, (with the convention that 8` 1 “ 8) such that for any 1 ď i ă |r|, we have
prpiq, wpiq, rpi` 1qq P ∆. A run r is called initial if rp1q P I, final if r P Qω and Infprq P F ,
and accepting if it is both initial and final. For a finite word u and two states p, q, we write
p
u
ÝÑA q to denote that there is a run r of A over u such that rp1q “ p and rp|r|q “ q. For an

ω-word x, a state p and a subset of states P Ď Q, we write p x
ÝÑA P to denote that there is a

run r of A over x such that rp1q “ p and Infprq “ P . A word is accepted by A if there exists
an accepting run over it, and the language recognized by A is the set of words it accepts,
denoted by JAK Ď Aω. A state p is accessible (resp. co-accessible) if there exists a finite
initial (resp. infinite final) run r such that rp|r|q “ p (resp. rp1q “ p), and an automaton
A is called accessible (resp. co-accessible) if all its states are. An automaton which is both
accessible and co-accessible is called trim. An automaton is called deterministic if its set
of initial states is a singleton, and any word has at most one initial run. We define a left
automaton as a deterministic automaton L “ pQ,∆, Iq with no acceptance condition. We
call a right automaton an automaton for which any ω-word has exactly one final run2. A
language is called ω-regular if it is recognized by an automaton. It is well-known that every
ω-regular language can be recognized by a deterministic (Muller) automaton. Moreover, [6]
shows that every ω-regular language can be recognized by a right automaton (even with
Büchi condition). Figure 3 shows a right automaton accepting the words with infinitely many
a’s. Throughout the paper, all automata – except for right automata – are assumed trim,
without loss of generality.

Transductions Given two alphabets A,B, we call transduction a relation R Ď Aω ˆ B8

whose domain is denoted by dompRq. A transducer over A,B is a tuple T “ pA, i, oq with
A “ pQ,∆, I, F q the underlying automaton, i : I Ñ B˚ the initial function and o : ∆ Ñ B˚

the output function. Let u be a finite word of length n, let r be a run of A over u with
rp1q “ p, rpn ` 1q “ q, and let v be the word opp, up1q, rp2qq ¨ ¨ ¨ oprpnq, upnq, qq then we
write p u|v

ÝÝÑT q to denote that fact. Similarly, for p P Q and P Ď Q we write p x|v
ÝÝÑT P to

denote that there is a run r of A over the ω-word x such that rp1q “ p, Infprq “ P and
v “ opp, up1q, rp2qqoprp2q, up2q, rp3qq ¨ ¨ ¨ . In that case, if p P I and P P F , let w “ ippq ¨ v,
then we say that the pair px,wq is realized by T . We denote by JT K the set of pairs realized
by T , which we call the transduction realized by T . A transducer is called functional if it
realizes a (partial) function, and in that case we write JT Kpxq “ w rather than px,wq P JT K.

1 We consider the Muller condition since it is more general than Büchi or parity for instance, but most of
our results hold for other conditions as well.

2 Such automata are called prophetic and were introduced in [6].
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30:6 On Canonical Models for Rational Functions over Infinite Words

Functionality is a decidable property, see e.g. [16], and it can be checked in PTime (see
e.g. [20]). In the following all the transductions we consider are functional, and when we
speak about functions, we tacitly assume that they are partial. A transduction is rational if
it is realized by a transducer. A transducer with a deterministic underlying automaton is
called sequential, as well as the function it realizes. A transducer with a left (resp. right)
underlying automaton is called left-sequential (resp. right-sequential), and again we extend
this terminology to the function it realizes.

Congruences Given an equivalence relation „ over a set L, we denote by rws„ (or simply
rws) the equivalence class of an element w P L. We say that „ has finite index if the set
L{„ “ trws | w P Lu is finite. Given two equivalence relations „1,„2 over the same set
we say that „1 is finer than „2 (or that „2 is coarser than „1) if for any u, v we have
u „1 v ñ u „2 v. Equivalently we could say that the equivalence classes of „2 are unions of
equivalence classes of „1 or that „1 is included (as a set of pairs) in „2, which we denote
by „1 Ď„2. A right congruence over A˚ is an equivalence relation „ such that for any
letter a and any words u, v we have u „ v ñ ua „ va. A left congruence over A˚ (resp.
Aω) is an equivalence relation « such that for any letter a and any words u, v we have
u « v ñ au « av. We say that a left congruence is regular if it has finite index and any
equivalence class is an ω-regular language. In the following all the left congruences will be
regular. A congruence over A˚ is a left and right congruence. A congruence ” is aperiodic if
there exists an integer n such that @u P A˚, un ” un`1.

Given an automaton A with state space Q, the right congruence associated with A is
defined for u, v P A˚ by u „A v if @q P Q, there is an initial run of A over u reaching q if and
only if there is one over v. Note that for a trim deterministic automaton, there is a bijection
(up to adding a sink state) between Q and the equivalence classes of A. Similarly, the left
congruence associated with A is defined for x, y P Aω by x «A y if @q P Q there is a final run
of A over x from q if and only if there is one over y. Given a right automaton there is a
bijection between Q and the equivalence classes of «A. Finally, the transition congruence of
A is defined for u, v P A˚ by u ”A v if @p, q P Q, there is a run over u from p to q if and
only if there is one over v. An automaton is called aperiodic if its transition congruence is
aperiodic. A language is called aperiodic if there exists an aperiodic automaton recognizing
it. A transducer is aperiodic if its underlying automaton is aperiodic and in that case the
transduction it realizes is called aperiodic.

Given a right congruence „, the left automaton associated with „ is A„ “ pQ„,∆„, I„q:
Q„ “ A˚{„, ∆„ “ tprus , a, ruasq | u P A

˚u, I„ “ trεsu. Given a left congruence « and a
right automaton R, if «R Ď« then we say that R recognizes «. The existence of a canonical
automaton for a left congruence is less obvious. From [6] we know that every ω-regular
language can be recognized by a right automaton. We rely on the construction of [6] and,
abusing language, we denote the right automaton obtained in the next proposition as the
canonical right automaton recognizing a left congruence:

§ Proposition 1. Given a (regular) left congruence, we can compute in 2-ExpTime a right
automaton recognizing it. Furthermore, this automaton is aperiodic if the congruence is
aperiodic.

2 Sequential and quasi-sequential transductions

We define the syntactic congruence associated with any functional transduction over infinite
words. Sequential functions are exactly the rational functions having a syntactic congruence
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fab f#a fblocks

definition maps a word over ta, bu
with a finite number of
a’s to the subsequence of
ab-factors.

maps a word x over ta, bu
to aω if x contains an in-
finite number of a’s, and
to bω otherwise.

maps u1# . . .#un#v where
v does not contain #, to
a
|u1|
1 # . . .#a|un|

n #w where
ui P ta, bu˚, ai is the last
letter of ui (if any), w “ aω

if v has an infinite number of
a’s, and w “ bω otherwise.

A and B A “ B “ ta, bu A “ B “ ta, bu A “ B “ ta, b,#u
dompfq words over ta, bu with a

finite number of a’s
ta, buω words over ta, b,#u with a fi-

nite (non-zero) number of #’s
examples fabpabbab

ω
q “ abab,

fabpb
ω
q “ ε

f#apab
ω
q “ bω,

f#appabq
ω
q “ aω

fblocksppab#qnbω
q “

pbb#qnbω, fblocksp#pabqωq “
aω.

pf xfab extracts the ab-
factors, for instance
xfabpabbabbq “ abab.

reading a finite prefix
u does not give any in-
sight on the output, thus
yf#apuq “ ε

{fblockspu1# . . .#un#vq “

a
|u1|
1 # . . .#a|un|

n # whenever
v does not contain #.

f fab is defined over
dompfabq “ ta, buω

and fabppbaq
ω
q “

limn
xfabppbaq

n
q “

limnpabq
n´1

“ pabqω.

f#apxq “ ε for every x P
ta, buω as it is based on
yf#a

fblockspu1# . . .#un#vq “

a
|u1|
1 # . . .#a|un|

n # whenever
v does not contain #.

class sequential quasi-sequential not quasi-sequential

Figure 4 Examples of rational transductions, and their associated pf and f functions.

of finite index, and being continuous over their domain. When removing this last condition
on continuity, we obtain the class of quasi-sequential transductions. These transductions are
also characterized by the weak twinning property [2].

We will show that for any sequential function, like in the case of finite words [8], we
can define a canonical transducer, with a minimal underlying automaton. This minimal
transducer extends the domain of the function to its closure.

§ Definition 2 ( pf and f). Let f : Aω Ñ B8 be a function, we define pf : A˚ Ñ B8 by
pfpuq “

Ź

tfpuxq | ux P dompfqu. In other words, pf outputs the longest possible output
that f could produce on any word that begins with u. We also define f : Aω Ñ B8 by
setting fpxq “ limn

pfpxp:nqq, for x P dompfq.

We refer to f as the sequential extension of f . Note that if f is sequential, then f extends f
over the closure dompfq of the domain of f .

§ Example 3. We illustrate these definitions on three rational transductions, described in
Figure 4.

§ Definition 4 (syntactic congruence „f ). The syntactic congruence associated with a trans-
duction f is defined over A˚ by u „f v if:
1. @x P Aω, ux P dompfq ô vx P dompfq, and
2. either pfpuq and pfpvq are both ultimately periodic with the same period (in normal form) or

they are both finite and @x P Aω such that ux, vx P dompfq, pfpuq´1fpuxq “ pfpvq´1fpvxq.

§ Example 5. Let us illustrate the definition of „f on fab, as defined in Figure 4. The
syntactic congruence „fab

has only two classes: rεs and ras. Indeed, if we consider two

FSTTCS 2018
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rεs ras

a | ε
b | ε

b | ab

a | ε

Figure 5 Transducer Tfab .

finite words u and v, condition (1) on the domain is always true, and xfabpuq and xfabpvq

are finite (ab-factors in u and v, respectively). Hence u „fab
v if and only if @x P Aω,

xfabpuq
´1fabpuxq “ xfabpvq

´1fabpvxq.
Let us analyze xfabpuq

´1fabpuxq. If u does not end with an a, then xfabpuq
´1fabpuxq “

ppabqnq´1ppabqn`kq “ pabqk where n and k are the number of ab-factors in u and x, respec-
tively. Now, if u ends with an a and x starts with a b, then a new ab-factor appears in ux and
we get xfabpuq

´1fabpuxq “ ppabq
nq´1ppabqn`k`1q “ pabqk`1. This means that „fab

contains
exactly two classes: one for the words ending with an a, and one for the others.

The resulting transducer Tfab
is depicted in Figure 5. Let us check for instance the

transition from ras to rεs when reading b. We have rabs “ rεs, so pras , b, rεsq P ∆fab
. From

the definition, ofab
pras , b, rεsq “ xfabpaq

´1
xfabpabq “ ε´1.ab “ ab.

§ Proposition 6. Let f be a functional transduction, then „f is a right congruence.

From „f we define3 the transducer Tf “ pAf , if , of q with Af “ pQf ,∆f , If q and:
Qf “ A˚{„f

and If “ trεsu
∆f “ tprus , a, ruasq | u P A

˚, a P A, Dx s.t. uax P dompfqu

of prus , a, ruasq “

»

—

–

pfpuq´1
pfpuaq if pfpuaq is finite

β if pfpuq “ αβω, β ‰ ε

α if pfpuq is finite and pfpuq´1
pfpuaq “ αβω, β ‰ ε

if prεsq “
«

pfpεq if pfpεq is finite
α if pfpεq “ αβω, β ‰ ε

§ Remark. Note that, in general, „f may have an infinite index, thus Tf may be infinite. This
is the case for fblocks: for two words u “ u0#w and v “ u0#w1 with u0ww

1 not containing
#, u „fblocks v if and only if |w| “ |w1| and they end with the same letter. We will define
below a subclass of rational transductions, which captures exactly finite „f (Theorem 12).
As shown below, the sequential transducer Tf computes the sequential extension f of f . If f
is sequential then f and f coincide on dompfq(see Proposition 32 in the appendix).

§ Proposition 7. Given a function f , the transducer Tf realizes f .

We now focus on sequential transductions, and show first that Tf can be built in PTime.

§ Proposition 8. There is a PTime algorithm that, for a given sequential transducer T
realizing the function f , computes the transducer Tf .

For sequential transductions we get a characterization, as stated in the next theorem. We
will see that the first condition is equivalent to the weak twinning property. Thus, the next
theorem adapts a result from [2] to the case where transducers may output finite words.

3 We check in Appendix B that Tf is well-defined.
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§ Theorem 9. A rational function f is sequential if and only if the following conditions hold:
„f has finite index
f |dompfq “ f

If we remove the last restriction f |dompfq “ f in Theorem 9, we obtain a class of transductions
where the output can be still generated deterministically (as for sequential transductions),
although not necessarily in a progressive manner:

§ Definition 10. A function f is called quasi-sequential if it is rational and „f has finite
index.

Intuitively, quasi-sequential functions generalize the so-called subsequential functions on finite
words to infinite words. For subsequential functions there is a final output associated with
final states. Quasi-sequential functions can be shown to correspond to sequential transducers
where final sets may have an associated word in A8. The output of an accepting run with
such a final set is obtained by appending the associated word to the output word obtained
through the transitions (if finite). Since we do not use this model in the present paper, we
do not provide more details in the following. The following property and construction are
now taken directly from [2]. As in the latter article, a state is called constant if the set of
words produced by final runs from this state is a singleton.

§ Definition 11 (weak twinning property). A transducer T is said to satisfy the weak twinning
property (WTP) if for any initial runs p1

u|α1
ÝÝÝÑ q1

v|β1
ÝÝÝÑ q1 and p2

u|α2
ÝÝÝÑ q2

v|β2
ÝÝÝÑ q2 the

following property holds:
If q1, q2 are not constant then delpipp1qα1, ipp2qα2q “ delpipp1qα1β1, ipp2qα2β2q

If q1 is not constant, q2 is constant and produces the regular word γ, then either β1 “ ε

or ipp1qα1β
ω
1 “ ipp2qα2β2γ

Note that if q2 is constant and β2 “ ε then γ “ βω2 .

The authors of [2] provide a determinization procedure – which we call subset construction
with delays– which terminates if and only if the transducer satisfies the WTP. We show that
actually the procedure gives a transducer realizing the sequential extension of the function
and we use this fact in Sec. 4 in order to compute a canonical look-ahead.

§ Theorem 12. Let T be a transducer realizing a function f , let S be the transducer obtained
by subset construction with delays. The following statements are equivalent:
1. The transducer T satisfies the WTP
2. The transducer S is finite
3. f is quasi-sequential
Furthermore, if T is aperiodic then S is aperiodic as well.

3 Rational transductions

Bimachines over infinite words A bimachine over alphabets A,B is a tuple B “ pL,R, i, oq
where L “ pQL,∆L, tl0uq is a left automaton, R “ pQR,∆R, I, F q is a right automaton,
i : I Ñ B˚ is the initial function and o : QLˆAˆQR Ñ B˚ is the output function. We have
a semantic restriction that JLK “ JRK. The output produced on an infinite word w P JRK
at position i ě 1 is αi “ opl, a, rq, where l is the state reached in L after reading the prefix
wp:i ´ 1q of w up to position i ´ 1 (if defined), r is the state of the unique final run of R
on w (if defined) reached by the suffix wpi` 1:q of w from position i` 1 on, and a “ wpiq.
In other words, the output at position i is determined by the left context up to position
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i´ 1, the right context from position i` 1 onwards, and the letter at position i. The output
produced on w is ipr0qα1α2 ¨ ¨ ¨ , with r0 P I the state from which there is a final run of R on
w (if defined). Thus, the right automaton R provides a look-ahead and the output depends
both on the state of L and the unique final run of R on the given word. The transduction
realized by B is denoted by JBK. Note that JBK is defined over JRK. A bimachine is called
aperiodic if both its automata are aperiodic.

§ Example 13. Let us define a bimachine for fab, the function that outputs ab-factors of
the input over ta, bu, if this input has a finite number of a’s. We use as left automaton the
underlying automaton of the transducer in Figure 2, without its Muller acceptance condition.
This automaton will only be used to store the last letter read. The domain has to be checked
by the right automaton, and we choose the one in Figure 3. As output functions, we let
ipqq “ ε for the initial states of the right automaton, and let opqa, b, rq “ ab for r P t1, 2u,
and opl, c, rq “ ε for all other states l, r of the left and right automata, and letter c P ta, bu.

Left minimization We show how to minimize the left automaton of a bimachine with respect
to a right automaton R. The procedure is very similar to the minimization for sequential
transducers. The objects we use are the same as in Section 2, but relativized to the right
context defined by the look-ahead provided by the right automaton R. The bimachine with
minimal left automaton with respect to the right automaton R is the bimachine BR

f defined
below.

Recall that the left congruence «R of a right automaton R sets x «R y if the unique state
from which there is a final run on x is the same as for y. Let f : Aω Ñ B8 be a function and
let R “ pQR,∆R, I, F q be a right automaton recognizing dompfq. We write rxsR for the class
of a word x with respect to «R, and, abusing notations, for the state of QR from which words
of rxsR have a final run. We define pfx : A˚ Ñ B8 by setting pfxpuq “

Ź

tfpuyq | y «R xu.
Note that there are finitely many functions pfx, one for each equivalence class of «R. We
also define fR : Aω Ñ B8, by setting fR

pxq “ limn
pfxpn`1:qpxp:nqq. The transduction fR is

defined over dompfq.

§ Definition 14 (R-syntactic congruence). The R-syntactic congruence of f is defined over
A˚ by letting u „R

f v if:
1. @x P Aω, ux P dompfq ô vx P dompfq, and
2. for any x P Aω, either pfxpuq and pfxpvq are both infinite with the same ultimate period

(in normal form) or they are both finite and pfxpuq
´1fpuxq “ pfxpvq

´1fpvxq.
Similarly to the sequential case, we define from „R

f a bimachine BR
f “

´

LR
f ,R, iR

f , oR
f

¯

with right automaton R, and left automaton LR
f “

´

QR
f ,∆R

f , I
R
f

¯

corresponding to „R
f . To

simplify notations we denote the congruence class of a word u with respect to „R
f by rus.

Abusing notations we also write rxsR for the state of R from which x has an accepting run.
QR
f “ A˚{„R

f
and IR

f “ trεsu

∆R
f “ tprus , a, ruasq | u P A

˚, a P A, uax P dompfq for some x P Aωu

of prus , a, rxsRq “

$

’

’

’

&

’

’

’

%

pfaxpuq
´1

pfxpuaq if pfxpuaq is finite
β if pfaxpuq “ αβω, β “ ε

α if pfaxpuq is finite, pfaxpuq
´1

pfpuaq “ αβω

and β “ ε

if prxsRq “
«

pfxpεq if pfxpεq is finite
α if pfxpεq “ αβω, β “ ε
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We show in appendix that BR
f is well-defined, and exhibit some of its properties. We also

describe in appendix a polynomial time algorithm that computes BR
f from a bimachine with

right automaton R, with a technique similar to the sequential case(Proposition 6).

From transducers to bimachines For the theorem below, recall that „A denotes the right
congruence of an automaton A. The left congruence «A of an automaton A sets x «A y if
for every state q of A, there is some final run on x from q if and only if there is one on y.

§ Theorem 15. Given a transducer with underlying automaton A and a right automaton R
with «R Ď «A. Then „A Ď „R

f and the bimachine BR
f realizes f .

In particular any aperiodic transduction can be realized by an aperiodic bimachine.

The other direction also holds: from a bimachine we can build an equivalent (unambiguous)
transducer, by taking the product of the left and right automata of the bimachine. The
construction is not hard but given in the appendix. By Theorem 15 and Proposition 1 we
obtain:

§ Theorem 16. A function is rational (resp. rational and aperiodic) if and only if it can be
realized by a bimachine (resp. aperiodic bimachine).

Labelings and bimachines We define the labeling function associated with a right automaton
R “ pQ,∆, I, F q by the right transducer `pRq “ pR, i, oq, with ipqq “ ε and opp, a, qq “ pa, qq.
Intuitively, the labeling function labels each position with the look-ahead information about
the suffix provided by R. For a transduction f we define fR “ f ˝ J`pRqK´1. Note that fR is
a function, since the labeling is injective (because R is unambiguous). Thus, fR corresponds
to f defined over words enriched by the look-ahead information of R.

§ Proposition 17. Let f be a transduction and let R be a right automaton. There exists
a bimachine B realizing f with R as a right automaton if and only if fR is left-sequential.
Furthermore, assuming that R is aperiodic, then „R

f is aperiodic if and only if fR is aperiodic.

We say that a transducer is letter-to-letter if its initial output function always outputs the
empty word and its output function always outputs a single letter. The following corollary
states the classical result of [11] but over infinite words, and generalizes a result of [5].

§ Corollary 18. For any rational function f , there exists a left-sequential (right-seq. resp.)
function g and a letter-to-letter right-sequential (left-seq. resp.) function h such that f “ g˝h.

4 Canonical machines

The goal of this section is to define a canonical bimachine for any rational function. By
canonicity we mean that it should be machine-independent. Our ultimate goal is to show
that the canonical bimachine suffices to decide the algebraic properties we are interested
in. To get a canonical bimachine, we need a right automaton for the look-ahead that is 1)
canonical, 2) coarse-grained enough to preserve algebraic properties, and 3) fine-grained
enough to obtain a deterministic left automaton (and hence a bimachine).

We define the delay congruence and show that it is the coarsest left congruence such
that any automaton R recognizing it satisfies that fR is quasi-sequential (Proposition 21).
However, this congruence is, in general, too coarse to make fR sequential. We then introduce
the ultimate congruence, and show how to combine these two congruences to build a canonical
bimachine.
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Let f be a transduction. We define the delay between x, y P Aω with respect to f by:
delf px, yq “ tdelpfpuxq, fpuyqq | ux, uy P dompfqu. The following definition is taken from
[21, 3].

§ Definition 19 (delay congruence). The delay congruence of f is defined by setting x ∆
«f y

for x, y P Aω if p1q for all u P A˚, ux P dompfq ô uy P dompfq, and p2q |delf px, yq| ă 8.

§ Example 20. Let us illustrate the above definition on fblocks (recall Example 3). We
consider x “ u1# . . .#un#v and y “ u11# . . .#u1n#v1 where v and v1 are infinite words
not containing #. Note that x ∆

«fblocks y if and only if u1, u
1
1 are either both empty, or end

with the same letter. Indeed, if the latter holds then delpfpuxq, fpuyqq “ delpfpxq, fpyqq.
Conversely, if both u1, u

1
1 are non-empty but end with different letters, then for any u without

#, delpfblockspuxq, fblockspuyqq “ pfpuxq, fpuyqq. If u1 “ ε and u, u11 end with different letters,
then again, delpfblockspuxq, fblockspuyqq “ pfpuxq, fpuyqq. There are two more classes with
respect to ∆

«fblocks , one for infinitely many #, and one for no #.
The look-ahead ∆

«fblocks provides enough information to transform the blocks determin-
istically (we only need the last letter before the next #), but not enough information to
produce the output after the last # deterministically.

The following proposition shows that the delay congruence, when used as a look-ahead (see
the definition of fR page 11), transforms any rational function into a quasi-sequential one.

§ Proposition 21. Let f be a transduction and let R be a right automaton recognizing
dompfq. Then fR is quasi-sequential iff «R Ď

∆
«f . In particular, if f is aperiodic then ∆

«f is
aperiodic.

The delay congruence is minimal, i.e. coarsest, among right congruences of bimachines
realizing a function, and we show in appendix that it can be computed in PTime from a
bimachine.

§ Proposition 22. Given a transducer T (resp. a bimachine B) with underlying automaton
A (resp. right automaton R) realizing a function f , we have that «A (resp. «R) is finer
than ∆

«f .

Canonical machine for quasi-sequential functions As noted in [2], the class of quasi-se-
quential functions, or equivalently, the class of functions satisfying the WTP, is strictly larger
than the class of sequential functions. The last left congruence that we define now will be fine
enough to make a quasi-sequential function sequential. By taking the intersection between
this congruence and the left delay congruence we will obtain a congruence that is fine enough
to make any rational function sequential. However, it should be noted that this look-ahead
is not minimal, in the sense that it is not necessarily coarser than any look-ahead that is fine
enough to realize the function.

§ Definition 23 (Ultimate congruence). We define the ultimate congruence of a rational
function f by setting x Y

«f y for x, y P Aω if the following conditions hold:
For all u P A˚, ux P dompfq ô uy P dompfq
If ux P dompfq then pfpuq “ fpuxq ô pfpuq “ fpuyq Moreover, if pfpuq “ fpuxq then
fpuxq “ fpuyq.

Observe that pfpuq ĺ fpuxq for every ux P dompfq. So the intuition behind pfpuq “ fpuxq is
that no finite look-ahead on x can help to output fpuxq deterministically after u. And the
intuition behind fpuxq “ fpuyq is that the missing outputs pfpuq´1fpuxq and pfpuq´1fpuyq
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have to be equal, which is equivalent to fpuxq “ fpuyq. Now, for a given class of Y

«f as
look-ahead, a left automaton would know the missing output and start producing it. We
show in the appendix (Lemma 42) that Y

«f is a left congruence.

§ Example 24. Recall the function fblocks defined in Example 3. {fblocks maps every block to
its output and stops at the last #. Hence {fblockspuq “ fblockspuxq if and only if x does not
contain #. When {fblockspuq “ fblockspuxq, we have fpuxq “ fpuyq if and only if x and y both
contain an infinite number of a’s, or none of them does. The congruence classes of Y

«fblocks

are thus: a) words x with an infinite number of # (yielding ux outside the domain), b) words
x with a finite (non-zero) number of #, c) words without #, with an infinite number of a’s,
d) words without #, with a finite number of a’s. This is precisely the information lacking
in the look-ahead provided by ∆

«fblocks (see Example 20) to obtain a look-ahead allowing a
sequential processing of the input.

§ Proposition 25. For a quasi-sequential transduction f , the ultimate congruence Y

«f has
finite index. If f is given as a bimachine, Y«f can be computed in 2-ExpTime. Furthermore,
if f is aperiodic then Y

«f is aperiodic.

Let R be a right automaton recognizing Y

«f . We define the bimachine UR
f “ pAf ,R, if , oRq

with Af and if (as in Section 2), and for oR we take:

oRprus , a, rxsRq “

»

—

–

pfpuq´1
pfpuaq if pfpuaq ă fpuaxq

β if pfpuq “ fpuaxq and pfpuq´1fpuaxq “ αβω

α if pfpuq ă pfpuaq “ fpuaxq and pfpuq´1fpuaxq “ αβω

The following lemma states that UR
f realizes f .

§ Lemma 26. Let f be a quasi-sequential transduction, and let R be a right automaton
recognizing the ultimate congruence Y

«f , then UR
f realizes f .

Let R be the canonical right automaton of Y

«f . By the previous lemma, there exists a
bimachine with R as right automaton realizing f . By minimizing its left automaton with
respect to R, we obtain a canonical bimachine for f .

§ Corollary 27. Let f be a quasi-sequential transduction, and let R be the canonical right
automaton of the ultimate congruence Y

«f , then BR
f realizes f (and is finite).

Canonical bimachine We finally show that by composing the information given by the delay
and the ultimate congruences, we obtain a canonical bimachine for any rational function. Let
us make clear what we mean by composition. Let R1 “ pQ1,∆1, I1, F1q be a right automaton
and let R2 “ pQ1,∆2, I2, F2q be a right automaton over AˆQ1 . The automaton R1 ’ R2
is defined as pQ1ˆQ2,∆t1,2u, I1ˆ I2, F1ˆF2q with F1ˆF2 “ tP1 ˆ P2 | P1 P F1, P2 P F2u

and ∆t1,2u “ tpps1, s2q, a, pr1, r2q | ps1, a, r1q P ∆1, ps2, pa, r1q, r2q P ∆2u, which is a right
automaton.

§ Lemma 28. Let R1 “ pQ1,∆, I, F q be a right automaton and let R2 be a right automaton
over A ˆ Q1. Then J`pR2qK ˝ J`pR1qK “ J`pR1 ’ R2qK (up to the isomorphism between
pAˆQ1q ˆQ2 and Aˆ pQ1 ˆQ2q).

We can now state our main result. In our construction we focused on clarity and composition-
ality and we obtain a several-fold exponential complexity. At the cost of greater technicality,
one should obtain a tighter result.
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§ Theorem 29 (Canonical Bimachine). Let f be a transduction given by a bimachine, let R1 be
the canonical automaton of the delay congruence ∆

«f , and let R2 be the canonical automaton
of the ultimate congruence Y

«pfR1 q
. Then the bimachine BR1’R2

f realizes f . Furthermore if f
is aperiodic then BR1’R2

f is aperiodic.

Proof. Let f be a transduction, let R1 be the canonical automaton of the delay congruence
∆
«f and let R2 be the canonical automaton of the ultimate congruence Y

«pfR1 q
. Since R1

recognizes ∆
«f , we know according to Proposition 22 that fR1 is quasi-sequential. Hence since

R2 is finer than Y

«pfR1 q
, we know from Cor. 27 that the bimachine BR2

fR1
realizes f . From

Proposition 17 we obtain that pfR1qR2 , the function obtained by composing the labelings
`pR2q and `pR1q, is left-sequential. We use Lemma 28 to obtain that fR1’R2 is left-sequential
and thus, again by Proposition 17 we know there is a bimachine with R1 ’ R2 as right
automaton which realizes f . In particular, BR1’R2

f realizes f .
If we assume that f is aperiodic, we obtain from Proposition 22 that R1 is aperiodic and

from Proposition 17 that fR1 is aperiodic. Hence from Proposition 25 we have that R2 is
aperiodic. Again from Proposition 17, we have that pfR1qR2 “ fR1’R2 is aperiodic. A third
time from Proposition 17 we have that BR1’R2

f is aperiodic. đ

Note that the right automaton constructed in Proposition 1 is actually a right Büchi
automaton. So our result would still hold for bimachines with Büchi right automata.

5 First-Order Definability Problem

In this section, we show that given a transducer T realizing a transduction JT K : Aω Ñ B8,
one can decide whether JT K is first-order definable (FO-definable). First, let us recall the
notion of FO-definability for word languages. Any word w P A8 is seen as a structure of
domain t1, . . . , |w|u linearly ordered by ĺ and with unary predicates apxq, for all a P A. By
FO we denote the first-order logic over these predicates, and by MSO the extension of FO
with quantification over sets and membership tests x P X (see for instance [23] for a detailed
definition). We write w |ù φ if some word w satisfies a formula φ, and φpx1, . . . , xnq any
formula φ with n free first-order variables x1, . . . , xn. Interpreted over words in Aω (resp.
A8), any sentence φ defines a language JφK Ď Aω (resp. JφK Ď A8) defined as the set of
words satisfying φ. E.g. the sentence φ0 “ @x, y ¨ apxq ^ bpyq Ñ x ĺ y, interpreted on Aω,
defines the language aω Y a˚bω. Interpreted on A8, it defines the language aω Y a˚bω Y a˚b˚.
A language L is said to be FO-definable (resp. MSO-definable) if L “ JφK for some sentence
φ P FO (resp. φ P MSO).

Definability of transductions An MSO-transducer is a tuple F “ pA,B, φdom, V, µq where
φdom is an MSO-sentence, V is a finite subset of B˚ and µ a function mapping any word
v P V to some MSO-formula (over alphabet A) denoted φvpxq, with one-free variable. An
FO-transducer is an MSO-transducer which uses only FO-formulas. Any MSO-transducer
defines a transduction denoted JFK Ď Aω ˆB8 such that pu, vq P JFK if u |ù φdom and there
exists pviqiě1 such that v “ v1v2v3 . . . and for all i ě 1, vi P V and u |ù φvi

piq. We say
that f : Aω Ñ B8 is MSO- (resp. FO-) definable if there exists some MSO- (resp. FO-)
transducer F such that JFK “ f .

For example the functional transduction which erases all a’s of any input ω-word over
ta, bu is defined by φdom “ J and the two formulas φεpxq “ apxq and φbpxq “ bpxq. The
functional transduction mapping any word of the form anbω to atn{2ubω is not FO-definable,
even though its domain is. Intuitively, the formula φapxq would have to decide whether
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x is an odd or even position, which is a typical non FO-definable property. It is one of
the goal of this paper to automatically verify that such a property is indeed not FO. It is
however MSO-definable with φdom “ φ0 ^ Dx ¨ bpxq, where φ0 has been defined before, and
the three formulas φεpxq “ apxq ^ oddpxq, φapxq “ apxq ^ evenpxq (properties which are
MSO-definable) and φbpxq “ bpxq.

As a remark, Courcelle has defined in the context of graph transductions the notion of
MSO-transducers [9], which can also be restricted to FO-transducers. Cast to infinite words,
Courcelle’s formalism is strictly more expressive than rational functions, as they allow to
mirror factors of the input word for instance. Restricted to the so called order-preserving
Courcelle transducers [4, 12], they are equivalent to our MSO- and FO-transducers, however
with a more complicated definition. This equivalence can be seen, for finite words, in the
proof of Theorem 4 in [12]. The same proof works for infinite words as well.

We first exhibit a correspondence between logics and transducers, the proof of which is
similar to the finite case [12], but requires some additional results on aperiodic automata on
ω-words.

§ Theorem 30 (Logic-transducer correspondences). Let f : Aω Ñ B8. Then:
f is MSO-definable if and only if it is realizable by some transducer.
f is FO-definable if and only if it is realizable by some aperiodic transducer.

We obtain the following decidability result (in elementary complexity if the input is a
transducer).

§ Theorem 31. It is decidable whether a rational function f : Aω Ñ B8, given as a
transducer or equivalently as an MSO-transducer, is definable in FO.

Proof. By Theorem 30, it suffices to show that f is aperiodic, i.e. definable by some aperiodic
transducer. By Theorem 16, one can construct a bimachine which is aperiodic if and only if
f is. So, it suffices to construct this bimachine and to test its aperiodicity, i.e., whether its
left and right automata are both aperiodic, a property which is decidable [10]. đ
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A Proofs for Section 1

The syntactic congruence of an ω-language L is defined for u, v P A` by u ”L v if @r, s P
A˚, t P A`: 1) rustω P L ô rvstω P L and 2) rpusqω P L ô rpvsqω P L.

Proof of Proposition 1. Let « be a left congruence. The construction of [6] starts with a
congruence that is finer than the syntactic congruence of the ω-regular language L, and
produces a right automaton of exponential size with Büchi acceptance condition, recognizing
L.

For our purpose it suffices to start with the coarsest congruence that refines the syntactic
congruence of any of the languages rxs«, call it ”. This means that the automaton we obtain
from ” applying the construction of [6] can recognize any congruence class of «, and hence
recognizes «.

Let us now discuss aperiodicity. A language is aperiodic if and only if its syntactic
congruence is aperiodic. We just give the main arguments why the construction of [6] preserves
aperiodicity and refer the reader to [6] for a thorough understanding (and we also use the
same notations). The states in the constructions are pairs of the form prs, es, ps1, . . . , snqq,
where rs, es denotes a conjugacy class of linked pairs and ps1, . . . , snq denotes a chain of
R-classes. Since we start from an aperiodic semigroup S (given by the classes of the syntactic
congruence), the left action of the semigroup on conjugacy classes is obviously aperiodic.
More precisely, for n large enough we have un`1 ¨rs, es “ r

“

un`1
S

‰

s, es “ rrunsS s, es. Similarly,
using Proposition 69 in the article and since un`1 and un are in the same R-class (for n large
enough) we have for any infinite word w that pϕpun`1wq “ pϕpunwq. Finally it is clear that
the construction of Lemma 17 in [6] which goes from a right Büchi automaton with a final set
of transitions to a right Büchi automaton with a final set of states, preserves aperiodicity. đ

B Proofs for Section 2

B.1 Syntactic congruence
Proof of Proposition 6. Let u „f v and let a P A we want to show that ua „f va. If pfpuq

and pfpvq are both infinite with the same ultimate period then it is also the case for pfpuaq and
pfpvaq. Otherwise, for any x such that ux, vx P dompfq, we have pfpuq´1fpuxq “ pfpvq´1fpvxq

and we denote this word by gpxq. Note that fpuxq “ pfpuqgpxq. If
Ź

x gpaxq is infinite then
we have both pfpuaq and pfpvaq infinite with the same ultimate period. Otherwise:

pfpuaq´1fpuaxq “

´

Ź

y fpuayq
¯´1

fpuaxq

“

´

Ź

y
pfpuqgpayq

¯´1
fpuaxq

“

´

pfpuq
Ź

y gpayq
¯´1

fpuaxq

“

´

Ź

y gpayq
¯´1

pfpuq´1fpuaxq

“

´

Ź

y gpayq
¯´1

pfpvq´1fpvaxq

“ pfpvaq´1fpvaxq

đ

Tf is well-defined. We have left to show that the outputs are well-defined. If u „f v and
pfpuq “ αβω with β “ ε, then pfpvq “ α1βω since both words are in normal form, and thus the
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output is uniquely defined. Otherwise it suffices to show that pfpuq´1
pfpuaq “ pfpvq´1

pfpvaq

to have well-defined outputs.

pfpuq´1
pfpuaq “ pfpuq´1 Ź

x fpuaxq

“ pfpuq´1 Ź
x
pfpuqgpaxq

“ pfpuq´1
pfpuq

Ź

x gpaxq

“
Ź

x gpaxq

“ pfpvq´1
pfpvaq

đ

Proof of Proposition 7. We denote by g the sequential function realized by Tf . Let us
first show that dompgq “ dompfq. Let x P Aω, since Af has no acceptance condition then
x P dompgq if and only if there is a run of Af over it. Let x P dompfq, then for any integer
n, there is an ω-word yn such that xp:nqyn P dompfq, hence by definition of ∆f there is
an infinite run of Af over x. Let us now assume x R dompfq, then there is an integer n
such that for all y P Aω, xp:nqxpnqy R dompfq, hence there is no run of Af over x. Hence
dompgq “ dompfq.

Let x be a word in dompfq. Let us first assume that for any integer n, pfpxp:nqq is finite.
Then in Tf , we have by definition that rεs xp:nq|αn

ÝÝÝÝÝÑ rxp:nqs with if prεsqαn “ pfpxp:nqq. Thus
gpxq “ limn

pfpxp:nqq “ fpxq.
Now let us assume that for some integer k ě 0 we have pfpxp:kqq “ αβω with β P B`,

and let us also assume without loss of generality that k is the smallest of such integers. Then
we must have fpxq “ pfpxp:kqq “ αβω. Furthermore, by definition we have in Tf , rεs

xp:kq|γ
ÝÝÝÝÑ

rxp:kqs with iprεsqγ “ αβl for some integer l, and for n ě k we have rxp:nqs xpn`1q|β
ÝÝÝÝÝÝÑ

rxp:n` 1qs. Hence gpxq “ limněk αβ
n´k`l “ αβω “ fpxq. đ

B.2 Sequential transductions
We start with two properties of sequential functions.

§ Proposition 32. For any sequential transduction f , it holds that f |dompfq “ f .

Proof. Let T be a sequential transducer realizing f and let x P dompfq. If fpxq is finite,
then there exists an integer k such that q0

xp:kq|fpxq
ÝÝÝÝÝÝÑ p. Since f is sequential, for any n ě k

we have pfpxp:nqq “ fpxq which means that fpxq “ fpxq. Otherwise, if fpxq is infinite, then
there must be an increasing sequence of indexes n1, n2, . . . such that q0

xp:nkq|αk
ÝÝÝÝÝÝÑ pk with

αk ă αk`1. By sequentiality of f , ipq0qαk ĺ pfpxp:nkqq and since fpxq “ limk ipq0qαk is
infinite, we have that fpxq “ limk

pfpxp:nkqq is also infinite and the two words are equal. đ

§ Proposition 33. For any sequential transducer with underlying deterministic automaton
A realizing a transduction f , we have „A Ď„f .

Proof. Let T “ pA, i, oq be a sequential transducer realizing a function f , hence A “

pQ,∆, q0, F q is deterministic. Let u „A v, we want to show that u „f v. Let x P Aω, since
u and v reach the same state from q0 we have that ux P dompfq ô vx P dompfq. Let us
assume that ux P dompfq for some word x, then we know that for any w ă x there exists z
such that uwz P dompfq. However we have by assumption uwz P dompfq ô vwz P dompfq,
hence vx P dompfq.

FSTTCS 2018
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Let q P Q, we define Tq by Tq “ pAq, i, oq with Aq “ pQ,∆, q, F q and we denote the
corresponding sequential function by fq. Let q be the state reached from q0 by reading u (or
v), and let γ be the longest common prefix of all outputs along final runs starting at q, i.e.
γ “ pfqpεq. If γ is infinite then pfpuq and pfpvq have the same ultimate period, which is also
the one of γ. If γ is finite, then let q0

u|α
ÝÝÑ q and q0

v|β
ÝÝÑ q denote the initial runs of A over u

and v, respectively. We thus have pfpuq “ ipq0qαγ and pfpvq “ ipq0qβγ. Let x be such that
ux, vx P dompfq. Since A is deterministic, we have:

pfpuq´1fpuxq “ pipq0qαγq
´1 ipq0qαfqpxq

“ γ´1fqpxq

“ pfpvq´1fpvxq

Thus we obtain u „f v which concludes the proof. đ

Proof of Proposition 8. To compute Tf we need to compute the longest common prefix
function pf and to determine the classes of the syntactic congruence „f . For the classes
of „f we can use Proposition 33: for every state p of T we fix some (minimal-length)
representative word up leading from the initial state to p. Then we check whether up „f uq,
for every pair of states p, q of T (we explain below how this can be done). Doing so, we have
determined the classes c1, . . . , cn of „f together with a representative u1, . . . , un for each of
them. To compute the initial state, it suffices to test which i satisfies ui „f ε. To compute
the transitions, given a state rujs and a letter a, it suffices to determine which i satisfies
ui „f uja to get the next state. The outputs are computed with the function pf . We now
explain how to test in polynomial time (in |T |) whether two words u, v satisfy u „f v, and
how to compute pfpuq.

Let T “ pA, i, oq with A “ pQ,∆, q0, F q deterministic, and let us consider a finite word
u over A. We want first to check whether pfpuq is ultimately periodic and compute it, if this
is the case. If q denotes the state reached by u in T , then we ask whether all paths from q

are labeled by the same output word. Equivalently, it suffices to check whether there exist
two accepting paths starting in q, with different output words. The check can be done by a
product construction where we ignore the input and just monitor the delay between the two
outputs, keeping it bounded by the maximal length of output words in T . So the question
boils down to emptiness check of an automaton of size |Q|2 ˆ |o|. If all paths from q have
the same output word, then we can compute this word in polynomial time by selecting an
accepting path from q.

Let us now consider the case where pfpuq is finite, and show that we can compute it in
polynomial time as well. To compute pfpuq we can view T as a graph where we remove the
inputs, keeping only the output words labeling transitions. First we argue that the length of
pfpuq is polynomial, by showing that we can always find two paths from q of polynomial length,
with different outputs. We start with two arbitrary finite paths π0, π1 from q, with different
outputs, such that their lengths are minimal. So the mismatch between the outputs of π0, π1
is in the last transitions. If one of the paths is loop-free, the claim is shown. Otherwise, each
of π0, π1 contains some loops. If there are two loops with overall label of same length, one
in π0, the other in π1, then we get a contradiction to the minimality of π0, π1, by cutting
these loops. If all loops of π0 have overall labels of length different from those of π1, then we
fix some loop `i in πi with overall label of length ki. We remove all loops from πi except `i,
and get a new path π1i by iterating `i k1´i times. Thus, π10, π11 are of (the same) polynomial
length and have different outputs, as treated in the previous case.

Once we know that the length of pfpuq is bounded by a polynomial we can compute it by
a.k.a. subset construction on the above graph, that is executed only a polynomial number of
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steps. Roughly, we follow from q all possible paths, and store only their delays, bounded by
the maximal output length of T .

We show now how to check for two words u, v over A whether u „f v.
The first condition of „f asks that ux P dompfq if and only if vx P dompfq. Since T

is trim, ux P dompfq is equivalent to saying that ux labels a path of A. Hence, if u and v
lead to some states p and q respectively in A, testing the former condition amounts to check
whether Lp “ Lq, where Lp (resp. Lq) denotes the set of ω-words for which there exists a
path from p (resp. q). Since A is deterministic, the latter can be checked in polynomial time.

For the second condition we may assume that pfpuq, pfpvq are both finite (and already
computed). A standard product construction of A with itself allows to check whether some
x exists s.t. pfpuq´1fpuxq “ pfpvq´1fpvxq. đ

Proof of Theorem 9. If f is sequential then Propositions 33 and 32 yield the claim. Con-
versely, assume that Tf is finite. From Proposition 7 we know that Tf realizes f . Since
Af is deterministic we also know that f is sequential. Let A be a deterministic automaton
recognizing dompfq. By taking the product of Af and A we obtain a deterministic transducer
realizing f |dompfq “ f . đ

B.3 Quasi-sequential transductions
We now recall an algorithm described in [2] (referring to it as subset construction with delays)
and argue that it terminates on transducers satisfying WTP with a sequential transducer
computing f . We will need this construction in order to define the canonical bimachine and
show that it preserves aperiodicity in Section 4.

Let T “ pA, i, oq with A “ pQ,∆, I, F q be a transducer which satisfies the WTP.
For any state q P Q we denote by βq P B8 the longest common prefix of the outputs over

final runs starting in q and by C the set of constant states. Recall that Proposition 8 shows
how to compute βq and C is PTime. We thus assume that T is in earliest form, meaning
that outputs are generated as soon as possible, according to pf .

We define now the transducer S “ pD, i 1, o1q. States of D are sets of pairs pq, xq, with q
state of A and x a regular word.

Let αβω “
Ź

qPI ipqqβq. The initial state of D is I0 “
 

pq, α´1ipqqβqq | q P C X I
(

Y
 

pq, α´1ipqqq | q P IzC
(

, and i 1pI0q “ α. Given an already constructed state P and a letter
a P A, we define:

R“
!

pq, wq | pp, wq P P, p P C and p a
ÝÑ q

)

Y

"

pq, uvq | pp, uq P P, p, q R C and p a|v
ÝÝÑ q

*

Y

"

pq, uvβqq | pp, uq P P, p R C, q P C and p a|v
ÝÝÑ q

*

Let now αβω be the longest common prefix of all words appearing in R. If α “ ε we define
v “ β, otherwise we define v “ α. Note that if β ‰ ε then this means that all the words
appearing in R are equal to αβω. We define a new state P 1 “

 

pq, v´1wq | pq, wq P R
(

and
add the transition P a|v

ÝÝÑS P 1. Finally we keep only the accessible part of S.

§ Remark. The transducer S is (almost) sequential, in the sense that its underlying automaton
is deterministic. However it may be infinite.

§ Proposition 34 ([2]). Let T be a transducer satisfying the WTP. Then the transducer
obtained by subset construction with delays is finite (of exponential size).
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Proof. The authors of [2] have a slightly different model of transducers where a run has to
produce an infinite word in order to be accepting. However this difference doesn’t affect the
results and their proofs can be applied almost unchanged. In particular, for a transducer
satisfying the WTP, it is shown in Lemma 12 that the difference of outputs between two runs
over the same input is polynomial (with a small catch for constant states). As for automata
the exponential blow-up is unavoidable. đ

§ Proposition 35. Let T be a transducer realizing a function f , and let S be the transducer
obtained by the subset construction with delays. Then S realizes f .

Proof. Let T “ pA, i, oq with A “ pQ,∆, I, F q be a transducer realizing a function f .
Let S “ pD, i 1, o1q with D “ pS, δ, tI0uq be the sequential transducer obtained by subset
construction with delays, and let g denote the function realized by S.

First let us note that, by construction, for any initial run I0
u|v
ÝÝÑ P of S, we have that

i 1pI0qv ĺ pfpuq since the output along a run over u is a prefix of all the possible outputs
along runs over an infinite word beginning with u in T . Let x be a word in dompfq, let u
be a strict prefix of x and let P “ tpp1, w1q, . . . , ppn, wnqu be the state reached in S after
reading u. Let us assume that pfpuq is a finite word. By construction we have

Ź

1ďiďn wi “ ε,
since pfpuq is finite, and there are two cases: either wi “ ε for some i, or there are wi, wj
non-empty such that wi ^ wj “ ε. In the latter case we have pfpuq “ i 1pI0qv. In the first
case, since T is in earliest form and pi is non-constant, there are two words y, z which
have a final run from pi, and whose respective outputs α, β have no common prefix. Hence
pfpuq ĺ pi 1pI0qvα^ i 1pI0qvβq “ i 1pI0qv. Thus if for any strict prefix u of x, pfpuq “ i 1pI0qv is
a finite word, we have fpxq “ limuăx

pfpuq “ limuăx v “ gpxq. Otherwise let us now assume
that for some prefix u, pfpuq is an infinite word of the form αβω. All the wi’s must thus be
equal to βω and i 1pI0qv “ αβk for some k. By definition of S, the output of S when reading
xp|u| ` 1q from P is equal to β and it is the same for all the following transitions over x. We
obtain gpxq “ αβω “ fpxq. đ

Proof of Theorem 12. According to Proposition 34, (1) implies that S is finite, which proves
(2).

Let u „S v, we want to show that u „f v which will prove that (2) implies (3).
Let I0

u|α
ÝÝÑ R and I0

v|β
ÝÝÑ R denote the initial runs of S over u and v, respectively. If

R is a constant state which produces an infinite word, then pfpuq and pfpvq are infinite
words with the same ultimate period hence u „f v. If R contains only one pair pp, wq,
then we have w “ ε by construction. Furthermore since T is in earliest form, we have
i 1pI0qα “ pfpuq and i 1pI0qβ “ pfpvq. Otherwise there must be two pairs pp1, w1q, pp2, w2q P R

such that delpw1, w2q “ ε and in that case we also have i 1pI0qα “ pfpuq and i 1pI0qβ “ pfpvq.
Let x be a word such that pp, wq P R and x has a final run in T p

x|γ
ÝÝÑ F . Then we

have fpuxq “ i 1pI0qαwγ (with the convention that yε “ y even for infinite words). Thus
pfpuq´1fpuxq “ wγ “ pfpvq´1fpvxq. Hence u „f v.

We now show that (3) implies (1). Let us now assume that „f has finite index. Let us
assume, towards a contradiction, that T does not satisfy the WTP. Let us consider two runs
such that p1

u|u1
ÝÝÝÑ q1

v|v1
ÝÝÑ q1 and p2

u|u2
ÝÝÝÑ q2

v|v2
ÝÝÑ q2. By taking u1 “ uvk and v1 “ vl for

some integers k, l we have an initial run of Tf : q0
u1|u3
ÝÝÝÑ q

v1|v3
ÝÝÝÑ q. We can assume without

loss of generality that u “ u1 and v “ v1.
Let us first consider the case where q1, q2 are non-constant and delpipp1qu1, ipp2qu2q ‰

delpipp1qu1v1, ipp2qu2v2q. If |v1| “ |v2| then there must be a mismatch between ipp1qu1v1
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and ipp2qu2v2, i.e. a position k such that ipp1qu1v1pkq ‰ ipp2qu2v2pkq. Thus we have for
n ě 1, that | pfpuvnq| ď |ipp1qu1v1|, hence there must be an integer N such that for all
n ě N , pfpuvnq “ pfpuvN q. Furthermore, since q2 is non-constant, by the pre-processing step
there is a word x which produces y from q2 such that v2 ^ y “ ε and we have for m ‰ n

that ipp2qu2v
m
2 y ‰ ipp2qu2v

n
2 y. Hence for each n ě N we have that pfpuvnq´1fpuvnxq “

pfpuvN q´1ipp2qu2v
n
2 y takes a different value, which contradicts the fact that „f has finite

index.
If |v1| ‰ |v2|, we assume |v1| ă |v2| without loss of generality. Since q1 is non-constant, we

have pfpuvnq ĺ ipp1qu1v
n
1 for any n ě 0 which means that |v3| ď |v1| ă |v2|. Hence for any n

we have a distinct word pfpuvnq´1ipp2qu2v
n
2 “ pipq0qu3v

n
3 q
´1 ipp2qu2v

n
2 . Again, we use the

fact that q2 is constant and choose a word x producing y from q2 such that v2^ y “ ε. Hence
for each n we have that pfpuvnq´1fpuvnxq “ pipq0qu3v

n
3 q
´1 ipp2qu2v

n
2 y takes a different value,

again leading to a contradiction.
Now we consider the case where q1 is non-constant and q2 is constant, we denote by

yω2 the word produced from q2 (x2 is empty thanks to the preprocessing step) and we
assume we have both v1 ‰ ε and ipp1qu1v

ω
1 ‰ ipp2qu2y

ω
2 . Let k be such that ipp1qu1v

k
1 is

not a prefix of ipp2qu2y
ω
2 , we thus have for any n, | pfpuvnq| ď |ipp1qu1v

k
1 | and in particular

there exists an integer N such that for all n ě N , pfpuvnq “ pfpuvN q. We choose a word
x which produces y from q1 and such that v1 ^ y “ ε. We obtain that for each n ě N ,
pfpuvnq´1fpuvnxq “ pfpuvN q´1ipp1qu1v

n
1 y takes a different value, which is in contradiction

with the fact that „f has finite index.
For proving that the subset construction with delays preserves aperiodicity, we rely on

[14] where it is shown that the subset construction with delays preserves aperiodicity for
transducers over finite words. The proof is almost the same when dealing with infinite words.
Let us give the basic ideas to adapt the proof to infinite delays. The main idea of the original
proof is to show that if the starting transducer is aperiodic then S must be counter-free, and
thus aperiodic. We assume that we have a counter of minimal size k and show that k must
be 1. A counter means that there is a run in S of the form R0

u
ÝÑ R1 ¨ ¨ ¨Rk´1

u
ÝÑ R0. In the

original proof, we have by aperiodicity that the Rj ’s contain the same states and then we
show that the delays cannot change which means that all the Rj ’s must be equal. If we add
infinite delays in the Rj ’s, the same idea works. First let us notice that all the delays in a
given state Rj must be prefixes of each other, otherwise the length of the outputs from Rj
must be bounded, which automatically means that the delays cannot change. This means
that two infinite delays in a given state must be equal. Now we have three cases, either none
of the states have infinite delays, then the original proof works. Or all states have an infinite
delay, then by construction the output must be the period of the delay. Finally if some of
the states have finite delays and some have infinite delays, then we can show in the same
way that all finite delays are the same and thus, all infinite delays have an arbitrarily large
common prefix, which concludes the proof. đ

C Proofs for Section 3

C.1 Bimachines over infinite words
§ Proposition 36. Given a bimachine with left and right automata L and R, we can obtain
an equivalent unambiguous transducer with underlying automaton LˆR. In particular any
transduction realized by an aperiodic bimachine is aperiodic.

Proof of Proposition 36. Let B “ pL,R, i, oq be a bimachine with L “ pQL,∆L, tl0uq
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and R “ pQR,∆R, I, F q as left and right automata. We define T “ pA, o1, i 1q with A “

pQL ˆQR,∆, tl0u ˆ I, F 1q with:
∆ “ tppl, r1q, a, pl1, rqq | pl, a, l1q P ∆L, pr

1, a, rq P ∆Ru

o1ppl, r1q, a, pl1, rqq “ opl, a, rq
i 1pl0, rq “ iprq
F 1 “

Ť

PLĎQL,PRPF
PL ˆ PR

Let us assume that B is aperiodic. Since the underlying automaton of T is the product
of two aperiodic automata, T is also aperiodic. đ

C.2 Left minimization
Proof that BR

f is well-defined. Let us show that BR
f is well-defined, meaning that 1) „R

f

is indeed a right congruence and 2) the output functions do not depend on the choice of
representatives. Let u „R

f v and let a P A and let us assume that there exists x such that
uax P dompfq, we want to show that ua „R

f va. If pfaxpuq and pfaxpvq are both infinite
with the same ultimate period then it is also the case for pfxpuaq and pfxpvaq. For any
such x we have pfxpuq

´1fpuxq “ pfxpvq
´1fpvxq, and let gpxq denote this word. Note that

fpuxq “ pfxpuqgpxq. If
Ź

y«Rx
gpayq is infinite then we have both pfxpuaq and pfxpvaq infinite

with the same ultimate period. Otherwise:

pfxpuaq
´1fpuaxq “

´

Ź

y«Rx
fpuayq

¯´1
fpuaxq

“

´

Ź

y«Rx
pfaxpuqgpayq

¯´1
fpuaxq

“

´

pfaxpuq
Ź

y«Rx
gpayq

¯´1
fpuaxq

“

´

Ź

y«Rx
gpayq

¯´1
pfaxpuq

´1fpuaxq

“

´

Ź

y«Rx
gpayq

¯´1
pfaxpvq

´1fpvaxq

“ pfxpvaq
´1fpvaxq

Now we have left to show that the outputs are well-defined. If u „R
f v and pfxpuq “ αβω

with β P B` then pfxpvq “ α1βω since both are in normal form, thus the output is uniquely
defined. Otherwise it suffices to show that pfaxpuq

´1
pfxpuaq “ pfaxpvq

´1
pfxpvaq have well-

defined outputs.

pfaxpuq
´1

pfxpuaq “ pfaxpuq
´1 Ź

y«Rx
fpuayq

“ pfaxpuq
´1 Ź

y«Rx
pfaxpuqgpayq

“ pfaxpuq
´1

pfaxpuq
Ź

y«Rx
gpayq

“
Ź

y«Rx
gpayq

“ pfaxpvq
´1

pfxpvaq

đ

§ Proposition 37. For any transduction f and right automaton R recognizing dompfq, the
transducer BR

f realizes fR.

Proof. Let f be a transduction, let R be a right automaton recognizing dompfq and let x
be a word in dompfq. We denote by g transduction realized by BR

f . First let us assume
that for any integer n, pfxpn`1:qpxp:nqq is finite. Then in Lf , we have by definition that
oprεs , xp:nq, rxpn` 1:qsRq “ pfxpn`1:qpxp:nqq. Thus gpxq “ limn

pfxpn`1:qpxp:nqq “ f
R
pxq.
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Now let us assume that for some integer k ě 0 we have pfxpk`1:qpxp:kqq “ αβω with β “ ε, and
let us choose k minimal. By definition, we have in BR

f that oprεs , xp:kq, rxpk ` 1:qsRq “ γ with
iprxsRqγ “ αβl for some integer l. We also have for n ě k, oprxp:nqs , xpn`1q, rxpn` 2:qsRq “
β, hence iprεsqoprεs , xq “ pfxpk`1:qpxp:kqq “ αβω. đ

§ Proposition 38. If there exists a bimachine with right automaton R realizing a transduction
f , then fR

“ f .

Proof. Let f be a transduction realized by a bimachine B “ pL,R, i, oq with automata
L “ pQL,∆L, tl0uq and R “ pQR,∆R, I, F q, and let x P dompfq. If fpxq is finite, then
there exists an integer k such that opl0, xp:kq, rxpk ` 1:qsRq “ fpxq. Abusing notations,
we write rus for the state of L reached by reading u from the initial state. Hence for
any n ě k we have pfxpn`1:qpxp:nqq “ fpxq which means that fR

pxq “ fpxq. Other-
wise, if fpxq is infinite, then there must be an increasing sequence of indices n1, n2, . . .

such that opl0, xp:niq, rxpni ` 1:qsRq “ αi with αi a strict prefix of αi`1. In particu-
lar, αi ĺ pfxpni`1:qpxp:niqq and since fpxq “ limi αi is infinite, we have that fR

pxq “

limi
pfxpni`1:qpxp:niqq is also infinite and the two words are equal. đ

Together with Proposition 38, the next proposition shows that BR
f is the bimachine with

smallest left automaton under all bimachines with right automaton R realizing fR (if any).

§ Proposition 39. Let f be a transduction. For any bimachine B “ pL,R, i, oq realizing f
we have „L Ď„R

f .

Proof. Let L “ pQL,∆L, tl0uq and R “ pQR,∆R, I, F q. We suppose that u, v P A˚

reach the same state in L, and we want to show that u „R
f v. First, we observe that

ux P dompfq ô vx P dompfq for all x P Aω. Let x P Aω with ux P dompfq, and αβω “ pfxpuq

in normal form. If β ‰ ε then pfxpuq and pfxpvq have the same ultimate period, which is
β. If β “ ε then define µ as the output of the bimachine on ux after reading u. Similarly,
define ν as the output of the bimachine on ux after reading v. Observe that pfxpuq “ µα and
pfxpvq “ να, hence with γ denoting the output of the bimachine on ux after reading u (or on
vx after reading v):

pfxpuq
´1fpuxq “ pµαq

´1
µγ “ α´1γ “ pfxpvq

´1fpvxq

Thus we obtain u „R
f v which concludes the proof. đ

§ Proposition 40. There is a PTime algorithm that computes for a given bimachine B “
pL,R, i, oq the bimachine BR

f .

Proof of Proposition 40. The proof goes along the lines of Proposition 8. By Proposition 39
we check whether u „R

f v for suitably chosen u L v. For the domain condition it suffices
to find some x P Aω such that ux P JRK and vx R JRK. This can be verified in PTime,
by searching over all initial/non-initial pairs of states of R. For the second condition we
compute for every state r of the right automaton R the function pfx, with x accepted from
state r. We proceed as in the proof of Proposition 8, but this time we are interested only in
paths of LˆR that correspond to uy, with y «R x, so y accepted from r as well. đ
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C.3 From transducers to bimachines
Proof of Theorem 15. Let T “ pA, i, oq with A “ pQ,∆, I, F q be a transducer realizing a
function f , and R such that «R Ď«A. We show first that „A Ď„R

f . Let u „A v, since A
recognizes dompfq and is trim, we have for any x P Aω, ux P dompfq ô vx P dompfq.

Let x be a word such that ux P dompfq, and let p1, . . . , pn be the states of A which
can be reached from I by reading u or v and from which x has a final run. We write
qi

u|αi
ÝÝÝÑ pi, q1i

v|βi
ÝÝÑ pi, corresponding to initial runs with qi, q

1
i P I for 1 ď i ď n. Let

γi “
Ź

"

γ | pi
y|γ
ÝÝÑ Pi with Pi P F, y «R x

*

. For any word y «R x we have also y «A x,

and in particular, uy P dompfq. By definition, pfxpuq “ ipqiqαiγ1i, and pfxpvq “ ipq1iqβiγ1i, for
some γ1i ă γi. If pfxpuq is infinite, then so are all γi and pfxpvq. Moreover, pfxpuq and pfxpvq

have the same ultimate period in this case.
Otherwise, some γi is finite, say γ1. Let p1

x|γ1ν
ÝÝÝÑ P with P P F denote a final run of x

from p1. Then we have fpuxq “ ipq1qα1γ1ν and fpvxq “ ipq11qβ1γ1ν, thus:
pfxpuq

´1fpuxq “ pipq1qα1γ
1
1q
´1ipq1qα1γ1ν “ pγ

1
1q
´1γ1ν

“ pipq11qβ1γ
1
1q
´1ipq11qβ1γ1ν “ pfxpvq

´1fpvxq

This means that u „R
f v.

It remains to show that BR
f realizes f . Let g be the transduction realized by BR

f . First,
the domain of g equals the language of R, thus dompfq because of «R Ď «A.

Let x P dompfq, we want to show that gpxq “ fpxq. First we assume that pfxpn`1:qpxp:nqq is
finite, for every n. Then by definition of BR

f , we get that gpxq is the limit of p pfxpn`1:qpxp:nqqn,
so gpxq “ fpxq since fpxq is the limit of prefixes of pfxpn`1:qpxp:nq. The other case is where
pfxpn`1:qpxp:nqq “ αβω for some n, α and β “ ε. It can be checked that oprεs, xp:nq, rxpn`
1:sqRq “ αβm for some m, and for all n1 ě n, oprxp:n1 ´ 1qs, xpn1q, rxpn1 ` 1:sqRq “ β, which
shows the claim.

Let f be an aperiodic transduction and let T be an aperiodic transducer realizing it with
underlying automaton A. According to Proposition 1 the canonical automaton R of «A is
aperiodic and since ”A Ď„A Ď„R

f , the left automaton of BR
f is also aperiodic. đ

C.4 Labelings and bimachines
Proof of Proposition 17. Let B “ pL,R, i, oq be a bimachine realizing f with automata L “
pQL,∆L, tl0uq and R “ pQR,∆R, I, FRq. We define T “ pA, i 1, o1q and A “ pQ,∆, tq0u , F q

realizing fR : pAˆQRq
ω Ñ B8:

Q “ QL ˆQR Z tq0u

∆ “

!

pq0, pa, rq, pl, rqq | l0
a
ÝÑL l, r1

a
ÝÑR r, r1 P I

)

Z

!

ppl, r1q, pa, rq, pl1, rqq | l
a
ÝÑL l1, r1

a
ÝÑR r

)

F “ tP Ď Q | π2pP q P FRu, with π2 being the projection over the second component.
i 1pq0q “ ε

o1pq0, pa, rq, pl, rqq “ ipr1qopl, a, rq with r1 aÝÑR r.
o1ppl, r1q, pa, rq, pl1, rqq “ opl, a, rq.

Clearly, T realizes fR and is left-sequential.
Let T “ pA, i, oq with A “ pQ,∆, Iq be a left-sequential transducer realizing fR over

the alphabet A ˆ QR. We define T 1 “ pA1, i, o1q with A1 “ pQ,∆1, Iq, as the transducer
obtained by projecting the input alphabet on A. The new transducer T 1 realizes f and is
unambiguous, otherwise there would be a word with two different labelings accepted by A.
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Let D be the left automaton obtained from the subset construction of A1 ˆR. We define
the bimachine B “ pD,R, i 1, o1q by:

o1pP, a, rq “ opq, pa, rq, q1q for pq, r1q P P such that pr1, a, rq P ∆

The output is well-defined since A is deterministic and the state q such that pq, r1q P P
and pr1, a, rq P ∆ is unique: if there were two states q1, q2 with pqi, r1q P P for i “ 1, 2, then
there would be a word uy such that u reaches in A1 both qis and y has a final run from both
qis, which contradicts the unambiguity of A1.

Let us assume in the first construction above that BR
f is aperiodic and we want to show

that the left automaton A obtained is aperiodic which would imply that fR is aperiodic. Let
u be a word over AˆQR, let pp, rxsq un

ÝÝÑ pq, rysq denote a run over un, if n is large enough,

we know that p π1puq
n`1

ÝÝÝÝÝÝÑ q. We also have rπ1puq
nys “ rxs. By aperiodicity of R, we must

have
“

π1puq
n`1y

‰

“ rxs and since up|u|q “ pa, rysq, it means that rys “ ruys “ rxs. Hence we

obtain that pp, rxsq un`1
ÝÝÝÑ pq, rysq, which means that fR is aperiodic. Now we assume that

fR is aperiodic, we want to show that the automaton D is aperiodic, and since „D Ď„R
f ,

from Proposition 39 it implies that „R
f is aperiodic as well. First we know that is fR is

sequential and aperiodic, then it is realized by a sequential aperiodic transducer. Indeed,
given an aperiodic transducer realizing fR we can obtain via subset construction with delays
a sequential transducer realizing it which is still aperiodic according to Theorem 12. Hence
we assume that T is aperiodic. Let us show that A1 ˆR is again aperiodic. Let u be a word
over A and let pp, rxsq un

ÝÝÑ pq, rysq denote a run over u. Since R is aperiodic, we have for n
large enough that rxs “ runys “ ruys “ rys. Hence there is a unique labeling of u, ũ which is
consistent with the run. Hence there is a run of A p

ũn

ÝÝÑ q. Since A is aperiodic, for n large
enough, we have a run p ũn`1

ÝÝÝÑ q. By projection, we have a run p un`1
ÝÝÝÑ q of A1. Thus we

obtain that pp, rxsq un

ÝÝÑ pq, rysq in A1 ˆR. Finally since the subset construction preserves
aperiodicity, we have that D is aperiodic. đ

We define the labeling function associated with a left automaton L “ pQ,∆, tq0uq by the
left transducer `pLq “ pL, i, oq, with ipq0q “ ε and opp, a, qq “ pa, pq. The labeling function
associated with a left automaton labels each position with the information about the prefix.
For a transduction f let fL “ f ˝ J`pLqK´1, which is again a function.

Proof of Corollary 18. Let f be a rational transduction, according to Theorem 16 there
exists B “ pL,R, i, oq with L “ pQL,∆L, tl0uq and R “ pQR,∆R, I, F q, a bimachine
realizing f . By definition of `pRq , f “ fR ˝ J`pRqK furthermore `pRq is letter-to-letter and
right-sequential, and according to Proposition 17, fR is left-sequential, concluding the proof
of the first direction. Symmetrically, `pLq is letter-to-letter and left-sequential. We only have
to exhibit a right-sequential transducer realizing fL. This is done in the same way as in the
first (easy) part of the proof of Proposition 17. Let T “ pR1, i, o1q with R1 “ pQR,∆1R, I, F q
over the alphabets AˆQL and B.

∆1 “ tpr, pa, pq, sq | pr, a, sq P δRu

o1pr, pa, pq, sq “ opp, a, sq
R1 is a right-automaton since R is, and by construction T realizes fL. đ
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D Proofs for Section 4

D.1 Minimal look-ahead
Proof of Proposition 21. Let T be a transducer realizing fR and let us assume that T
satisfies the WTP. Let x «R y, and let u be such that ux P dompfq. We want to show that
x

∆
«f y, for this we will show that delpfpuxq, fpuyqq is bounded by a value which does not

depend on u. Since x «R y we can write u1x1 “ J`pRqKpuxq and u1y1 “ J`pRqKpuyq with
|u1| “ |u|. Let k be the number of states of T . We consider two runs of T over u1x1 and
u1y1, respectively, and we factorize them as p1

u1|α1
ÝÝÝÑ p2

u2|α2
ÝÝÝÑ p2

u3|α3
ÝÝÝÑ p3

x1|α4
ÝÝÝÑ F and

q1
u1|β1
ÝÝÝÑ q2

u2|β2
ÝÝÝÑ q2

u3|β3
ÝÝÝÑ q3

y1|β4
ÝÝÝÑ F such that u1 “ u1u2u3, and |u1|, |u3| ď k2.

We get delpfpuxq, fpuyqq “ delpfRpu
1x1q, fRpu

1y1qq “ delpipp1qα1α2α3α4, ipq1qβ1β2β3β4q.
If p2 and q2 are both non-constant, we use the WTP and obtain:

delpipp1qα1α2α3α4, ipq1qβ1β2β3β4q “ delpipp1qα1α3α4, ipq1qβ1β3β4q

Assume now that p2 is not constant and q2 is constant. The output of q2 is a regular
word γ, with γ “ βω2 if β2 “ ε, so in particular γ “ β2γ. Thus, delpfpuxq, fpuyqq “
delpipp1qα1α2α3α4, ipq1qβ1γq. If α2 “ ε then delpfpuxq, fpuyqq “ delpipp1qα1α3α4, ipq1qβ1γq.
Otherwise, by the WTP we know that ipp1qα1α

ω
2 “ ipp2qβ1β2γ. It can be checked that either

delpfpuxq, fpuyqq “ delpα3α4, γ
1q, with γ1 a suffix of γ, or delpfpuxq, fpuyqq “ delpα3α4, β1γq,

depending on the lengths of ipp1qα1α2, ipp2qβ1β2.
If p2 and q2 are both constant, then their output words are both regular, say γ and γ1.

We have ipp1qα1α2α3α4 “ ipp1qα1γ and ipq1qβ1β2β3β4 “ ipp2qβ1γ
1, so delpfpuxq, fpuyqq “

delpipp1qα1γ, ipp2qβ1γ
1q, and the delay depends only on ipp1qα1, ipp2qβ1 and the normal

forms of γ, γ1. In all cases the delay delpfpuxq, fpuyqq is independent of α2, β2.
Let us assume now that «R Ď

∆
«f and show that T satisfies WTP. For this we con-

sider two initial runs of T over the same finite word: p1
u|α1
ÝÝÝÑ q1

v|β1
ÝÝÝÑ q1 and p2

u|α2
ÝÝÝÑ

q2
v|β2
ÝÝÝÑ q2. Up to taking u1 “ uv, we can assume that the last letter of u and v is

the same. Let pa, rq be the last letter of v, and let us consider two words x1, x2 which
have final runs from q1 and q2, respectively with q1

x1|γ1
ÝÝÝÑ F and q2

x2|γ2
ÝÝÝÑ F . Let π

be the projection pA ˆ QRq
8 Ñ A8 such that π ˝ `pRq “ id. By definition of `pRq

we must have πpx1q «R πpx2q and, since R recognizes dompfq, both πpx1q, πpx2q have
a final run of R from r. For q1, q2 non-constant, we assume towards a contradiction
that delpipp1qα1, ipp2qα2q ‰ delpipp1qα1β1, ipp2qα2β2q. Since q1 and q2 are non-constant,
we can choose x1 and x2 such that γ1 ‰ βω1 and γ2 ‰ βω2 . Thus for infinitely many
m ‰ n, we have delpipp1qα1β

m
1 γ1, ipp2qα2β

m
2 γ2q ‰ delpipp1qα1β

n
1 γ1, ipp2qα2β

n
2 γ2q, which

means that delpfRpuv
mx1q, fRpuv

mx2qq ‰ delpfRpuv
nx1q, fRpuv

nx2qq. Hence, πpx1q, πpx2q

are not equivalent with respect to ∆
«f , hence by assumption, πpx1q ffR πpx2q which is a

contradiction.
Similarly, let us we assume that q1 is not constant, q2 is constant producing γ, v1 ‰ ε and

ipp1qα1β
ω
1 ‰ ipp2qα2β2γ. Again, by choosing x1 such that γ1 ‰ βω1 , we obtain an infinite

number of delays and πpx1q ffR πpx2q.
If f is aperiodic, it means that there is an aperiodic bimachine realizing it, with an

aperiodic right automaton R. According to Proposition 17 we have that fR is aperiodic, and
hence «R Ď

∆
«f . Since «R is aperiodic (recognized by R) we have that ∆

« is also aperiodic
in particular. đ

Proof of Proposition 22. We show the result for a transducer, the proof being very similar
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in the case of a bimachine. Let T “ pA, i, oq with A “ pQ,∆, I, F q be a transducer realizing
a function f . Let x «A y, and let us consider the states p1, . . . , pn from which x, y have
final runs in A, denoted by pi

x|αi
ÝÝÝÑ Pi and pi

y|βi
ÝÝÑ P 1i , respectively. Choose some i and

some initial run qi
u|γi
ÝÝÑ pi of T over u, and let γ1i “ ipqiqγi. Let δ “ fpuxq ^ fpuyq, and

δi “ αi ^ βi, then δ “ γ1iδi. Clearly, pδ´1fpuxq, δ´1fpuyqq “ pδ´1
i αi, δ

´1
i βiq does not depend

on u. Thus |delf px, yq| ď n, showing that x ∆
«f y. đ

§ Proposition 41. Given a bimachine realizing a function f , the delay congruence ∆
«f can

be computed in PTime.

Proof. Let B “ pL,R, o, iq be a bimachine. We know from Proposition 22, that the right
automaton of the bimachine, R, satisfies «R Ď

∆
«f . In order to compute ∆

«f , we only
need to decide, given two words x, y such that x ffR y if x ∆

«f y. We want to decide if
the set of delays between fpuxq and fpuyq, for all u P A˚ is finite. Let us fix a state of
L, rusL, and one can easily see that the set of delays is finite if and only if it is finite
for all possible states of L. From the state rusL, we can define the output of x and y

denoted by α, β, respectively. We define the function gxpvq, for v „L u, by the output
of the bimachine due to v upon reading vx, i.e. gxpvq “ iprvxsRqoprεsL , v, rxsRq and
similarly we define gy, such that fpvxq “ gxpvqα and fpvyq “ gypvqβ. Let us assume
that | tdelpfpvxq, fpvyqq | v „L uu | “ | tdelpgxpvq, gypvqq | v „L uu |. In that case we have
reduced the problem of deciding a finite set of delays for a function over infinite words to
functions over finite words. Indeed we can obtain a bimachine over finite words realizing
gx (and gy) by taking a bimachine where the left automaton is L with final state rusL

and the right automaton is R with (unique) final state rxsR. We refer the reader to
[14] for an article dealing with bimachines over finite words and we use the result of [21]
(Proposition 1) which gives a PTime algorithm to decide if two functions are so-called
adjacent, i.e. have a finite set of delays. We only have to figure out when it is true that
| tdelpfpvxq, fpvyqq | v „L uu | “ | tdelpgxpvq, gypvqq | v „L uu | and what to do when it is not
the case. The property is necessarily verified if none of the two words α, β is periodic. When
one of the two words α, β (for instance α) is of the form γω, γ ‰ ε, we can transform the
bimachine realizing gx such that γ is never a suffix of the image of a word by guessing at
any point that the output will be of the form γn, outputting ε and checking that the output
is indeed a power of γ. We obtain a new function g1x such that for any v, gxpvq “ g1xpvqγ

n

with n P N and γ not a suffix of g1xpvq, while still having fpvxq “ g1pvqα. We also have to
modify gy such that, as long as no mismatch has been found and if g1x has stopped producing
outputs, then all outputs of the form γn can be removed. Similarly, if β is periodic of
the form δω then we can modify the bimachine realizing gy to obtain a transducer such
that δ is not a suffix of the outputs. For these modified functions, we have indeed that
| tdelpfpvxq, fpvyqq | v „L uu | “ |

 

delpg1xpvq, g1ypvqq | v „L u
(

|, and we can again use the
result of [21]. đ

D.2 Canonical machine for quasi-sequential functions
§ Lemma 42. Y

«f is a left congruence.

Proof. Let x Y

«f y and let a P A. We have of course ax P dompfq ô ay P dompfq and
for all u such that uax P dompfq we have pfpuaq “ fpuaxq ô pfpuaq “ fpuayq. Either
pfpuq “ pfpuaq and we have indeed pfpuq “ fpuaxq ô pfpuq “ fpuayq, or pfpuq ă pfpuaq and we
have pfpuq ‰ fpuaxq and pfpuq ‰ fpuayq which means that condition 1) is satisfied. Let us now
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assume pfpuq “ fpuaxq, then in particular pfpuaq “ fpuaxq and we have fpuaxq “ fpuayq,
which means that condition 2) is satisfied as well, hence ax Y

«f ay. đ

Proof that UR
f is well-defined. Let us show that the output function is well-defined, mean-

ing that it does not depend on the representatives of the congruence classes. Let a P A,
u „f v and x „R y. Let us first show that oRprus , a, rxsRq “ oRprvs , a, rxsRq. By
definition, if u „f v then pfpuq´1fpuaxq “ pfpvq´1fpvaxq and as we have seen in Sec-
tion 2, pfpuq´1

pfpuaq “ pfpvq´1
pfpvaq and pfpuq´1fpuaxq “ pfpvq´1fpvaxq. Then it is rou-

tine to check that oRprus , a, rxsRq “ oRprvs , a, rxsRq in all cases. Let us now show
that pfpuq´1fpuaxq “ pfpuq´1fpuayq. Since R recognizes Y

«f , we have x
Y

«f y, hence
pfpuq “ fpuaxq ô pfpuq “ fpuayq, and if pfpuq “ fpuaxq, then fpuxq “ fpuyq, which means
that pfpuq´1fpuaxq “ pfpuq´1fpuayq. In all cases we have pfpuq´1fpuaxq “ pfpuq´1fpuayq. đ

Proof of Lemma 26. Let x P dompfq and let g denote the function realized by URf . Let
us first assume that for any prefix u of x we have pfpuq ă fpxq. Then since we have that
limu

pfpuq “ fpxq it means that fpxq is infinite and thus fpxq “ fpxq. In that case UR
f

behaves just like Tf and we have gpxq “ fpxq “ fpxq. Now let us assume that at some point
pfpuq ă pfpuaq “ fpuayq for uay “ x. The output of Tf over uay after having read ua is equal
to pfpuqα such that fpuayq “ pfpuqαβω (in normal form). The output of any letter after ua
will be β and in the end we obtain gpxq “ fpxq. đ

Proof of Corollary 27. By Lemma 26, we know that there exists a bimachine realizing f
with R as right automaton. Hence Props. 37 and 38 imply that BR

f realizes f . Furthermore,
from Proposition 39 we know that „f Ď„R

f . đ

Proof of Proposition 25. From a bimachine B with automata L and R we define a left
congruence « and show that it is finer than Y

«f . Let S be the transducer obtained by
subset construction with delays from the transducer with underlying automaton L ˆ R
(Proposition 36). Given two words, x, y we let x « y if 1) for any state pp, P q of Rˆ S, the
runs over x, y from pp, P q have the same set of states visited infinitely often, and 2) for any
state P of S, the run of S over x from P produces ε if and only if the run of S from R over
y produces ε.

Now we show that « is finer than Y

«f , which shows that the index of Y

«f is doubly
exponential. Let x « y, and let u be a finite word with an initial run over S: I u|α

ÝÝÑ P and
by construction we have ipIqα “ pfpuq. Since by Proposition 35, S realizes f and 2) we know
that pfpuq “ fpuxq if and only if pfpuq “ fpuyq. Now assume pfpuq “ fpuxq, then from 1)
there is pp, P 1q a state appearing infinitely often in the runs r, s of x and y respectively from
P . Let i, j be such that rpiq “ spjq “ pp, P 1q, in particular we have xpi:q «A ypj:q. Then
let pq, wq P P 1 such that both xpi:q and ypj:q have a final run from q in A. Then we have
fpuxq “ ipIqαw “ fpuyq hence x Y

«f y.
Now we only have to decide when two words x, y are equivalent for Y

«f . For each word
x and each state R of S, we can associate a value restpx,Rq which is either a word w, if x
produces ε from R and the missing output is w or K otherwise. Since S realizes f we have
that x Y

«f y if and only if @u P A˚, @R state of S, restpux,Rq “ restpuy,Rq.
We now show that from an aperiodic bimachine, we obtain an aperiodic congruence. We

only need to show that the congruence « computed is aperiodic. From Theorem 12 we
know that S is aperiodic. From this we know that for any R,S states of S, the languages
LR,S Ď A˚ of words which can go from R,S and LS Ď Aω of words which have a run from
S are aperiodic. Then since aperiodic languages are closed under concatenation, if we have a
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transition R a|w
ÝÝÑ T (with w ‰ ε), we can define the language of words which have a run from

R and which don’t go though the transition by LRXpLR,S ¨a ¨LSqC , which is aperiodic since
aperiodic languages are also closed under complement. Then if we fix a state R of S as initial
state we can define the set of words which have a run from R and which don’t go through
any producing transition which is aperiodic since aperiodic languages are closed under union.
Now we can fix a state and any accepting set as Muller condition for the automaton Rˆ S
and get an aperiodic language. Hence any class of « is aperiodic which means that Y

« is also
aperiodic. đ

E Proofs for Section 5

Our goal is to prove the transducer-logic correspondence of Theorem 30. We start by a
result on languages. It is known that a language L Ď Aω is FO-definable if and only if
it is recognized by some aperiodic non-deterministic Büchi automaton [10]. With simple
arguments and by using a result by Thomas [25], it is possible to lift this result to aperiodic
deterministic Muller automata:

§ Theorem 43 ([25]). A language L Ď Aω is FO-definable if and only if it is recognizable by
some aperiodic and deterministic Muller automaton.

Proof. Thomas has shown that L is FO-definable if and only if it is recognizable by some
counter-free and deterministic Rabin automaton [25]. Rabin automata are a particular case
of Muller automata, and therefore L is FO-definable if and only if it is recognizable by some
counter-free and deterministic Muller automaton. Counter-freeness means that for some
m, um P Lq,q (the set of words for which there exists a run from state q to q) if and only
if u P Lq,q, for all states q and finite words u. It is not difficult to prove that any counter-
free automaton is aperiodic, and conversely any deterministic and aperiodic automaton is
counter-free, see for instance Lemma 11.6 in [10]. Hence, any deterministic Muller automaton
is counter-free if and only if it is aperiodic, and we get the desired result. đ

§ Proposition 44. A language L Ď Aω is FO-definable if and only if it is recognizable by
some aperiodic and non-deterministic Muller automaton.

Proof. Direction ñ is a consequence of Theorem 43. For the other direction, from an aperi-
odic and non-deterministic Muller automaton A “ pQ,∆, I, F q we construct an equivalent
FO-formula. For all P Ď Q, we let LP Ď A˚ be the language of finite words such that
there exists a run of A which visits at least once the states of P and only those ones. The
language LP can be recognized by some aperiodic finite automaton AP with set of states
Q1 “ tpq, P 1q | q P Q,P 1 Ď P u, initial states I 1 “ tpq, P q | q P P u and accepting states
F 1 “ tpq,∅q | q P Qu. Its transitions are pp, P 1q a

ÝÑ pq, P 1ztpuq if there exists a transitions
p
a
ÝÑA q and q P P 1. The automaton AP is easily seen to be aperiodic, since A is aperiodic

and the second component of the states of AP is monotonic (for inclusion) along the runs.
Hence, LP is FO-definable by some formula φP . Then, LpAq is FO-definable by the formula

ł

PPF

Dx0@x ľ x0Dy ľ x φP px, yq

where φP px, yq is the formula φP where the quantifiers have been restricted to range between
x and y, i.e., quantifiers Qz are replaced by Qpx ď z ď yq (x, y can be assumed to have no
occurrence in φP without loss of generality). This concludes the proof. đ
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§ Proposition 45. Let f : Aω Ñ B8. If f is realizable by some transducer T , then it is
realizable by some unambiguous transducer T 1 such that additionally, if T is aperiodic, so is
T 1.

Proof. If f is realizable by some aperiodic transducer T , then by Theorem 16 it is realizable
by some aperiodic bimachine B. Since the construction of a transducer from a bimachine
(Proposition 36) is done by a standard product construction of its left and right automata
and aperiodicity is preserved under automata product, we get the result. đ

Proof of Theorem 30. We first show the equivalence between transducers and MSO-defina-
bility, and then analyze our back and forth constructions to show the equivalence between
FO-definability and aperiodic transducers.

(1) Let F “ pA,B, φdom, V, µq be some MSO-transducer such that JFK “ f . Let construct
some transducer T equivalent to F , i.e., such that JT K “ JFK. Let V “ tv1, . . . , vnu and for
all i P t1, . . . , nu, let φipxq “ φvi

pxq. Given two ω-words u, v over Σ and Γ respectively, we
define ub v as the ω-word over Σˆ Γ defined by pub vqpiq “ pupiq, vpiqq for all i ě 1.

We now define the language of ω-words LF Ď pA ˆ t0, 1unqω as the set of ω-words
u b u1 b ¨ ¨ ¨ b un such that u |ù φdom and such that for all i, ui P t0, 1uω and for all
j ě 1, uipjq “ 1 if and only if u |ù φipjq. Let us show that LF is MSO-definable. For
any MSO-formula φ over Aω, let φ` be the MSO-formula over pAˆ t0, 1unqω obtained by
replacing in φ any atom apxq, a P A, by

Ž

bPt0,1unpa, bqpxq. Then, LF is definable by the
MSO-formula

φF ” φ`dom ^
n
ľ

i“1
@x ¨ p

ł

pa,bqPAˆt0,1un s.t. bi“1

pa, bqpxqq Ø φ`i pxq

By Büchi’s Theorem, LF is definable by a deterministic Muller automaton A “ pQ,∆, I, F q
over Aˆt0, 1un. The transducer T is obtained from A by projecting it on A and by selecting,
using non-determinism, some word vi to output when reading a P A, whenever there exists a
transition of A on some pa, bq with bi “ 1. More precisely, the underlying automaton of T is
B “ pQ1,∆1, I 1, F 1q where:

Q1 “ Qˆ t1, . . . , nu,
I 1 “ I ˆ t1, . . . , nu,
∆1 “ tppp, iq, a, pq, jqq | Db P t0, 1un ¨ bi “ 1^ pp, pa, bq, qq P ∆u,
F 1 is the set of subsets P Ď Q1 such that the projection of P on Q is in F .

Finally, the output function of T is defined by oppp, iq, a, pq, jqq “ vi.
Conversely, let T “ pA, oq be some functional transducer realizing f . By Proposi-

tion 45, it can be assumed to be unambiguous. We turn T into an MSO-transducer
F “ pA,B, φdom, V, µq such that JT K “ JFK. Again by Büchi’s theorem, the domain of T ,
which is regular, is MSO-definable by some formula φdom. We let V “ CoDompoq and for all
v P V , we define the language Lv of words u P pAˆ t0, 1uqω such that
1. πApuq P dompT q
2. u contains exactly one position, denoted i0, labeled in Aˆ t1u,
3. the (unique) run r “ q0q1 . . . of A on πApuq satisfies opqi0´1, πApupi0qq, qi0q “ v.
The language Lv is definable by a Muller automaton, obtained as a product of an automaton
which accepts all words in pAˆ t0, 1uqω containing exactly one 1, and a Muller automaton
which simulates A on the projection πApuq and checks, when reading a position labeled
1, that the transitions t of A applied satisfies optq “ v. Hence, by Büchi’s theorem, Lv is
MSO-definable by some formula ψv. We let µpvq “ φvpxq where φvpxq is defined by applying
the following transformations to ψv:
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1. first rename any occurrence of x in ψv by some variable x1
2. for all variables y and a P A, replace in ψv any atom of the form pa, 1qpyq by apxq^ y “ x

and any atom pa, 0qpyq by apyq ^ x ‰ y.
For all words u P Aω and i ě 1, we have u |ù φvpiq if and only if ub p0i´110ωq |ù ψv if and
only if ub p0i´110ωq P Lv if and only if u P dompT q and the unique run of A on u produces
v when reading position i.

(2) Let us now prove statement p2q and consider first the ñ implication, i.e., assume
F is some FO-transducer. Note that the formula φF is in this case an FO-formula. By
Theorem 43, this implies that A can be assumed to be aperiodic. There exists m ě 0 such
that for all states p, q and all α P pAˆ t0, 1unq˚, p αm

ÝÝÑA q if and only if p αm`1
ÝÝÝÝÑA q. Let us

show that B is aperiodic. We also assume that B is trim, otherwise we trim it.
Let u P A˚ and s “ pp, iq, t “ pq, jq be two states of B and ` ě 0 such that s u`

ÝÑB t. We
show that s u``1

ÝÝÝÑB t if ` is large enough. Since B is trim, there exists u0 P A
˚ and u1 P A

ω

such that u1u
`u2 P LpBq. By definition of B, we have in particular that u1u

`u2 |ù φdom. Now,
there exists a unique annotation v P pt0, 1unq˚ of u1u

`u2 such that u1u
`u2b v P LF , because

LF consists only of the words whose projection on A satisfies φdom and where every position x
has been extended with a tuple of bits pb1, . . . , bnq indicating which of the FO-formulas φipxq
hold at position x or not. By taking ` large enough, since the formulas φipxq are first-order,
it is possible to decompose u` into u`1``2``3 such that `2 is as large as we want, and any
factor u in the factor u`2 receives the same annotation. This is because the FO-formulas
φipxq are not able to distinguish between the kth and pk ` 1qth occurrence of u in the word
u1u

`u2, for all k P t`1, . . . , `1` `2´ 1u. More precisely, there exist `1, `2, `3 such that `2 ě m

and for all k P t`1, . . . , `1 ` `2 ´ 1u, for all j P t|u1| ` k|u| ` 1, . . . , |u1| ` pk ` 1q|u|u, for all
i P t1, . . . , nu, u1u

`1``2``3u2 |ù φipjq if and only if u1u
`1``2``3u2 |ù φipj ` |u|q. This can be

shown using Ehrenfeucht-Fraissé games, see for instance [17].
Hence, there are words w1, w

1
1, w2, w

1
2, w

1
3 P pt0, 1unq˚ and w3 P pt0, 1unqω such that

u1 “ pu1 b w1qpu
`1 b w11qpub w2q

`2pu`3 b w13qpu3 b w3q P LF .

and moreover, the run of A on u1 can be decomposed into:

q0
u1bw1
ÝÝÝÝÑA p

u`1bw11
ÝÝÝÝÝÑA p1

pubw2q
`2

ÝÝÝÝÝÝÑA p2
u`3bw13
ÝÝÝÝÝÑA q

u3bw3
ÝÝÝÝÑA

for some initial state q0 and states p1, p2 of A. By aperiodicity of A and since `2 ě m, we
obtain the following run of A:

q0
u1bw1
ÝÝÝÝÑA p

u`1bw11
ÝÝÝÝÝÑA p1

pubw2q
`2`1

ÝÝÝÝÝÝÝÝÑA p2
u`3bw13
ÝÝÝÝÝÑA q

u3bw3
ÝÝÝÝÑA

In particular, we have p
u``1

bpw11w
`2`1
2 w13q

ÝÝÝÝÝÝÝÝÝÝÝÝÝÑA q. Moreover, the ith bit of the first letter of w11
is 1, because of the existence of an accepting run of B on u0u

`u1 of the form q10
u0
ÝÑ pp, iq

u`

ÝÑ

pq, jq
u1
ÝÑ. By definition of B, for all j1 P t1, . . . , nu, we therefore obtain a run of the form

pp, iq
u``1
ÝÝÝÑB pq, j

1q, and in particular it is true for j1 “ j, concluding the first direction of
the proof. The other direction (showing that pp, iq u``1

ÝÝÝÑB pq, jq implies pp, iq u`

ÝÑB pq, jq) is
completely similar.

Now, we prove the left implication ð of statement (2). We again inspect the proof of
statement (1), but this time the left implication. Let T “ pA, oq be some aperiodic transducer
realizing f . By Proposition 45, T can be assumed to be unambiguous and aperiodic. The
domain of T is defined by its underlying aperiodic and unambiguous Muller automaton A.
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By Proposition 44, the language of A is FO-definable by some formula φdom. To conclude
the proof, it suffices to remark that the Muller automaton which accepts Lv is aperiodic
whenever A is aperiodic, as the product of two aperiodic automata. This shows that Lv, for
all v P V , is FO-definable by some formula ψv. Then, the transformation applied on ψv to
obtain φvpxq preserves the fact of being first-order. đ
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