N
N

N

HAL

open science

On Canonical Models for Rational Functions over
Infinite Words

Emmanuel Filiot, Olivier Gauwin, Nathan Lhote, Anca Muscholl

» To cite this version:

Emmanuel Filiot, Olivier Gauwin, Nathan Lhote, Anca Muscholl.
tional Functions over Infinite Words. 38th TARCS Annual Conference on Foundations of Soft-
ware Technology and Theoretical Computer Science (FSTTCS), Dec 2018, Ahmedabad, India.

10.4230/LIPIcs. FSTTCS.2018.30 . hal-01889429

HAL Id: hal-01889429
https://hal.science/hal-01889429
Submitted on 6 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

On Canonical Models for Ra-


https://hal.science/hal-01889429
https://hal.archives-ouvertes.fr

On Canonical Models for Rational Functions over
Infinite Words

Emmanuel Filiot
Université Libre de Bruxelles, Belgium
efiliot@Qulb.ac.be

Olivier Gauwin
LaBRI, Université de Bordeaux, France
olivier.gauwin@labri.fr

Nathan Lhote

LaBRI, Université de Bordeaux, France and Université Libre de Bruxelles, Belgium
nlhote@labri.fr

Anca Muscholl

LaBRI, Université de Bordeaux, France
anca@labri.fr

—— Abstract
This paper investigates canonical transducers for rational functions over infinite words, i.e., func-
tions of infinite words defined by finite transducers. We first consider sequential functions, defined
by finite transducers with a deterministic underlying automaton. We provide a Myhill-Nerode-
like characterization, in the vein of Choffrut’s result over finite words, from which we derive an
algorithm that computes a transducer realizing the function which is minimal and unique (up to
the automaton for the domain).

The main contribution of the paper is the notion of a canonical transducer for rational func-
tions over infinite words, extending the notion of canonical bimachine due to Reutenauer and
Schiitzenberger from finite to infinite words. As an application, we show that the canonical trans-
ducer is aperiodic whenever the function is definable by some aperiodic transducer, or equivalently,
by a first-order transduction. This allows to decide whether a rational function of infinite words
is first-order definable.
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Introduction

Machine models, such as automata and their extensions, describe mathematical objects
in a finite way. Finite automata, for instance, describe languages (of words, trees, etc).
A canonization function C is a function from and to machine models (not necessarily of
the same type) such that, whenever two machines M, My describe the same object, then
C(My) = C(Mz). Accordingly, C(My) is called the canonical model of the object described by
My, and it does not depend on the initial representation of the object. A classical example of
? Emmanuel Filiot, Qlivier Gauwin,.Nathan Lhote and Anca Muscholl;
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Figure 1 Transducer with Muller sets F' realizing the function fx, mapping any word with
infinitely many a to a“, otherwise to b“.

canonization is the function which associates with a finite automaton its equivalent minimal
deterministic automaton. A canonization function becomes interesting when it satisfies
additional constraints like being computable, preserving some algebraic properties, and
enjoying minimal models. Canonical models not only shed light on the intrinsic characteristics
of the class of objects they describe, but can also serve to decide definability problems. For
instance, it is well-known that the minimal DFA of a word language L is aperiodic if and only
if L is definable in first-order logic [18, 22]. Hence, this allows to decide whether a monadic
second-order formula has an equivalent first-order one over words. This result has been
extended to infinite words [24, 25, 1, 19], although there is no unique minimal automaton for
languages of infinite words (see also [10] for a survey).

Rational functions are functions defined by word transducers. A canonical model for
rational functions over finite words has been introduced in [21]. This result, which can be
considered as one of the jewels of transducer theory, states the existence of a procedure
that computes from a given transducer a canonical input-deterministic transducer with
look-ahead, called bimachine. For the subclass of functions realized by input-deterministic
transducers, called sequential functions, it is even possible to compute a unique and minimal
transducer realizing the function [8]. For rational functions, the procedure of [21], though
it preserves aperiodicity of the transition congruence of the transducer, does not preserve
other congruence varieties, in general. In [14, 15] it was shown how to adapt [21] to obtain a
canonization procedure which overcomes this issue. Later it was shown that the first-order
definability problem for rational functions is PSPACE-c [13]. In a different setting, functions
with origin information realizable by two-way transducers were shown to have decidable
first-order definability [4]. In this paper, we extend the results of [21] and the decidability of
first-order definability of [13] to rational functions of infinite words.

Rational functions of infinite words We consider rational functions of infinite words, 7.e.
functions defined by transducers with Muller acceptance condition. Such machines map
any w-word for which there exists an accepting run to either a finite or an w-word. Take
as example the function fx, over alphabet {a,b} mapping any word containing an infinite
number of a to a*, and to b otherwise. This function is realized by the transducer of Fig. 1.

The class of sequential functions is of par-
ticular interest: they are realized by trans- ble ae
ducers whose underlying input Muller au-

tomaton is deterministic. Note that the

function fu, is not sequential, unlike the blab

function f,p of Fig. 2. Sequential functions

over infinite words have been studied e.g. in Figure 2 Sequential transducer with Muller
[2]. One difference between our setting and condition F' = {{gy}} realizing the function fas

2] is that in the latter paper infinite words which maps any word containing a finite number
of a’s to the subsequence of ab factors, and is

are mapped to infinite words, whereas we 1
undefined otherwise.
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need also functions that map infinite words to finite words. Deciding whether a rational
function is sequential can be done in PTIME, as shown in [2]. Bimachines for infinite words
were introduced in [26] to define the particular class of total letter-to-letter rational functions,
and in their counter-free versions, a connection with linear temporal logic was established.

To the best of our knowledge, nothing is known about canonical models for sequential
and rational functions over infinite words, and their applications to definability problems in
logics.

Contributions (1) We provide a characterization of sequential functions by means of the
finiteness of a congruence. We give a PTIME procedure which, for any sequential function f
given as a transducer whose domain is topologically closed, produces the minimal (and hence
canonical) sequential transducer Ty realizing f. When the domain of f is not topologically
closed, we extend f to a domain-closed sequential function f which coincides with f on
its domain. By intersecting T? with some automaton D recognizing the domain of f, one
obtains a canonical transducer for f, as long as D can be obtained in a canonical way (such
a procedure exists, see e.g. [7]).

(2) Our main contribution (Theorem 29) is a notion of canonical sequential transducer
with look-ahead for any rational function. This canonical transducer is an effectively
computable bimachine. Hence we lift results of Reutenauer and Schiitzenberger [21] on
rational transductions from finite to infinite words.

(3) As a side result we lift a result by Elgot and Mezei [11] from finite to infinite words,
stating that a function f is rational if and only if f = g1 o hy (resp. f = g2 o ha) such that
hi, ho are letter-to-letter, g1, ho are sequential and hy, go are right-sequential (i.e., realized
by a transducer whose underlying input automaton is prophetic [6]). The existence of such
g1, h1 was already shown in [5], but the one of go, ho was left open.

(4) Finally, we show that our procedure which computes a canonical bimachine for any
rational function given by a transducer, preserves aperiodicity. As an application, after
showing some correspondences between logics and transducers, we obtain the decidability of
FO-transductions in MSO-transductions over infinite words.

Overview of the canonization procedure for rational functions The main idea to get
a canonical object for a rational function, inspired by [21], is to add a canonical look-
ahead information to the input word, so that the function can be evaluated in a sequential
(equivalently, deterministic) manner. We say that the look-ahead “makes the function
sequential”. By doing so, we can reduce the problem to computing canonical machines for
sequential functions. The main difficulty is to define a canonical (and computable) notion of
look-ahead which makes the function sequential. Over finite words, the look-ahead information
is computed by a co-deterministic automaton, or equivalently, a deterministic automaton
reading the input word from right to left (called a right automaton). On infinite words we
need something different, so we use prophetic automata [6] to define look-aheads (called right
automata in this paper). Prophetic automata are a special form of co-deterministic automata
over infinite words. In Section 3, sequential transducers with look-ahead are formalized via
the notion of bimachines, consisting of a left automaton and a right automaton. We show
that bimachines over infinite words capture exactly the class of rational transductions. Our
goal is to obtain a canonical bimachine, fine enough to realize the function, but coarse enough
to preserve algebraic properties like aperiodicity.

Unlike the setting of finite words, some difficulties arise when prefix-independent properties
matter (such as for instance that a suffix contains an infinite number of a’s). We overcome
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this issue by defining two kinds of look-ahead information which we combine later on. This
decomposition simplifies the overall proof.

The first look-ahead information we define allows one to make any rational function
almost sequential, in the sense that it can be implemented by a transducer model which
can additionally output some infinite word after processing the whole input, depending
on the run (similar to so-called subsequential transducers in the case of finite words). We
call quasi-sequential functions realized by such transducers. They constitute a class with
interesting properties. We show that they correspond precisely to transducers satisfying
the weak twinning property, a syntactic condition defined in [2]. On the algebraic side, we
exhibit a congruence having finite index exactly for quasi-sequential functions.

We then define another kind of canonical look-ahead which makes any quasi-sequential
function sequential. Combined together, these two look-aheads turn any rational function
into a sequential one: the first one from rational to quasi-sequential, and the second one
from quasi-sequential to sequential.

The whole procedure does not yield a minimal bimachine in general. While the minimality
question is an important and interesting (open) question, our procedure still has the strong
advantages of being canonical, effective, and of preserving aperiodicity. This allows one to
answer positively the important question of the decidability of first-order definability for
rational functions of infinite words. Detailed proofs are provided in Appendix.

1 Regular languages and rational functions

Finite words, infinite words and languages An alphabet A is a finite set of symbols called
letters. A finite word is a finite sequence of letters, the empty sequence is called the empty
word and is denoted by €. The set of (resp. non-empty) finite words over A is denoted by
A* (resp. A™). An infinite sequence of letters is called an w-word (or just an infinite word),
we denote by A“ the set of w-words and we write A® = A* U A“. For a word z € A“ we
denote by Inf(z) the set of letters of x which appear an infinite number of times. The length
of a word w is written |w|, with |w| = o0 if w € A“. Throughout the paper, we often denote
finite words by u, v, ... and infinite words by =,y ...

For a non-empty word w and two integers 1 < 7 < j < |w| we denote by w(7) the ith letter
of w, by w(i:) the suffix of w starting at the ith position, by w(:¢) the prefix of w ending at
the ith position and by w(i:j) the infix of w starting at the ith position and ending at the
jth, both included. For two words u € A* and v € A®, we write u < v if u is a strict prefix
of v, i.e. there exists a non-empty word w € A% such that uw = v, and we write u~1v for
w. For u,v e A%, we write u < v if either u < v, or u = v. We denote by u A v the longest
common prefix of u and v. The delay del(u, v) between two words u,v € A% is the unique
pair (v',v’) such that u = (u A v)u’ and v = (u A v)v'. For example, del(aab, ab) = (ab, b)
and del(a¥,a¥) = (¢, €).

A language is a set of words L = A%, and by A L we denote the longest common prefix of
all words in L (if L # @). The closure L of Lis {u € A® | Vie N, i < |u|, 3w s.t. u(:i)w € L},
i.e. the set of words for which any finite prefix has a continuation in L. For instance
a*b® = a*b¥ U a®. A word is called regular if it is of the form wv* with u,v € A*. In
particular any finite word is regular (since e¥ = ¢€) and regular w-words are also called
ultimately periodic. We say that a regular word uv® is in normal form if v has minimal
length and is minimal in the lexicographic order among all possible decompositions of uv®,
and v is not a suffix of u (if v # €). E.g. the normal form of (ba)* is b(ab)®. In the sequel
we often assume regular words are in normal form.



E. Filiot, O. Gauwin, N. Lhote and A. Muscholl

—> - F:{{1}7{172}7{4}}

Figure 3 A right automaton (with Muller condition) recognizing (b*a)“. Words with finitely
many b’s have final run with {1}, words with finitely many a’s have final run with {4}, and those
with infinitely many a’s and infinitely many b’s have final run with {1, 2}.

Automata A Muller! automaton over an alphabet A is a tuple A = (Q, A, I, F) where Q
is a finite set of states, A € Q x A x @ is the set of transitions, I < @ is the set of initial
states, and F < P(Q) is called the final condition. When there is no final condition, so
F = P(Q), we will omit it. A run of A over a word w € A® is itself a word r € Q% of
length |w| 4+ 1, (with the convention that oo + 1 = 00) such that for any 1 <1 < |r|, we have
(r(@),w(i),r( + 1)) € A. A run r is called initial if r(1) € I, final if r € Q¥ and Inf(r) € F,
and accepting if it is both initial and final. For a finite word u and two states p, ¢, we write
p —> 4 q to denote that there is a run 7 of A over u such that 7(1) = p and r(|r|) = ¢. For an
w-word , a state p and a subset of states P < @, we write p —> 4 P to denote that there is a
run 7 of A over z such that r(1) = p and Inf(r) = P. A word is accepted by A if there exists
an accepting run over it, and the language recognized by A is the set of words it accepts,
denoted by [A] < A¥. A state p is accessible (resp. co-accessible) if there exists a finite
initial (resp. infinite final) run 7 such that r(|r|) = p (resp. r(1) = p), and an automaton
A is called accessible (resp. co-accessible) if all its states are. An automaton which is both
accessible and co-accessible is called trim. An automaton is called deterministic if its set
of initial states is a singleton, and any word has at most one initial run. We define a left
automaton as a deterministic automaton £ = (Q, A, I) with no acceptance condition. We
call a right automaton an automaton for which any w-word has exactly one final run?. A
language is called w-regular if it is recognized by an automaton. It is well-known that every
w-regular language can be recognized by a deterministic (Muller) automaton. Moreover, [6]
shows that every w-regular language can be recognized by a right automaton (even with
Biichi condition). Figure 3 shows a right automaton accepting the words with infinitely many
a’s. Throughout the paper, all automata — except for right automata — are assumed trim,
without loss of generality.

Transductions Given two alphabets A, B, we call transduction a relation R € A“ x B
whose domain is denoted by dom(R). A transducer over A, B is a tuple T = (A, 4, 0) with
A= (Q,A, I, F) the underlying automaton, i : I — B* the initial function and o: A — B*
the output function. Let u be a finite word of length n, let r be a run of A over u with
r(1) = p,r(n + 1) = ¢, and let v be the word o(p,u(1), r(2))--- o(r(n),u(n),q) then we

ulv

write p —7 ¢ to denote that fact. Similarly, for p € @ and P < @ we write p I—‘vwr P to
denote that there is a run r of A over the w-word z such that (1) = p, Inf(r) = P and
v = o(p,u(1),r(2))o(r(2),u(2),7(3)):--. In that case, if pe I and P € F, let w = i(p) - v,
then we say that the pair (x,w) is realized by T. We denote by [T] the set of pairs realized
by 7, which we call the transduction realized by T. A transducer is called functional if it

realizes a (partial) function, and in that case we write [7](z) = w rather than (x,w) € [T].

1 We consider the Muller condition since it is more general than Biichi or parity for instance, but most of
our results hold for other conditions as well.
2 Such automata are called prophetic and were introduced in [6].
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Functionality is a decidable property, see e.g. [16], and it can be checked in PTIME (see
e.g. [20]). In the following all the transductions we consider are functional, and when we
speak about functions, we tacitly assume that they are partial. A transduction is rational if
it is realized by a transducer. A transducer with a deterministic underlying automaton is
called sequential, as well as the function it realizes. A transducer with a left (resp. right)
underlying automaton is called left-sequential (resp. right-sequential), and again we extend
this terminology to the function it realizes.

Congruences Given an equivalence relation ~ over a set L, we denote by [w]™ (or simply
[w]) the equivalence class of an element w € L. We say that ~ has finite indez if the set
L/. = {{w]| we L} is finite. Given two equivalence relations ~1, ~ over the same set
we say that ~p is finer than ~5 (or that ~9 is coarser than ~1) if for any u,v we have
U ~1 v = u ~9 v. Equivalently we could say that the equivalence classes of ~5 are unions of
equivalence classes of ~; or that ~; is included (as a set of pairs) in ~5, which we denote
by ~1 E ~o. A right congruence over A* is an equivalence relation ~ such that for any
letter a and any words u,v we have u ~ v = ua ~ va. A left congruence over A* (resp.
A¥) is an equivalence relation ~ such that for any letter a and any words u,v we have
u~ v = au ~ av. We say that a left congruence is regular if it has finite index and any
equivalence class is an w-regular language. In the following all the left congruences will be
regular. A congruence over A* is a left and right congruence. A congruence = is aperiodic if
there exists an integer n such that Vu € A*, u™ = u"*1.

Given an automaton A with state space @, the right congruence associated with A is
defined for u,v € A* by u ~4 v if Vg € Q, there is an initial run of A over u reaching ¢ if and
only if there is one over v. Note that for a trim deterministic automaton, there is a bijection
(up to adding a sink state) between @ and the equivalence classes of A. Similarly, the left
congruence associated with A is defined for x,y € A“ by z ~_4 y if Vq € @ there is a final run
of A over z from ¢ if and only if there is one over y. Given a right automaton there is a
bijection between ) and the equivalence classes of ~ 4. Finally, the transition congruence of
A is defined for u,v € A* by u =4 v if Vp,q € @, there is a run over u from p to ¢ if and
only if there is one over v. An automaton is called aperiodic if its transition congruence is
aperiodic. A language is called aperiodic if there exists an aperiodic automaton recognizing
it. A transducer is aperiodic if its underlying automaton is aperiodic and in that case the
transduction it realizes is called aperiodic.

Given a right congruence ~, the left automaton associated with ~ is A. = (Q~, A, I.):
Q. =A%/, AL = {([u],a,[ua]) | ue A*}, I. = {[e]}. Given a left congruence ~ and a
right automaton R, if ~r = & then we say that R recognizes ~. The existence of a canonical
automaton for a left congruence is less obvious. From [6] we know that every w-regular
language can be recognized by a right automaton. We rely on the construction of [6] and,
abusing language, we denote the right automaton obtained in the next proposition as the
canonical Tight automaton recognizing a left congruence:

» Proposition 1. Given a (regular) left congruence, we can compute in 2-EXPTIME a right
automaton recognizing it. Furthermore, this automaton is aperiodic if the congruence is
aperiodic.

2 Sequential and quasi-sequential transductions

We define the syntactic congruence associated with any functional transduction over infinite
words. Sequential functions are exactly the rational functions having a syntactic congruence
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fab f#a Solocks

definition | maps a word over {a,b} | mapsa word z over {a,b} | maps ui#...#u,#v where
with a finite number of | to a® if x contains an in- | v does not contain #, to
a’s to the subsequence of | finite number of a’s, and allul‘# .. #a‘,ll"l#w where
ab-factors. to b* otherwise. u; € {a,b}*, a; is the last

letter of u; (if any), w = a*
if v has an infinite number of
a’s, and w = b otherwise.

Aand B | A= B = {a,b} A= B ={a,b} A= B ={a,b,#}

dom(f) words over {a,b} with a | {a,b}* words over {a, b, #} with a fi-
finite number of a’s nite (non-zero) number of #’s

examples | for(abbabd®) = abab, | fuza(ab®) = b, | folocks((ab#)"b*) =
fap(b”) =€ J#a((ab)*) = a* (bb#)"Y, folocks (F#(ab)*) =

a®.

f fa» extracts the ab- | reading a finite prefix | folocks(U1# ... Hun#v) =
f/a\ctors7 for instance | u does not give any in- allul‘#...#a‘#"l# whenever
fab(abbabb) = abab. sight on the output, thus | v does not contain #.

fa(u) = €

f fap is defined over E(m) = ¢ for every € | folocks(U1F ... Fun#v) =
dom(fap) = {a,b}* | {a,b}* as it is based on | al"*'# .. #al""'# whenever
and Aﬁ((ba)“’) = f#\a v does not contain #.

lim, foo ((ba)")
lim,, (ab)" ™" = (ab)“.
class sequential quasi-sequential not quasi-sequential

Figure 4 Examples of rational transductions, and their associated f and f functions.

of finite index, and being continuous over their domain. When removing this last condition
on continuity, we obtain the class of quasi-sequential transductions. These transductions are
also characterized by the weak twinning property [2].

We will show that for any sequential function, like in the case of finite words [8], we
can define a canonical transducer, with a minimal underlying automaton. This minimal
transducer extends the domain of the function to its closure.

» Definition 2 (f and f). Let f : A — B® be a function, we define f: A* > B® by
fu) = A{f(uz)| uxedom(f)}. In other words, f outputs the longest possible output
that f could produce on any word that begins with u. We also define f : A — B* by
setting f(z) = lim, f(z(:n)), for € dom(f).

We refer to f as the sequential extension of f. Note that if f is sequential, then f extends f
over the closure dom(f) of the domain of f.

» Example 3. We illustrate these definitions on three rational transductions, described in
Figure 4.

» Definition 4 (syntactic congruence ~ ). The syntactic congruence associated with a trans-
duction f is defined over A* by u ~f v if:
1. Yz € A¥, uz € dom(f) < vz € dom(f), and

2. either f(u) and f(v) are both ultimately periodic with the same period (in normal form) or
they are both finite and Yz € A% such that uz, vz € dom(f), f(u)~ f(ux) = f(v)~7' f(vz).

» Example 5. Let us illustrate the definition of ~¢ on f,;, as defined in Figure 4. The

syntactic congruence ~y,, has only two classes: [¢] and [a]. Indeed, if we consider two
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Figure 5 Transducer 7y, .

finite words u and v, condition (1) on the domain is always true, and f;,(u) and f;,(v)
are finite (ab-factors in u and v, respectively). Hence u ~y,, v if and only if Vz € A*,
Fan()™ fus(2) = Fop () fun(v). R

Let us analyze fu,(u) ! fop(uz). If u does not end with an a, then fup(u) =t fop(uz) =
((ab)™)~((ab)"**) = (ab)* where n and k are the number of ab-factors in u and x, respec-
tively. Now, if u ends with an a and x starts with a b, then a new ab-factor appears in ux and
we get fap (1)~ fap(uz) = ((ab)™)~1((ab)"*+*+1) = (ab)¥*+1. This means that ~;,, contains
exactly two classes: one for the words ending with an a, and one for the others.

The resulting transducer 7Ty, is depicted in Figure 5. Let us check for instance the
transition from [a] to [e] when reading b. We have [ab] = [e], so ([a], b, [¢]) € Ay,,. From
the definition, oy,, ([a], b, [€]) = f(;,(a)flf,;,(ab) = ¢ L.ab = ab.

» Proposition 6. Let f be a functional transduction, then ~ is a right congruence.

From ~; we define® the transducer T; = (Ay, if, of) with Ay = (Qf, Ay, 1) and:
Qf = A*/~, and Iy = {[e]}
Ay ={([u],a,[ual) |ue A*, a € A, 3z s.t. vaz € dom(f)}
J?(u)_1 A(ua) if f(ua) is finite
it flu) =ap®, BAec
if f(u) is finite and f(u) " f(ua) = aB¥, B # ¢

Yy @ ™

f(e) if f(e) is finite
o i f(e)=aBe, B

» Remark. Note that, in general, ~; may have an infinite index, thus 7; may be infinite. This

ir([e]) =

is the case for filocks: for two words u = ug#w and v = ug#w’ with ugww’ not containing
#, U~ oae U if and only if |w| = |w'| and they end with the same letter. We will define
below a subclass of rational transductions, which captures exactly finite ~; (Theorem 12).

As shown below, the sequential transducer T; computes the sequential extension f of f. If f
is sequential then f and f coincide on dom(f)(see Proposition 32 in the appendix).

» Proposition 7. Given a function f, the transducer 77 realizes f.
We now focus on sequential transductions, and show first that 7y can be built in PTIME.

» Proposition 8. There is a PTIME algorithm that, for a given sequential transducer 7T
realizing the function f, computes the transducer 7.

For sequential transductions we get a characterization, as stated in the next theorem. We
will see that the first condition is equivalent to the weak twinning property. Thus, the next
theorem adapts a result from [2] to the case where transducers may output finite words.

3 We check in Appendix B that Ty is well-defined.
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» Theorem 9. A rational function f is sequential if and only if the following conditions hold:
~ has finite index
Fraomepy = 1
If we remove the last restriction ﬂdom( 5y = [ in Theorem 9, we obtain a class of transductions
where the output can be still generated deterministically (as for sequential transductions),
although not necessarily in a progressive manner:

» Definition 10. A function f is called quasi-sequential if it is rational and ~ has finite
index.

Intuitively, quasi-sequential functions generalize the so-called subsequential functions on finite
words to infinite words. For subsequential functions there is a final output associated with
final states. Quasi-sequential functions can be shown to correspond to sequential transducers
where final sets may have an associated word in A®. The output of an accepting run with
such a final set is obtained by appending the associated word to the output word obtained
through the transitions (if finite). Since we do not use this model in the present paper, we
do not provide more details in the following. The following property and construction are
now taken directly from [2]. As in the latter article, a state is called constant if the set of
words produced by final runs from this state is a singleton.

» Definition 11 (weak twinning property). A transducer T is said to satisfy the weak twinning

property (WTP) if for any initial runs p; e, 1 2B, q1 and po lea, q2 2Ba, g2 the

following property holds:
If g1, g2 are not constant then del(i(p1)aq, i(p2)as) = del(i(p1)a1 P, i(p2)aaB2)
If ¢1 is not constant, ¢, is constant and produces the regular word -y, then either 81 = ¢
or i(p1)au By = i(p2)aaBay

Note that if g2 is constant and (o % € then v = 5.

The authors of [2] provide a determinization procedure — which we call subset construction
with delays— which terminates if and only if the transducer satisfies the WTP. We show that
actually the procedure gives a transducer realizing the sequential extension of the function
and we use this fact in Sec. 4 in order to compute a canonical look-ahead.

» Theorem 12. Let T be a transducer realizing a function f, let S be the transducer obtained
by subset construction with delays. The following statements are equivalent:

1. The transducer T satisfies the WTP

2. The transducer S is finite

3. f is quasi-sequential

Furthermore, if T is aperiodic then S is aperiodic as well.

3 Rational transductions

Bimachines over infinite words A bimachine over alphabets A, B is a tuple B = (L, R, i, 0)
where £ = (Qz,Ar, {lo}) is a left automaton, R = (Qr,Ar,I, F) is a right automaton,
i: I — B* is the initial function and o : Qy x A X Qr — B* is the output function. We have
a semantic restriction that [£] = [R]. The output produced on an infinite word w € [R]
at position ¢ = 1 is «; = o(l,a,r), where [ is the state reached in £ after reading the prefix
w(:i — 1) of w up to position ¢ — 1 (if defined), r is the state of the unique final run of R
on w (if defined) reached by the suffix w(i + 1:) of w from position i + 1 on, and a = w(7).
In other words, the output at position ¢ is determined by the left context up to position

30:9

FSTTCS 2018



30:10

On Canonical Models for Rational Functions over Infinite Words

1 — 1, the right context from position i + 1 onwards, and the letter at position i. The output
produced on w is i(rg)ayag - - -, with 79 € I the state from which there is a final run of R on
w (if defined). Thus, the right automaton R provides a look-ahead and the output depends
both on the state of £ and the unique final run of R on the given word. The transduction
realized by B is denoted by [B]. Note that [B] is defined over [R]. A bimachine is called
aperiodic if both its automata are aperiodic.

» Example 13. Let us define a bimachine for f,;, the function that outputs ab-factors of
the input over {a, b}, if this input has a finite number of a’s. We use as left automaton the
underlying automaton of the transducer in Figure 2, without its Muller acceptance condition.
This automaton will only be used to store the last letter read. The domain has to be checked
by the right automaton, and we choose the one in Figure 3. As output functions, we let
i(q) = € for the initial states of the right automaton, and let o(qq,b,r) = ab for r € {1,2},
and o(l,¢,r) = e for all other states [, r of the left and right automata, and letter ¢ € {a, b}.

Left minimization We show how to minimize the left automaton of a bimachine with respect
to a right automaton R. The procedure is very similar to the minimization for sequential
transducers. The objects we use are the same as in Section 2, but relativized to the right
context defined by the look-ahead provided by the right automaton R. The bimachine with
minimal left automaton with respect to the right automaton R is the bimachine BZ} defined
below.

Recall that the left congruence ~% of a right automaton R sets x ~x y if the unique state
from which there is a final run on « is the same as for y. Let f : AY — B® be a function and
let R = (Qr,ARr, I, F) be aright automaton recognizing dom(f). We write [m]R for the class
of a word x with respect to ~5, and, abusing notations, for the state of Q% from which words
of [at]R have a final run. We define f; : A* — B® by setting fx(u) = A {f(uwy) |y ~r z}.
Note that there are finitely many functions fa;, one for each equivalence class of ~. We
also define F~ : A¥ — B®, by setting 7R(J:) = lim,, ﬁ(n+1:)(a:(:n)). The transduction f © is
defined over dom(f).

» Definition 14 (R-syntactic congruence). The R-syntactic congruence of f is defined over

A* by letting u ~3§ v if:

1. Vz € A¥, uxz € dom(f) < va € dom(f), and

2. for any x € A“, either f;(u) and f;(v) are both infinite with the same ultimate period
(in normal form) or they are both finite and ﬁc(u)flf(ux) = fx(v)*lf(vx).

Similarly to the sequential case, we define from ~3§ a bimachine BY = (ER,R, i}z, 0}2
with right automaton R, and left automaton C? = (Q}Z, A}a, IF) corresponding to ~3?. To
simplify notations we denote the congruence class of a word u with respect to ~7f2 by [u].
Abusing notations we also write [z]R for the state of R from which « has an accepting run.
Q}z = A*/N}z and IT = {[€]}
AT = {([u] , a, [ua]) | ue A* a€ A, uax eAdom(f) for some z € A%}
faz(w) L fr(ua) if Jf\z(ua) is finite

Ry_ ) B if fou(u) = aB®, B ¢
os(fu]a,[2]7) = e if ﬁu(u) is finite, fal(u)_l A(ua) = af¥
and 8 % €

J?g;(e) if ﬁ;(e) is finite
a i fule) =aBv B e
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We show in appendix that B}z is well-defined, and exhibit some of its properties. We also
describe in appendix a polynomial time algorithm that computes B}a from a bimachine with
right automaton R, with a technique similar to the sequential case(Proposition 6).

From transducers to bimachines For the theorem below, recall that ~ 4 denotes the right
congruence of an automaton A. The left congruence ~ 4 of an automaton A sets = ~ 4 y if
for every state q of A, there is some final run on x from ¢ if and only if there is one on y.

» Theorem 15. Given a transducer with underlying automaton A and a right automaton R
with ~»r © ~4. Then ~4 C ~3§ and the bimachine BZ} realizes f.
In particular any aperiodic transduction can be realized by an aperiodic bimachine.

The other direction also holds: from a bimachine we can build an equivalent (unambiguous)
transducer, by taking the product of the left and right automata of the bimachine. The
construction is not hard but given in the appendix. By Theorem 15 and Proposition 1 we
obtain:

» Theorem 16. A function is rational (resp. rational and aperiodic) if and only if it can be
realized by a bimachine (resp. aperiodic bimachine).

Labelings and bimachines We define the labeling function associated with a right automaton

R = (Q,A, I, F) by the right transducer /(R) = (R, 4, 0), with i(¢) = € and o(p, a,q) = (a, q).

Intuitively, the labeling function labels each position with the look-ahead information about
the suffix provided by R. For a transduction f we define fr = fo[¢(R)]~*. Note that fr is
a function, since the labeling is injective (because R is unambiguous). Thus, fr corresponds
to f defined over words enriched by the look-ahead information of R.

» Proposition 17. Let f be a transduction and let R be a right automaton. There exists

a bimachine B realizing f with R as a right automaton if and only if fr is left-sequential.

R

Furthermore, assuming that R is aperiodic, then ~ 7 is aperiodic if and only if fr is aperiodic.

We say that a transducer is letter-to-letter if its initial output function always outputs the
empty word and its output function always outputs a single letter. The following corollary
states the classical result of [11] but over infinite words, and generalizes a result of [5].

» Corollary 18. For any rational function f, there exists a left-sequential (right-seq. resp.)
function g and a letter-to-letter right-sequential (left-seq. resp.) function h such that f = goh.

4 Canonical machines

The goal of this section is to define a canonical bimachine for any rational function. By
canonicity we mean that it should be machine-independent. Our ultimate goal is to show
that the canonical bimachine suffices to decide the algebraic properties we are interested
in. To get a canonical bimachine, we need a right automaton for the look-ahead that is 1)
canonical, 2) coarse-grained enough to preserve algebraic properties, and 3) fine-grained
enough to obtain a deterministic left automaton (and hence a bimachine).

We define the delay congruence and show that it is the coarsest left congruence such

that any automaton R recognizing it satisfies that fr is quasi-sequential (Proposition 21).

However, this congruence is, in general, too coarse to make fr sequential. We then introduce
the ultimate congruence, and show how to combine these two congruences to build a canonical
bimachine.

30:11

FSTTCS 2018



30:12

On Canonical Models for Rational Functions over Infinite Words

Let f be a transduction. We define the delay between x,y € A“ with respect to f by:
delf(z,y) = {del(f(ux), f(uy)) | uzr,uy € dom(f)}. The following definition is taken from
21, 3].

» Definition 19 (delay congruence). The delay congruence of f is defined by setting x éf Y
for z,y e A if (1) for all u € A*, ux € dom(f) < uy € dom(f), and (2) |del¢(z,y)| < .

» Example 20. Let us illustrate the above definition on fhocks (recall Example 3). We
consider = u1# ... #up#v and y = uj# ... #u,#v" where v and v’ are infinite words
not containing #. Note that x éfblocks y if and only if uy, u) are either both empty, or end
with the same letter. Indeed, if the latter holds then del(f(uz), f(uy)) = del(f(z), f(y)).
Conversely, if both wuy, u} are non-empty but end with different letters, then for any u without
#, del(folocks (U), folocks(uy)) = (f(ux), f(uy)). If uy = € and u, v} end with different letters,
then again, del( foiocks(Ux), folocks(uy)) = (f(ux), f(uy)). There are two more classes with
respect to ~ Foroars s O0€ for infinitely many #, and one for no #.

The look-ahead ~ fuioare Drovides enough information to transform the blocks determin-
istically (we only need the last letter before the next #), but not enough information to
produce the output after the last # deterministically.

The following proposition shows that the delay congruence, when used as a look-ahead (see
the definition of fr page 11), transforms any rational function into a quasi-sequential one.

» Proposition 21. Let f be a transduction and let R be a right automaton recognizing
dom(f). Then fr is quasi-sequential iff ~r = 2 7. In particular, if f is aperiodic then 2 s
aperiodic.

The delay congruence is minimal, 7.e. coarsest, among right congruences of bimachines
realizing a function, and we show in appendix that it can be computed in PTIME from a
bimachine.

» Proposition 22. Given a transducer 7 (resp. a bimachine B) with underlying automaton
A (resp. right automaton R) realizing a function f, we have that ~ 4 (resp. ~%) is finer
than éf.

Canonical machine for quasi-sequential functions As noted in [2], the class of quasi-se-
quential functions, or equivalently, the class of functions satisfying the WTP, is strictly larger
than the class of sequential functions. The last left congruence that we define now will be fine
enough to make a quasi-sequential function sequential. By taking the intersection between
this congruence and the left delay congruence we will obtain a congruence that is fine enough
to make any rational function sequential. However, it should be noted that this look-ahead
is not minimal, in the sense that it is not necessarily coarser than any look-ahead that is fine
enough to realize the function.

» Definition 23 (Ultimate congruence). We define the ultimate congruence of a rational
function f by setting z ~ ¢ y for x,y € A if the following conditions hold:

For all u € A*, ux € dom(f) < uy € dom(f)

If ux € dom(f) then f(u) = f(uz) < f(u) = f(uy) Moreover, if f(u) = f(ux) then

fluz) = fluy). R B
Observe that f(u) < f(ux) for every uz € dom(f). So the intuition behind f(u) = f(uzx) is
that no finite look-ahead on 2 can help to output f(uz) deterministically after u. And the

intuition behind f(uz) = f(uy) is that the missing outputs f(u)~1f(uz) and f(u)~Lf(uy)
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have to be equal, which is equivalent to f(uz) = f(uy). Now, for a given class of ~; as
look-ahead, a left automaton would know the missing output and start producing it. We
show in the appendix (Lemma 42) that ~ is a left congruence.

» Example 24. Recall the function fyocks defined in Example 3. Jm maps every block to
its output and stops at the last #. Hence ﬂ;ks(u) = fblocks(uz) if and only if x does not
contain #. When @(u) = fblocks(ux), we have f(uzx) = f(uy) if and only if  and y both
contain an infinite number of a’s, or none of them does. The congruence classes of ~y,,
are thus: a) words x with an infinite number of # (yielding uz outside the domain), b) words
2 with a finite (non-zero) number of #, ¢) words without #, with an infinite number of a’s,
d) words without #, with a finite number of a’s. This is precisely the information lacking
in the look-ahead provided by ~ foers (see Example 20) to obtain a look-ahead allowing a
sequential processing of the input.

» Proposition 25. For a quasi-sequential transduction f, the ultimate congruence ~ has
finite index. If f is given as a bimachine, ~f can be computed in 2-EXPTIME. Furthermore,
if f is aperiodic then ~ is aperiodic.

Let R be a right automaton recognizing ~ . We define the bimachine Z/l}2 = (Af, R, if, 0R)
with A; and ¢ (as in Section 2), and for og we take:

f(u)*l A(ua) if f(ua) < f(uax)

~

OR([U] )y @y [(t]R) = B if .f\(u) = ,f\(
) < f(

@ if f(u) <

~

uaz) and f(u)*lf(liax) = af¥
ua) = f(uax) and f(u)~!f(uaz) = af®

The following lemma states that U}z realizes f.

» Lemma 26. Let f be a quasi-sequential transduction, and let R be a right automaton
recognizing the ultimate congruence =y, then Z/{}2 realizes f.

Let R be the canonical right automaton of & ¢ By the previous lemma, there exists a
bimachine with R as right automaton realizing f. By minimizing its left automaton with
respect to R, we obtain a canonical bimachine for f.

» Corollary 27. Let f be a quasi-sequential transduction, and let R be the canonical right
automaton of the ultimate congruence ~y, then B}z realizes f (and is finite).

Canonical bimachine We finally show that by composing the information given by the delay
and the ultimate congruences, we obtain a canonical bimachine for any rational function. Let
us make clear what we mean by composition. Let Rq = (Q1, A1, I1, F1) be a right automaton
and let Ry = (Q1, As, I, F5) be a right automaton over A x Q1 . The automaton R; > Ro
is defined as (Ql X Q27A{172}711 X IQ,F1 X Fg) with F} x Fy = {Pl X Py ‘ P e Fl, P e FQ}
and Ayg 0y = {((51,82),a,(r1,72) | (51,0,71) € Ay, (s2,(a,71),72) € Aa}, which is a right
automaton.

» Lemma 28. Let Ry = (Q1,A, I, F) be a right automaton and let Ro be a right automaton
over A x Q1. Then [¢(R2)] o [¢(R1)] = [¢(R1 = R2)] (up to the isomorphism between
(A X Ql) X QQ and A x (Ql X QQ))

We can now state our main result. In our construction we focused on clarity and composition-

ality and we obtain a several-fold exponential complexity. At the cost of greater technicality,
one should obtain a tighter result.
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» Theorem 29 (Canonical Bimachine). Let f be a transduction given by a bimachine, let Ry be
the canonical automaton of the delay congruence éf, and let Ro be the canonical automaton
of the ultimate congruence é(fnl)' Then the bimachine B?lwzz realizes f. Furthermore if f

8}31 XR2

is aperiodic then is aperiodic.

Proof Let f be a transduction, let Ry be the canonical automaton of the delay congruence
. Since R4

recognizes R £, we know according to Proposition 22 that fr, is quasi- sequentlal Hence since
R is finer than ~ X(fr,)> We know from Cor. 27 that the bimachine B 2 realizes f. From
Proposition 17 we obtaln that (fr,)r,, the function obtained by composmg the labelings

¢(R2) and ¢(R1), is left-sequential. We use Lemma 28 to obtain that fr,wr, is left-sequential
and thus, again by Proposition 17 we know there is a bimachine with R, > Ro as right
automaton which realizes f. In particular, B}z“xﬂb realizes f.

If we assume that f is aperiodic, we obtain from Proposition 22 that R, is aperiodic and
from Proposition 17 that fr, is aperiodic. Hence from Proposition 25 we have that Ry is
aperiodic. Again from Proposition 17, we have that (fr,)r, = fri~R, 18 aperiodic. A third
time from Proposition 17 we have that B?MR"‘ is aperiodic. <

~f and let Rg be the canonical automaton of the ultimate congruence ~y, )

Note that the right automaton constructed in Proposition 1 is actually a right Biichs
automaton. So our result would still hold for bimachines with Biichi right automata.

5  First-Order Definability Problem

In this section, we show that given a transducer T realizing a transduction [T] : A — B®,
one can decide whether [T] is first-order definable (FO-definable). First, let us recall the
notion of FO-definability for word languages. Any word w € A% is seen as a structure of
domain {1,...,|w|} linearly ordered by < and with unary predicates a(z), for all a € A. By
FO we denote the first-order logic over these predicates, and by MSO the extension of FO
with quantification over sets and membership tests x € X (see for instance [23] for a detailed
definition). We write w = ¢ if some word w satisfies a formula ¢, and ¢(z1,...,z,) any
formula ¢ with n free first-order variables z1,...,x,. Interpreted over words in A% (resp.
A%®), any sentence ¢ defines a language [¢] € A% (resp. [¢] € A®) defined as the set of
words satisfying ¢. E.g. the sentence ¢ = Va,y - a(z) A b(y) — = < y, interpreted on A%,
defines the language a* U a®b”. Interpreted on A™, it defines the language a* U a*b* U a™*b*.
A language L is said to be FO-definable (resp. MSO-definable) if L = [¢] for some sentence
¢ € FO (resp. ¢ € MSO).

Definability of transductions An MSO-transducer is a tuple F = (A4, B, @dgom, V, i) where
ddom is an MSO-sentence, V' is a finite subset of B* and p a function mapping any word
v € V to some MSO-formula (over alphabet A) denoted ¢, (z), with one-free variable. An
FO-transducer is an MSO-transducer which uses only FO-formulas. Any MSO-transducer
defines a transduction denoted [F]] € A“ x B® such that (u,v) € [F] if u = @dom and there
exists (v;)i>1 such that v = vivavs... and for all i = 1, v; € V and u = ¢y, (7). We say
that f : AY — B%® is MSO- (resp. FO-) definable if there exists some MSO- (resp. FO-)
transducer F such that [F] = f

For example the functional transduction which erases all a’s of any input w-word over
{a,b} is defined by ¢gom = T and the two formulas ¢.(x) = a(z) and ¢p(x) = b(z). The
functional transduction mapping any word of the form a™b* to al™?2!p* is not FO-definable,
even though its domain is. Intuitively, the formula ¢,(x) would have to decide whether
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x is an odd or even position, which is a typical non FO-definable property. It is one of
the goal of this paper to automatically verify that such a property is indeed not FO. It is
however MSO-definable with ¢gom = ¢o A 32 - b(x), where ¢ has been defined before, and
the three formulas ¢.(z) = a(z) A odd(x), ¢o(x) = a(x) A even(x) (properties which are
MSO-definable) and ¢p(x) = b(x).

As a remark, Courcelle has defined in the context of graph transductions the notion of
MSO-transducers [9], which can also be restricted to FO-transducers. Cast to infinite words,
Courcelle’s formalism is strictly more expressive than rational functions, as they allow to
mirror factors of the input word for instance. Restricted to the so called order-preserving
Courcelle transducers [4, 12], they are equivalent to our MSO- and FO-transducers, however
with a more complicated definition. This equivalence can be seen, for finite words, in the
proof of Theorem 4 in [12]. The same proof works for infinite words as well.

We first exhibit a correspondence between logics and transducers, the proof of which is
similar to the finite case [12], but requires some additional results on aperiodic automata on
w-words.

» Theorem 30 (Logic-transducer correspondences). Let f : AY — B®. Then:
f is MSO-definable if and only if it is realizable by some transducer.
f is FO-definable if and only if it is realizable by some aperiodic transducer.

We obtain the following decidability result (in elementary complexity if the input is a
transducer).

» Theorem 31. [t is decidable whether a rational function f : AY — B%, given as a
transducer or equivalently as an MSO-transducer, is definable in FO.

Proof. By Theorem 30, it suffices to show that f is aperiodic, i.e. definable by some aperiodic
transducer. By Theorem 16, one can construct a bimachine which is aperiodic if and only if
f is. So, it suffices to construct this bimachine and to test its aperiodicity, i.e., whether its
left and right automata are both aperiodic, a property which is decidable [10]. <
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A  Proofs for Section 1

The syntactic congruence of an w-language L is defined for u,v € A* by u =1, v if Vr,s €
A* te AT: 1) rust” € L < rvst” € L and 2) r(us)” € L <« r(vs)¥ € L.

Proof of Proposition 1. Let a be a left congruence. The construction of [6] starts with a
congruence that is finer than the syntactic congruence of the w-regular language L, and
produces a right automaton of exponential size with Biichi acceptance condition, recognizing
L.

For our purpose it suffices to start with the coarsest congruence that refines the syntactic
congruence of any of the languages [z], call it =. This means that the automaton we obtain
from = applying the construction of [6] can recognize any congruence class of ~, and hence
recognizes ~.

Let us now discuss aperiodicity. A language is aperiodic if and only if its syntactic
congruence is aperiodic. We just give the main arguments why the construction of [6] preserves
aperiodicity and refer the reader to [6] for a thorough understanding (and we also use the
same notations). The states in the constructions are pairs of the form ([s, €], (s1,...,5n)),
where [s,e] denotes a conjugacy class of linked pairs and (si,...,s,) denotes a chain of
R-classes. Since we start from an aperiodic semigroup S (given by the classes of the syntactic
congruence), the left action of the semigroup on conjugacy classes is obviously aperiodic.
More precisely, for n large enough we have u"*!-[s, e] = [[ugt"] s, e] = [[u"]4 s, €]. Similarly,
using Proposition 69 in the article and since u"*! and u™ are in the same R-class (for n large
enough) we have for any infinite word w that @¢(u"w) = @(u"w). Finally it is clear that
the construction of Lemma 17 in [6] which goes from a right Biichi automaton with a final set
of transitions to a right Biichi automaton with a final set of states, preserves aperiodicity. «

B Proofs for Section 2

B.1 Syntactic congruence

~

Proof of Proposition 6. Let u ~; v and let a € A we want to show that ua ~5 va. If f(u)

~

and f(v) are both infinite with the same ultimate period then it is also the case for f(ua) and
f(va). Otherwise, for any z such that uz, ve € dom(f), we have f(u)~!f(uz) = f(v) "' f(ve)

~

and we denote this word by g(z). Note that f(uz) = f(u)g(z). If A, g(az) is infinite then

~ ~

we have both f(ua) and f(va) infinite with the same ultimate period. Otherwise:

fua)~ f(uaz) =

Ay9lay))  Fl) "/ (uaz)

(A, stan) ™ o) foaa)
F(va) " f(vaz)

T7 is well-defined. We have left to show that the outputs are well-defined. If u ~¢ v and

~

fu) = af® with 8 # €, then f(v) = /(% since both words are in normal form, and thus the
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~

output is uniquely defined. Otherwise it suffices to show that f(u)~!f(ua) = f(v)~!f(va)
to have well-defined outputs.

|
>>

8

Fw) ' fua) =

< <
I
—

<

=

|
D> T ITH T
& )
LQ ~— \_‘/ S~—
N —
&=
S
~—
?
Q
—
Q
&

e
~
L
\)
—~
=4
Q
=

<

Proof of Proposition 7. We denote by g the sequential function realized by 7;. Let us
first show that dom(g) = dom(f). Let x € A“, since Ay has no acceptance condition then
x € dom(g) if and only if there is a run of Ay over it. Let 2 € dom(f), then for any integer
n, there is an w-word y, such that z(:n)y, € dom(f), hence by definition of Ay there is
an infinite run of Ay over x. Let us now assume z ¢ dom(f), then there is an integer n
such that for all y € A¥, z(:n)xz(n)y ¢ dom(f), hence there is no run of Ay over x. Hence
dom(g) = dom(f).

~

Let « be a word in dom(f). Let us first assume that for any integer n, f(x(:n)) is finite.

~

Then in Tf, we have by definition that [¢] rlnlan, [z(:n)] with if([€])ay, = f(z(:n)). Thus

g(z) = lim, f(z(n)) = f(z). R

Now let us assume that for some integer k > 0 we have f(z(:k)) = oB¥ with 8 € BT,
and let us also assume without loss of generality that k is the smallest of such integers. Then
we must have f(z) = f(m(k)) = af“. Furthermore, by definition we have in 7y, [€] =k,

[z(:k)] with i([e])y = aB' for some integer [, and for n > k we have [x(:n)] 2t DIB,

[z(:n 4+ 1)]. Hence g(z) = lim,>; af"* = aB* = f(x). <

B.2 Sequential transductions

We start with two properties of sequential functions.
» Proposition 32. For any sequential transduction f, it holds that ?‘dom(f) = f.

Proof. Let T be a sequential transducer realizing f and let x € dom(f). If f(z) is finite,

then there exists an integer k& such that gg =CR)If (=), p. Since f is sequential, for any n > k
we have f(x(:n)) = f(z) which means that f(z) = f(z). Otherwise, if f(x) is infinite, then
there must be an increasing sequence of indexes ny,no, ... such that gq lm )l pr with
ap < agg1. By sequentiality of f, i(go)ou < f(x(:ng)) and since f(x) = limg i(go)ay is
infinite, we have that f(z) = limy, f(z(:ny)) is also infinite and the two words are equal. <«

» Proposition 33. For any sequential transducer with underlying deterministic automaton
A realizing a transduction f, we have ~4 = ~;.

Proof. Let T = (A, i,0) be a sequential transducer realizing a function f, hence A =
(@, A, qo, F) is deterministic. Let u ~4 v, we want to show that u ~y v. Let z € A%, since
u and v reach the same state from gy we have that ux € dom(f) < vz € dom(f). Let us
assume that ux € dom(f) for some word z, then we know that for any w < x there exists z
such that uwz € dom(f). However we have by assumption uwz € dom(f) < vwz € dom(f),
hence vz € dom(f).
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Let ¢ € @, we define T, by T, = (Ay,4,0) with 4, = (Q,A,q, F) and we denote the
corresponding sequential function by f,. Let ¢ be the state reached from gy by reading u (or
v), and let v be the longest common prefix of all outputs along final runs starting at g, i.e.

~ ~

v = fy(e). If 7 is infinite then f(u) and f(v) have the same ultimate period, which is also

the one of . If ~ is finite, then let gg e, q and qq 18, q denote the initial runs of A over u

and v, respectively. We thus have f(u) = i(qgo)ay and f(v) = i(go)B7y. Let = be such that
ux, vz € dom(f). Since A is deterministic, we have:

Flw) ™ f(uz) (i(qo)oy) ™" ilgo)aufy (@)

= Z_lfq(x)
= fv) ' f(vr)

Thus we obtain u ~¢ v which concludes the proof. «

Proof of Proposition 8. To compute 7; we need to compute the longest common prefix
function f and to determine the classes of the syntactic congruence ~;. For the classes
of ~; we can use Proposition 33: for every state p of 7 we fix some (minimal-length)
representative word u, leading from the initial state to p. Then we check whether u, ~¢ ug,
for every pair of states p,q of T (we explain below how this can be done). Doing so, we have
determined the classes c;, ..., c, of ~f together with a representative u1,...,u, for each of
them. To compute the initial state, it suffices to test which ¢ satisfies u; ~f €. To compute
the transitions, given a state [u;] and a letter a, it suffices to determine which ¢ satisfies
u; ~5 uja to get the next state. The outputs are computed with the function f. We now
explain how to test in polynomial time (in |7]) whether two words u, v satisfy u ~f v, and
how to compute f(u)

Let T = (A, i, 0) with A = (Q, A, qo, F) deterministic, and let us consider a finite word
u over A. We want first to check whether f (u) is ultimately periodic and compute it, if this
is the case. If ¢ denotes the state reached by u in 7, then we ask whether all paths from ¢
are labeled by the same output word. Equivalently, it suffices to check whether there exist
two accepting paths starting in ¢, with different output words. The check can be done by a
product construction where we ignore the input and just monitor the delay between the two
outputs, keeping it bounded by the maximal length of output words in 7. So the question
boils down to emptiness check of an automaton of size |@Q|?> x |o|. If all paths from ¢ have
the same output word, then we can compute this word in polynomial time by selecting an
accepting path from gq.

Let us now consider the case where f (u) is finite, and show that we can compute it in
polynomial time as well. To compute f(u) we can view T as a graph where we remove the
inputs, keeping only the output words labeling transitions. First we argue that the length of
]? (u) is polynomial, by showing that we can always find two paths from ¢ of polynomial length,
with different outputs. We start with two arbitrary finite paths 7y, 71 from ¢, with different
outputs, such that their lengths are minimal. So the mismatch between the outputs of mq, 71
is in the last transitions. If one of the paths is loop-free, the claim is shown. Otherwise, each
of my, ™1 contains some loops. If there are two loops with overall label of same length, one
in 7g, the other in 7y, then we get a contradiction to the minimality of mg, 71, by cutting
these loops. If all loops of 7y have overall labels of length different from those of 71, then we
fix some loop ¢; in m; with overall label of length k;. We remove all loops from 7; except ¢;,
and get a new path « by iterating ¢; k1—; times. Thus, «{), 7] are of (the same) polynomial
length and have different outputs, as treated in the previous case.

Once we know that the length of f (u) is bounded by a polynomial we can compute it by
a.k.a. subset construction on the above graph, that is executed only a polynomial number of
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steps. Roughly, we follow from ¢ all possible paths, and store only their delays, bounded by
the maximal output length of 7.

We show now how to check for two words u,v over A whether u ~f v.

The first condition of ~ asks that ux € dom(f) if and only if va € dom(f). Since T
is trim, uz € dom(f) is equivalent to saying that uz labels a path of A. Hence, if u and v
lead to some states p and g respectively in A, testing the former condition amounts to check
whether L, = L,, where L, (resp. Ly) denotes the set of w-words for which there exists a
path from p (resp. ¢q). Since A is deterministic, the latter can be checked in polynomial time.

For the second condition we may assume that f (u), 7 (v) are both finite (and already
computed). A standard product construction of A4 with itself allows to check whether some

x exists s.t. f(u) " f(uz) = fv) " f(vz). “«

Proof of Theorem 9. If f is sequential then Propositions 33 and 32 yield the claim. Con-
versely, assume that 77 is finite. From Proposition 7 we know that T; realizes f. Since
Ay is deterministic we also know that f is sequential. Let A be a deterministic automaton
recognizing dom( f). By taking the product of Ay and A we obtain a deterministic transducer

realizing f‘dom(f) = f. <

B.3 Quasi-sequential transductions

We now recall an algorithm described in [2] (referring to it as subset construction with delays)
and argue that it terminates on transducers satisfying WTP with a sequential transducer
computing f. We will need this construction in order to define the canonical bimachine and
show that it preserves aperiodicity in Section 4.

Let T = (A, 1, 0) with A= (Q,A, I, F) be a transducer which satisfies the WTP.

For any state ¢ € Q we denote by 8, € B* the longest common prefix of the outputs over
final runs starting in ¢ and by C the set of constant states. Recall that Proposition 8 shows
how to compute 3, and C is PTIME. We thus assume that 7 is in earliest form, meaning
that outputs are generated as soon as possible, according to f

We define now the transducer § = (D, i, o). States of D are sets of pairs (g, z), with ¢
state of A and z a regular word.

Let af” = A, i(q)B;. The initial state of D is Iy = {(g,07 i(q)By) |l g€ C I} L
{(¢,a7%i(q)) | g€ I\C}, and #'(Io) = . Given an already constructed state P and a letter
a € A, we define:

R:{(q’w) | (pw) € P, pecandpi’q} U {(CLUU) | (p,u) € P, p,q¢0andpa—|v>q}

u{(q,uvﬁq) | (p,u)e P, p¢ C, quandpa—h)>q}

Let now af8“ be the longest common prefix of all words appearing in R. If o = ¢ we define
v = [, otherwise we define v = . Note that if 5 # € then this means that all the words
appearing in R are equal to a3. We define a new state P’ = {(¢,v"'w) | (¢, w) € R} and

add the transition P ﬂ»g P’. Finally we keep only the accessible part of S.

» Remark. The transducer S is (almost) sequential, in the sense that its underlying automaton

is deterministic. However it may be infinite.

» Proposition 34 ([2]). Let 7 be a transducer satisfying the WTP. Then the transducer
obtained by subset construction with delays is finite (of exponential size).

30:21

FSTTCS 2018



30:22

On Canonical Models for Rational Functions over Infinite Words

Proof. The authors of [2] have a slightly different model of transducers where a run has to
produce an infinite word in order to be accepting. However this difference doesn’t affect the
results and their proofs can be applied almost unchanged. In particular, for a transducer
satisfying the WTP, it is shown in Lemma 12 that the difference of outputs between two runs
over the same input is polynomial (with a small catch for constant states). As for automata
the exponential blow-up is unavoidable. <

» Proposition 35. Let 7 be a transducer realizing a function f, and let S be the transducer
obtained by the subset construction with delays. Then S realizes f.

Proof. Let T = (A,4,0) with A = (Q,A,I,F) be a transducer realizing a function f.
Let S = (D, i, o) with D = (S5,6,{Io}) be the sequential transducer obtained by subset
construction with delays, and let g denote the function realized by S.

First let us note that, by construction, for any initial run I e, P of §, we have that
i'(Ip)v < f(u) since the output along a run over u is a prefix of all the possible outputs
along runs over an infinite word beginning with u in 7. Let « be a word in dom(f), let u
be a strict prefix of « and let P = {(p1,w1),..., (pn, wn)} be the state reached in S after

reading u. Let us assume that f(u) is a finite word. By construction we have A\, <i<n Wi =€

~

since f(u) is finite, and there are two cases: either w; = € for some i, or there are w;, w;
non-empty such that w; A w; = €. In the latter case we have f(u) = {'(Ip)v. In the first
case, since 7T is in earliest form and p; is non-constant, there are two words y, z which
have a final run from p;, and whose respective outputs «, 8 have no common prefix. Hence
f(u) < ('(Ip)va A ' (Ig)vB) = i'(Ip)v. Thus if for any strict prefix u of z, f(u) = ¢'(Ip)v is
a finite word, we have f(z) = lim, -, f(u) = limy, <, v = g(x). Otherwise let us now assume
that for some prefix u, f(u) is an infinite word of the form a/%. All the w;’s must thus be
equal to 3% and 7' (Io)v = aB* for some k. By definition of S, the output of S when reading

z(Ju|l + 1) from P is equal to 8 and it is the same for all the following transitions over z. We
obtain g(z) = aB* = f(x). <

Proof of Theorem 12. According to Proposition 34, (1) implies that S is finite, which proves

(2).
Let u ~s v, we want to show that u ~; v which will prove that (2) implies (3).

Let Iy e, R and Iy I8, R denote the initial runs of S over uw and v, respectively. If

R is a constant state which produces an infinite word, then f (u) and f(v) are infinite
words with the same ultimate period hence v ~¢ v. If R contains only one pair (p,w),
then we have w = € by construction. Furthermore since 7T is in earliest form, we have

i'(Ip)a = f(u) and i'(Ip)B = f(v). Otherwise there must be two pairs (p1,w1), (p2, w2) € R
such that del(wy,ws) = € and in that case we also have ¢/ (Ip)a = f(u) and ¢'(I)8 = f(v).

Let = be a word such that (p,w) € R and z has a final run in 7 p 1, F. Then we
have f(uz) = i'(Ip)owy (with the convention that ye = y even for infinite words). Thus
f(u)_lf(ua:) =wy= f(v)_lf(vx). Hence u ~ v.

We now show that (3) implies (1). Let us now assume that ~; has finite index. Let us

assume, towards a contradiction, that 7 does not satisfy the WTP. Let us consider two runs

such that p; 2, q1 o, g1 and po luz, g2 vz, ¢2. By taking v/ = wv® and v/ = o' for

some integers k,! we have an initial run of T;: qo s, q Yles, q. We can assume without
loss of generality that u = v’ and v = v'.
Let us first consider the case where ¢, g2 are non-constant and del(i(py)uy, i(p2)us) #

del(i(p1)uivy, i(p2)ugvy). If |u1| = |va| then there must be a mismatch between i(p;)uivy
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and (pa)usvs, i.e. a position k such that i(py)uivi(k) # i(p2)ugva(k). Thus we have for
n > 1, that |f(uv™)| < |i(p1)uivi|, hence there must be an integer N such that for all
n=N, f (uo™) = f (uv™). Furthermore, since ¢ is non-constant, by the pre-processing step
there is a word = which produces y from ¢y such that vo A y = € and we have for m # n
that i(p2)ugvy'y # i(p2)usvyy. Hence for each n = N we have that f(uv”)_lf(uv”x) =
Fluw™ )~ i(p2)ugvhy takes a different value, which contradicts the fact that ~¢ has finite
index.

If |v1| # |va|, we assume |v1| < |va| without loss of generality. Since g; is non-constant, we
have f(uv™) < i(p1)uiv? for any n > 0 which means that |vs| < |v1| < |va|. Hence for any n
we have a distinct word f(uv™)~Vi(ps)uavd = (i(qo)usvy) " i(p2)usvl. Again, we use the
fact that go is constant and choose a word z producing y from ¢, such that vo A y = €. Hence
for each n we have that f(uv”)_lf(uv”ac) = (i(qo)usv}) " i(p2)ugv}y takes a different value,
again leading to a contradiction.

Now we consider the case where ¢; is non-constant and ¢y is constant, we denote by
ys the word produced from g2 (z2 is empty thanks to the preprocessing step) and we
assume we have both v; # € and i(p;)uiv¥ # i(p2)uayy. Let k be such that i(p;)ujvf is
not a prefix of i(ps)usys, we thus have for any n, |f(uv™)| < |i(p1)uiv¥| and in particular
there exists an integer N such that for all n > N, f(uv™) = f(uv™). We choose a word
x which produces y from ¢; and such that v; A y = €. We obtain that for each n > N,
f(uv")_lf(uv”x) = f(qu)_li(pl)ulv{Ly takes a different value, which is in contradiction
with the fact that ~; has finite index.

For proving that the subset construction with delays preserves aperiodicity, we rely on
[14] where it is shown that the subset construction with delays preserves aperiodicity for

transducers over finite words. The proof is almost the same when dealing with infinite words.

Let us give the basic ideas to adapt the proof to infinite delays. The main idea of the original
proof is to show that if the starting transducer is aperiodic then & must be counter-free, and
thus aperiodic. We assume that we have a counter of minimal size k£ and show that k& must
be 1. A counter means that there is a run in S of the form Ry — Ry -+ Ri—1 — Rp. In the
original proof, we have by aperiodicity that the R;’s contain the same states and then we
show that the delays cannot change which means that all the R;’s must be equal. If we add
infinite delays in the R;’s, the same idea works. First let us notice that all the delays in a
given state R; must be prefixes of each other, otherwise the length of the outputs from R;
must be bounded, which automatically means that the delays cannot change. This means
that two infinite delays in a given state must be equal. Now we have three cases, either none
of the states have infinite delays, then the original proof works. Or all states have an infinite
delay, then by construction the output must be the period of the delay. Finally if some of
the states have finite delays and some have infinite delays, then we can show in the same
way that all finite delays are the same and thus, all infinite delays have an arbitrarily large
common prefix, which concludes the proof. <

C Proofs for Section 3

C.1 Bimachines over infinite words

» Proposition 36. Given a bimachine with left and right automata £ and R, we can obtain
an equivalent unambiguous transducer with underlying automaton £ x R. In particular any
transduction realized by an aperiodic bimachine is aperiodic.

Proof of Proposition 36. Let B = (L£,R,%,0) be a bimachine with £ = (Qz,Ar, {lo})
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and R = (Qr, AR, I, F) as left and right automata. We define 7 = (A, o/, ') with A =
(Qr x Qr, A, {lo} x I, F") with:

A={{(lr"),a,,7m)| (al)e Az, (¥ ,a,7)€ AR}

O/<(l7 7'/)7 a? (l,7 r)) = O(Z’ a? r)

i'(lo,r) = i(r)

F'=Up,cqeprer Pe X Pr

Let us assume that B is aperiodic. Since the underlying automaton of 7 is the product
of two aperiodic automata, 7 is also aperiodic. <

C.2 Left minimization

Proof that BZ} is well-defined. Let us show that B}z is well-defined, meaning that 1) ~
is indeed a right congruence and 2) the output functions do not depend on the choice of

representatives. Let u ~}Z v and let a € A and let us assume that there exists z such that

uaz € dom(f), we want to show that ua ~}2 va. If fAM(u) and faz(v) are both infinite

with the same ultimate period then it is also the case for fw(ua) and fx(va). For any
such x we have f;(u)_lf(ua:) = f/;(v)_lf(vx), and let g(z) denote this word. Note that
fluz) = fw(u)g(x) If Ay~ro 9(ay) is infinite then we have both fm(ua) and ﬁg(va) infinite
with the same ultimate period. Otherwise:

]?z(ua)_lf(uam) = (/\yNRz f(uay)>_1 f(uax)

-1

( yrra Fa(u (ay)) f(ua;v)
( Nyrre g(ay)) f(uax)
( 1

~

1/~72$g ay) fllJ:( ) 1f(ucm:)

(Averr 9(@) " Fuue) ™ f0ar)
= Jolva)~! f(vaz)

Il

Now we have left to show that the outputs are well-defined. If u ~Z5 v and fm(u) = af¥

with 8 € BT then fT(fU) = /% since both are in normal form, thus the output is uniquely
defined. Otherwise it suffices to show that fu.(u)"!f.(ua) = for(v)~!fz(va) have well-
defined outputs.

faa(u)" f(ua) = fmw ' Ayrna £ (uay)
A

)
- ()Amfm()
) o) Ay 9(a0)
zé\y%n g\)

= faz(v)” f(va)

<

» Proposition 37. For any transduction f and right automaton R recognizing dom(f), the

. =R
transducer B}z realizes f .

Proof. Let f be a transduction, let R be a right automaton recognizing dom(f) and let =
be a word in dom(f). We denote by ¢ transduction realized by B?. First let us assume

that for any integer n, ﬁ;(nJrl:)(ac(:n)) is finite. Then in Ly, we have by definition that
~ . ~ 7’]1
o([e], (), [2(n + 1)]%) = famiry(@(n)). Thus g(x) = lim, fomiry(z(n) = F (2).
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Now let us assume that for some integer k > 0 we have fac(k+1 y(2(:k)) = aB with 8 + €, and
let us choose k minimal. By definition, we have in BF that o([e] , z(:k), [« (k +19]%) = 4 with
i([2]%)y = aB! for some integer [. We also have for n > k, o([z(:n)] , z(n+1), [z(n + 2:)]%) =
B, hence i([e])o([e] ,2) = fuprr1y(2(:k)) = aB*. «

» Proposition 38. If there exists a bimachine with right automaton R realizing a transduction

f, then 7R = f.

Proof. Let f be a transduction realized by a bimachine B = (£, R, 4, 0) with automata

= (Qc,Ar,{lo}) and R = (Qr,Ar,I,F), and let z € dom(f). If f(x) is finite, then
there exists an integer k such that o(lo, z(:k), [z(k + 1:)]) = f(z). Abusing notations,
we write [u] for the state of £ reached by reading w from the initial state. Hence for
any n > k we have fx(nﬂ:)(x(:n)) = f(x) which means that 7R(gc) = f(z). Other-
wise, if f(z) is infinite, then there must be an increasing sequence of indices ni,na, ...
such that o(ly, z(:n;), [#(n; + 1:)]%) = «; with a; a strict prefix of a;y1. In particu-
lar, a; < fw(n#l:)(x(:ni)) and since f(z) = lim; o; is infinite, we have that fR(x) =

lim; ﬁ(nﬁl:)(az(:ni)) is also infinite and the two words are equal. “

Together with Proposition 38, the next proposition shows that B? is the bimachine with
smallest left automaton under all bimachines with right automaton R realizing f® (if any).

» Proposition 39. Let f be a transduction. For any bimachine B = (£, R, 7, o) realizing f
we have ~, & ~}2.

Proof. Let £ = (Qz,Ar,{lp}) and R = (Qr,Ar,I,F). We suppose that u,v € A*
reach the same state in £, and we want to show that u ~}z v. First, we observe that
ux € dom(f) < va € dom(f) for all x € A“. Let x € A¥ with ux € dom(f), and af* = fz(u)
in normal form. If 8 # € then fz(u) and fm(v) have the same ultimate period, which is
B. If B = e then define p as the output of the bimachine on uz after reading u. Similarly,
define v as the output of the bimachine on uz after reading v. Observe that fz(u) = pa and
fz(v) = va, hence with « denoting the output of the bimachine on uz after reading u (or on
vz after reading v):

Fo(w) ™ f(uz) = (na) ™ py = a7ty = fo(v) " f(vz)

Thus we obtain ~}z v which concludes the proof. <

» Proposition 40. There is a PTIME algorithm that computes for a given bimachine B =
(L,R,i,0) the bimachine BY.

Proof of Proposition 40 The proof goes along the lines of Proposition 8. By Proposition 39
we check whether u ~% 7 v for suitably chosen u . v. For the domain condition it suffices
to find some x € A“ such that ux € [R] and vx ¢ [R]. This can be verified in PTIME,
by searching over all initial/non-initial pairs of states of R. For the second condition we
compute for every state r of the right automaton R the function fw, with x accepted from
state r. We proceed as in the proof of Proposition 8, but this time we are interested only in
paths of £ x R that correspond to uy, with y ~r x, so y accepted from r as well. <
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C.3 From transducers to bimachines

Proof of Theorem 15. Let T = (A, 4, 0) with A = (Q,A,I, F) be a transducer realizing a
function f, and R such that ~g E~4. We show first that ~4 = ~33. Let u ~4 v, since A
recognizes dom(f) and is trim, we have for any x € A%, uz € dom(f) < vz € dom(f).

Let 2 be a word such that uz € dom(f), and let py,...,p, be the states of A which
can be reached from I by reading u or v and from which = has a final run. We write

g — pi, q; RN pi, corresponding to initial runs with ¢;,¢, € I for 1 < i < n. Let
Yi :/\{7| piﬂlPiwithP,;eF, yznx} For any word y ~% x we have also y ~4 x,

and in particular, uy € dom(f). By definition, ﬁg(u) = i(¢q;)oy7y}, and fw(v) = i(q})Biy}, for
some 7y} < ;. If f,(u) is infinite, then so are all v; and f,(v). Moreover, f,(u) and f;(v)

have the same ultimate period in this case.

Otherwise, some ~; is finite, say ;. Let p; ey, P with P € F denote a final run of =

from p;. Then we have f(uz) = i(q1)any1v and f(vz) = i(q))B1yv, thus:

ﬁ(u)‘lf(uw) = (Z'(Q1)0171)_1Z'(Q1)01’Y1V=(A%)_I%V
= (i(g)B) " hilg) By = fu(v) ' f(va)

This means that ~? V.

It remains to show that B realizes f. Let g be the transduction realized by BF. First,
the domain of g equals the language of R, thus dom(f) because of ~¢ E ~ 4.

Let z € dom(f), we want to show that g(x) = f(z). First we assume that j/’;(nﬂ:)(x(:n)) is
finite, for every n. Then by definition of B, we get that g(z) is the limit of (fz(nﬂ:) ((:n))n,
so g(x) = f(x) since f(x) is the limit of prefixes of fw(nﬂ:)(z(:n). The other case is where
fi(nﬂz)(x(:n)) = af% for some n, @ and § + €. It can be checked that o([e],z(:n), [z(n +
1:))R) = aB™ for some m, and for all n’ > n, o([z(:n' — 1)],z(n’), [z(n’ + 1:]))*) = B, which
shows the claim.

Let f be an aperiodic transduction and let 7 be an aperiodic transducer realizing it with
underlying automaton A. According to Proposition 1 the canonical automaton R of ~ 4 is
aperiodic and since =4 & ~4 E ~, the left automaton of BF is also aperiodic. «

C.4 Labelings and bimachines

Proof of Proposition 17. Let B = (£, R, 4, 0) be a bimachine realizing f with automata £ =
(Qr, Az, {lo}) and R = (Qr, AR, I, Fr). We define T = (A, 4, 0') and A = (Q, A, {qo}, F)
realizing fr : (A x Qr)¥ — B®:

Q=Qc x Qr w{q}

A :{(qo, (a,7), () | lo Bl v Brr, v e I}

o {1, (@), W) 1S U Sr

F ={Pc Q| m(P)e Fr}, with w2 being the projection over the second component.

i'(q0) = €

0o'(qo, (a,7), (1,7)) = i(r")o(l,a,7) with 7" L 7.

o (1,7, (a,r),(U',r)) = o(l,a,r).

Clearly, T realizes fr and is left-sequential.

Let T = (A, 4,0) with A = (Q,A,I) be a left-sequential transducer realizing fr over
the alphabet A x Qr. We define T’ = (A, 4, 0o') with A" = (Q,A’,I), as the transducer
obtained by projecting the input alphabet on A. The new transducer 7’ realizes f and is
unambiguous, otherwise there would be a word with two different labelings accepted by A.



E. Filiot, O. Gauwin, N. Lhote and A. Muscholl

Let D be the left automaton obtained from the subset construction of A’ x R. We define
the bimachine B = (D, R, ', ') by:

o' (P,a,r) = o(q, (a,r),q’) for (g,r") € P such that (r',a,7) € A

The output is well-defined since A is deterministic and the state ¢ such that (¢,r') € P
and (', a,7) € A is unique: if there were two states g, gz with (g;,7’") € P for i = 1,2, then
there would be a word uy such that u reaches in A’ both ¢;s and y has a final run from both
@;s, which contradicts the unambiguity of A’.

Let us assume in the first construction above that B}z is aperiodic and we want to show
that the left automaton A obtained is aperiodic which would imply that fr is aperiodic. Let
u be a word over A x Qr, let (p, [z]) », (¢, [y]) denote a run over u™, if n is large enough,

™ (u)n,+1

we know that p q. We also have [71(u)"y] = [z]. By aperiodicity of R, we must

have [71(u)""'y] = [2] and since u(|u|) = (a,[y]), it means that [y] = [uy] = [z]. Hence we

obtain that (p, [z]) w, (g, [y]), which means that fz is aperiodic. Now we assume that
fr is aperiodic, we want to show that the automaton D is aperiodic, and since ~p = ~}z,
from Proposition 39 it implies that ~3§ is aperiodic as well. First we know that is fz is
sequential and aperiodic, then it is realized by a sequential aperiodic transducer. Indeed,
given an aperiodic transducer realizing fr we can obtain via subset construction with delays
a sequential transducer realizing it which is still aperiodic according to Theorem 12. Hence
we assume that 7 is aperiodic. Let us show that A’ x R is again aperiodic. Let u be a word
over A and let (p, [x]) LR (¢, [y]) denote a run over u. Since R is aperiodic, we have for n
large enough that [2] = [u™y] = [uy] = [y]. Hence there is a unique labeling of u, @ which is

consistent with the run. Hence there is a run of A p =, q. Since A is aperiodic, for n large
~n+1 n+1
enough, we have a run p —— ¢. By projection, we have a run p —— ¢ of A’. Thus we

obtain that (p, [z]) N (q,[y]) in A’ x R. Finally since the subset construction preserves
aperiodicity, we have that D is aperiodic. <

We define the labeling function associated with a left automaton £ = (Q, A, {go}) by the
left transducer (L) = (L, 4, 0), with i(qo) = € and o(p, a,q) = (a,p). The labeling function

associated with a left automaton labels each position with the information about the prefix.

For a transduction f let fr = fo [¢(£)]~!, which is again a function.

Proof of Corollary 18. Let f be a rational transduction, according to Theorem 16 there
exists B = (£,R,i,0) with £ = (Qgz,Az,{lo}) and R = (Qr,ARr,I,F), a bimachine
realizing f. By definition of £(R) , f = fr o [¢(R)] furthermore ¢(R) is letter-to-letter and
right-sequential, and according to Proposition 17, fr is left-sequential, concluding the proof
of the first direction. Symmetrically, (L) is letter-to-letter and left-sequential. We only have
to exhibit a right-sequential transducer realizing f,. This is done in the same way as in the
first (easy) part of the proof of Proposition 17. Let 7 = (R, ¢, ') with R' = (Qgr, A%, I, F)
over the alphabets A x Q, and B.

A" = {(r,(a,p),s) | (r,a,s) € ér}

o'(r,(a,p),s) = o(p,a,s)
R’ is a right-automaton since R is, and by construction 7 realizes f. <

30:27

FSTTCS 2018



30:28

On Canonical Models for Rational Functions over Infinite Words

D Proofs for Section 4

D.1 Minimal look-ahead

Proof of Proposition 21. Let 7 be a transducer realizing fr and let us assume that 7
satisfies the WTP. Let x ~% y, and let u be such that uz € dom(f). We want to show that
T éf y, for this we will show that del(f(uz), f(uy)) is bounded by a value which does not
depend on u. Since x ~r y we can write v'z’ = [¢(R)](uz) and vy’ = [¢(R)](uy) with

|/| = |u|. Let k be the number of states of 7. We consider two runs of T over v/z’ and
u'y’, respectively, and we factorize them as p; wlen uzles uslors p3 — 24, £ and
¢ izl Q2 uz|Pa q2 13183 q3 y'1Be F such that o/ = ujugus, and |us], |us] < k2.

We get del(f(ux), f(uy)) = del(fr(u'z"), fr(u'y)) = del(i(p1)araoaza, i(q1) B1828354)-
If ps and ¢o are both non-constant, we use the WTP and obtain:

del(i(p1)arazazay, i(q1)B1B20384) = del(i(p1)arasay, i(q1)B16354)

Assume now that ps is not constant and g is constant. The output of ¢ is a regular
word ~y, with v = Y if B2 % €, so in particular v = Soy. Thus, del(f(ux), f(uy)) =
del(i(p1)aragasay, i(q1)B17y). If as = € then del(f(ux), f(uy)) = del(i(p1)arasay, i(q1)517).
Otherwise, by the WTP we know that i(p1)ai10§ = i(p2)B1527. It can be checked that either
del(f(ux), f(uy)) = del(asay,v’), with 4" a suffix of v, or del(f(ux), f(uy)) = del(azayq, B17),
depending on the lengths of i(p1)ayas, i(p2)B1P2.

If po and ¢o are both constant, then their output words are both regular, say v and ~+'.
We have i(p1)aiasazay = i(p1)oay and i(q1)B1828361 = i(p2)B17Y, so del(f(uz), f(uy)) =
del(i(p1)aay, i(p2)B17’), and the delay depends only on i(p1)as, i(p2)51 and the normal
forms of 7,~’. In all cases the delay del(f(uz), f(uy)) is independent of as, Bs.

Let us assume now that ~g C & ¢ and show that 7 satisfies WTP. For this we con-

sider two initial runs of T over the same finite word: p; e, ¢ 2B, q1 and po oz,

qo RN g2. Up to taking v/ = wwv, we can assume that the last letter of v and v is

the same. Let (a,r) be the last letter of v, and let us consider two words x1,z2 which

have final runs from ¢; and ¢o, respectively with ¢; Zim, F and ¢ Z2lhn, F. Let w
be the projection (A x Qr)* — A® such that 7 o (R) = id. By definition of £(R)
we must have 7(z1) ~r m(x2) and, since R recognizes dom(f), both 7(z1),7(x2) have
a final run of R from r. For ¢q,¢s non-constant, we assume towards a contradiction
that del(i(p1)aq, i(p2)ae) # del(i(p1)ai B, i(p2)asfs). Since g; and go are non-constant,
we can choose x; and 9 such that v # B} and v # B5. Thus for infinitely many
m # n, we have del(i(p1)a1 87"y, i(p2)a2f3'v2) # del(i(p1)a1 i1, i(p2)asBsy2), which
means that del(fr(uv™x1), fr(uv™x2)) # del(fr(uwv™z1), fr(uv™zs)). Hence, 7(x1), w(x2)
are not equivalent with respect to ~f, hence by assumption, 7(z1) #r () which is a
contradiction.

Similarly, let us we assume that ¢; is not constant, g is constant producing -y, v; # € and
i(p1)a1 B # i(p2)asfay. Again, by choosing z; such that v # Y, we obtain an infinite
number of delays and 7(x1) %% 7(z2).

If f is aperiodic, it means that there is an aperiodic bimachine realizing it, with an
aperiodic right automaton R. According to Proposition 17 we have that fr is aperiodic, and
hence ~x E ~ 7. Since ~ is aperiodic (recognized by R) we have that X is also aperiodic
in particular. <

Proof of Proposition 22. We show the result for a transducer, the proof being very similar
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in the case of a bimachine. Let T = (A, i, 0) with A = (Q, A, I, F) be a transducer realizing

a function f. Let x ~ 4 y, and let us consider the states pi,...,p, from which x,y have
final runs in A, denoted by p; ol P; and p; RN P!, respectively. Choose some i and

some initial run g; b, p; of T over u, and let v} = i(q;)vi- Let 6 = f(ux) A f(uy), and

§; = a; A fB, then § = ~/8;. Clearly, (671 f(uz), 5~ f(uy)) = (5;1%-, 5;1&) does not depend
on u. Thus |del;(z,y)| < n, showing that = ~ . “«

» Proposition 41. Given a bimachine realizing a function f, the delay congruence 2 § can
be computed in PTIME.

Proof. Let B = (L,R,0,7) be a bimachine. We know from Proposition 22, that the right
automaton of the bimachine, R, satisfies ~g E x ¢. In order to compute 2 ¢, we only
need to decide, given two words z,y such that x %z y if x éf y. We want to decide if
the set of delays between f(ux) and f(uy), for all u € A* is finite. Let us fix a state of
L, [u]ﬁ, and one can easily see that the set of delays is finite if and only if it is finite
for all possible states of £. From the state [u]ﬁ, we can define the output of x and y
denoted by «, 3, respectively. We define the function g, (v), for v ~, u, by the output
of the bimachine due to v upon reading vz, i.e. g.(v) = i([vx]™)o([]”,v,[x]™) and
similarly we define g,, such that f(vr) = g.(v)a and f(vy) = gy(v)B. Let us assume
that | {del(f(v), f(vy)) | v ~z u}| = |{del(gz(v),gy(v)) | v ~£ u}|. In that case we have
reduced the problem of deciding a finite set of delays for a function over infinite words to
functions over finite words. Indeed we can obtain a bimachine over finite words realizing
g (and g,) by taking a bimachine where the left automaton is £ with final state [u]c
and the right automaton is R with (unique) final state [z]. We refer the reader to
[14] for an article dealing with bimachines over finite words and we use the result of [21]
(Proposition 1) which gives a PTIME algorithm to decide if two functions are so-called
adjacent, i.e. have a finite set of delays. We only have to figure out when it is true that
| {del(f(vx), f(vy)) | v ~¢ u}| = | {del(gz(v), gy (v)) | v ~£ u}| and what to do when it is not
the case. The property is necessarily verified if none of the two words «, 8 is periodic. When
one of the two words «a, 8 (for instance «) is of the form ¥, v # €, we can transform the
bimachine realizing g, such that v is never a suffix of the image of a word by guessing at
any point that the output will be of the form ", outputting € and checking that the output
is indeed a power of 7. We obtain a new function g/, such that for any v, g,(v) = g, (v)y"
with n € N and « not a suffix of ¢/ (v), while still having f(vz) = ¢'(v)a. We also have to
modify g, such that, as long as no mismatch has been found and if ¢/, has stopped producing
outputs, then all outputs of the form " can be removed. Similarly, if 5 is periodic of
the form 4* then we can modify the bimachine realizing g, to obtain a transducer such
that 0 is not a suffix of the outputs. For these modified functions, we have indeed that
| {del(f(vz), f(vy)) | v~ u}| = |{del(g,(v),g,(v)) | v~ u}|, and we can again use the
result of [21]. “

D.2 Canonical machine for quasi-sequential functions

» Lemma 42. x; is a left congruence.

Proof. Let z ~¢ y and let a € A. We have of course az € dom(f) < ay € dom(f) and

~ — X —

for all u such that wax € dom(f) we have f(ua) = f(uaz) < f(ua) = f(uay). Either
Flu) = f(ua) and we have indeed Fu) = f(uaz) < f(u) = f(uay), or f(u) < f(ua) and we

have f(u) # f(uax) and f(u) # f(uay) which means that condition 1) is satisfied. Let us now
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assume f(u) = f(uaz), then in particular f(ua) = f(uaz) and we have f(uaz) = f(uay),
which means that condition 2) is satisfied as well, hence az ~ ay. “«

Proof that L{JF is well-defined. Let us show that the output function is well-defined, mean-
ing that it does not depend on the representatives of the congruence classes. Let a € A,
u ~y v and ¢ ~g y. Let us first show that og([u],a,[z]z) = or([v],a,[z]z). By
definition, if u ~; v then flu )~ fluax) = Flv)~ 'f(vax) and as we have seen in Sec-
tion 2, f( )~ 1f(ua) = f( )~ 1f(11a) and f( )" f(uaz) = f( )~'f(vaz). Then it is rou-
tine to check that or([u],a,[z]gr) = or([v],a,[z]z) in all cases. Let us now show
that f( )~ 1f(uax) = f( )" f(uay). Since R recognizes ~;, we have x ~; y, hence
f(u) f(uar) < f( )= f(uay), and if f(u) = f(uax), then f(ux) = f(uy), which means
that f( )1 f(uax) = f( )71 f(uay). In all cases we have f(u)*lf(uam) = f(u)*lf(uay). <

Proof of Lemma 26. Let 2 € dom(f) and let g denote the function realized by U;?‘. Let

us first assume that for any prefix u of z we have f (u) < f(x). Then since we have that
lim,, f(u) = f(z) it means that f(x) is infinite and thus f(z) = f(x). In that case U}z
behaves just like 7y and we have g(z) = f(z) = f(z). Now let us assume that at some point
f ( ) <f (ua) f(uay) for uay = z. The output of T; over uay after having read ua is equal
to f(u Ja such that f(uay) = f(u)ozﬁ“’ (in normal form). The output of any letter after ua
will be 8 and in the end we obtain g(z) = f(z). «

Proof of Corollary 27. By Lemma 26, we know that there exists a bimachine realizing f
with R as right automaton. Hence Props. 37 and 38 imply that B}z realizes f. Furthermore,
from Proposition 39 we know that ~; C ~?. <
Proof of Proposition 25. From a bimachine B with automata £ and R we define a left
congruence ~ and show that it is finer than ~y. Let S be the transducer obtained by
subset construction with delays from the transducer with underlying automaton £ x R
(Proposition 36). Given two words, x,y we let z ~ y if 1) for any state (p, P) of R x S, the
runs over z,y from (p, P) have the same set of states visited infinitely often, and 2) for any
state P of S, the run of S over x from P produces € if and only if the run of S from R over
y produces €.

Now we show that a is finer than ~, which shows that the index of ~y is doubly

exponential. Let z ~ y, and let u be a finite word with an initial run over S: I e, P and
by construction we have i(I)a = 1 (u). Since by Proposition 35, S realizes f and 2) we know
that f(u) = f(ux) if and only if f(u) = f(uy). Now assume f(u) = f(ux), then from 1)
there is (p, P') a state appearing infinitely often in the runs r, s of x and y respectively from
P. Let i,7 be such that r(i) = s(j) = (p, P’), in particular we have x(i:) ~4 y(j:). Then
let (¢, w) € P’ such that both :c(z) and y(j:) have a final run from ¢ in A. Then we have
f(uz) = i(I)aw = f(uy) hence z ~ y.

Now we only have to decide when two words z,y are equivalent for ~;. For each word
2 and each state R of S, we can associate a value rest(x, R) which is either a word w, if
produces ¢ from R and the missing output is w or L otherwise. Since S realizes f we have
that = ~¢ y if and only if Vu € A*, VR state of S, rest(ux, R) = rest(uy, R).

We now show that from an aperiodic bimachine, we obtain an aperiodic congruence. We
only need to show that the congruence ~ computed is aperiodic. From Theorem 12 we
know that § is aperiodic. From this we know that for any R, S states of S, the languages
Lr s < A* of words which can go from R, S and Lg < A“ of words which have a run from
S are aperiodic. Then since aperiodic languages are closed under concatenation, if we have a
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transition R 4% T (with w # €), we can define the language of words which have a run from
R and which don’t go though the transition by Lg n (Lg,s-a- L)%, which is aperiodic since
aperiodic languages are also closed under complement. Then if we fix a state R of S as initial
state we can define the set of words which have a run from R and which don’t go through
any producing transition which is aperiodic since aperiodic languages are closed under union.
Now we can fix a state and any accepting set as Muller condition for the automaton R x S
and get an aperiodic language. Hence any class of ~ is aperiodic which means that ~ is also
aperiodic. <

E Proofs for Section 5

Our goal is to prove the transducer-logic correspondence of Theorem 30. We start by a
result on languages. It is known that a language L € A“ is FO-definable if and only if
it is recognized by some aperiodic non-deterministic Biichi automaton [10]. With simple
arguments and by using a result by Thomas [25], it is possible to lift this result to aperiodic
deterministic Muller automata:

» Theorem 43 ([25]). A language L < A% is FO-definable if and only if it is recognizable by
some aperiodic and deterministic Muller automaton.

Proof. Thomas has shown that L is FO-definable if and only if it is recognizable by some
counter-free and deterministic Rabin automaton [25]. Rabin automata are a particular case
of Muller automata, and therefore L is FO-definable if and only if it is recognizable by some
counter-free and deterministic Muller automaton. Counter-freeness means that for some
m, u™ € Ly, (the set of words for which there exists a run from state ¢ to ¢) if and only
if w e Ly 4, for all states ¢ and finite words u. It is not difficult to prove that any counter-
free automaton is aperiodic, and conversely any deterministic and aperiodic automaton is
counter-free, see for instance Lemma 11.6 in [10]. Hence, any deterministic Muller automaton
is counter-free if and only if it is aperiodic, and we get the desired result. <

» Proposition 44. A language L € A% is FO-definable if and only if it is recognizable by
some aperiodic and non-deterministic Muller automaton.

Proof. Direction = is a consequence of Theorem 43. For the other direction, from an aperi-
odic and non-deterministic Muller automaton A = (Q, A, I, F') we construct an equivalent
FO-formula. For all P € @, we let Lp & A* be the language of finite words such that
there exists a run of A which visits at least once the states of P and only those ones. The
language Lp can be recognized by some aperiodic finite automaton Ap with set of states
Q ={(q,P) | g € Q,P < P}, initial states I' = {(¢, P) | ¢ € P} and accepting states
F' ={(q,9) | g € Q}. Tts transitions are (p, P") = (g, P'\{p}) if there exists a transitions
p 4 qand g€ P'. The automaton Ap is easily seen to be aperiodic, since A is aperiodic
and the second component of the states of Ap is monotonic (for inclusion) along the runs.
Hence, Lp is FO-definable by some formula ¢p. Then, L(A) is FO-definable by the formula

\/ JzoVa > xody > x dp(z,y)
PeF

where ¢p(x,y) is the formula ¢p where the quantifiers have been restricted to range between
x and y, i.e., quantifiers Qz are replaced by Q(x < z < y) (z,y can be assumed to have no
occurrence in ¢p without loss of generality). This concludes the proof. <
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» Proposition 45. Let f : AY — B®. If f is realizable by some transducer 7, then it is
realizable by some unambiguous transducer 7" such that additionally, if 7 is aperiodic, so is

T

Proof. If f is realizable by some aperiodic transducer 7, then by Theorem 16 it is realizable
by some aperiodic bimachine B. Since the construction of a transducer from a bimachine
(Proposition 36) is done by a standard product construction of its left and right automata
and aperiodicity is preserved under automata product, we get the result. <

Proof of Theorem 30. We first show the equivalence between transducers and MSO-defina-
bility, and then analyze our back and forth constructions to show the equivalence between
FO-definability and aperiodic transducers.

(1) Let F = (A, B, ¢dom, V, i) be some MSO-transducer such that [F]] = f. Let construct
some transducer 7 equivalent to F, i.e., such that [T] = [F]. Let V = {v1,...,v,} and for
allie {1,...,n}, let ¢;(x) = ¢, (z). Given two w-words u,v over ¥ and I" respectively, we
define u ® v as the w-word over ¥ x ' defined by (u ® v) (i) = (u(i),v(i)) for all 4 > 1.

We now define the language of w-words Ly < (A x {0,1}")* as the set of w-words
u®u; ® -+ ® up such that u = @gom and such that for all 4, u; € {0,1}* and for all
j =1, u(y) =1if and only if u |= ¢;(j). Let us show that Lr is MSO-definable. For
any MSO-formula ¢ over A“, let $* be the MSO-formula over (A x {0,1}")* obtained by
replacing in ¢ any atom a(z), a € A, by \/Ee{o,l}n (a,b)(x). Then, L is definable by the
MSO-formula

0F = Do A [\ V2 ( V (a,0)(x)) < & (x)

(a,b)eAX{0,1}" s.t. b;=1

By Biichi’s Theorem, Lx is definable by a deterministic Muller automaton A4 = (Q, A, I, F)
over A x {0,1}"™. The transducer T is obtained from .4 by projecting it on A and by selecting,
using non-determinism, some word v; to output when reading a € A, whenever there exists a
transition of A on some (a,b) with b; = 1. More precisely, the underlying automaton of 7T is
B=(Q,A" I F') where:

Q' =Q x{1,...,n},

I'=Tx{1,...,n},

Al = {((p,i),a, (,5)) | dbe {0’ 1}n by =1n(p,(a,b),q) € A}7

F’ is the set of subsets P < @’ such that the projection of P on @ is in F.

Finally, the output function of 7 is defined by o((p,?),a, (¢, 7)) = v;.

Conversely, let T = (A, 0) be some functional transducer realizing f. By Proposi-
tion 45, it can be assumed to be unambiguous. We turn 7 into an MSO-transducer
F = (A, B, ¢gom, V, 1) such that [T] = [F]. Again by Biichi’s theorem, the domain of T,
which is regular, is MSO-definable by some formula ¢gopm. We let V' = CoDom(0) and for all
v € V, we define the language L, of words u € (4 x {0,1})* such that
1. m4(u) € dom(T)

2. wu contains exactly one position, denoted i, labeled in A x {1},

3. the (unique) run r = goqy ... of A on 74 (u) satisfies o(qi,—1, 74 (u(i0)), Giy) = v.

The language L, is definable by a Muller automaton, obtained as a product of an automaton
which accepts all words in (A x {0,1})“ containing exactly one 1, and a Muller automaton
which simulates A on the projection m4(u) and checks, when reading a position labeled
1, that the transitions ¢ of A applied satisfies o(t) = v. Hence, by Biichi’s theorem, L, is
MSO-definable by some formula v,. We let u(v) = ¢, (z) where ¢, (x) is defined by applying
the following transformations to ,:
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1. first rename any occurrence of x in 1), by some variable z’
2. for all variables y and a € A, replace in 1, any atom of the form (a,1)(y) by a(z) Ay =z
and any atom (a,0)(y) by a(y) A z # y.
For all words u € A“ and i > 1, we have u |= ¢, (i) if and only if u ® (0°~110%) |= v, if and
only if u ® (0°=110%) € L, if and only if u € dom(7") and the unique run of A on u produces
v when reading position 3.
(2) Let us now prove statement (2) and consider first the = implication, i.e., assume
F is some FO-transducer. Note that the formula ¢z is in this case an FO-formula. By
Theorem 43, this implies that A can be assumed to be aperiodic. There exists m > 0 such

m m+1
that for all states p, ¢ and all a € (A x {0,1}")*, p Z— 4 ¢ if and only if p *—— 4 ¢. Let us
show that B is aperiodic. We also assume that B is trim, otherwise we trim it.

£
Let ue A* and s = (p,i), t = (q,j) be two states of B and £ > 0 such that s “»; t. We

show that s ﬂ»g t if £ is large enough. Since B is trim, there exists ug € A* and u; € A¥
such that uju‘us € L(B). By definition of B, we have in particular that uju‘us = ¢gom. Now,
there exists a unique annotation v € ({0, 1}")* of uju‘us such that uyu‘us @ v € Lz, because
L # consists only of the words whose projection on A satisfies ¢ g,y and where every position x
has been extended with a tuple of bits (by, ..., b,) indicating which of the FO-formulas ¢;(z)
hold at position z or not. By taking ¢ large enough, since the formulas ¢;(x) are first-order,
it is possible to decompose u’ into u“1 274 such that ¢, is as large as we want, and any
factor u in the factor u? receives the same annotation. This is because the FO-formulas
¢i(x) are not able to distinguish between the kth and (k + 1)th occurrence of w in the word
uyulug, for all k € {¢,..., 01 + f5 — 1}. More precisely, there exist £1, 5, {3 such that o > m
and for all k € {¢1,...,01 + € — 1}, for all j € {Jus| + klu| + 1,...,|u1| + (k + 1)|u|}, for all
ie{l,...,n}, uputr 2 5y, = ¢;(4) if and only if ujufr T2+, = ¢;(j + |u|). This can be
shown using Ehrenfeucht-Fraissé games, see for instance [17].
Hence, there are words wy, w, wa, wh, wh € ({0,1}")* and ws € ({0,1}™)* such that

v = (u; @wr)(u @ wh)(u® ws)’? (u” @ wh)(us ® ws) € Lr.
and moreover, the run of A on u’ can be decomposed into:

u1®@w1 “el@ﬂ)/l (U®w2)22 1/'3@“’3 q uz@ws
A

qo0 AD A D1 A D2

for some initial state ¢o and states p1, p2 of A. By aperiodicity of A and since ¢ = m, we
obtain the following run of A:

¢ o +1 ¢
U1 ®@w1 w1l @uwy (u@u2)*2F U3 @y w, uz@uws

do AP A P1 A D2

£+1 r, Lo+l 4
uft ®(wiwy? " wh

In particular, we have p A q. Moreover, the ith bit of the first letter of w}

14
is 1, because of the existence of an accepting run of B on upu’u; of the form ¢ =% (p,i) —

(q,7) 5. By definition of B, for all j' € {1,...,n}, we therefore obtain a run of the form
241
(p,i) ——5 (¢,7'), and in particular it is true for j' = j, concluding the first direction of

the proof. The other direction (showing that (p, ) ﬂlg (q,7) implies (p, %) u—£>5 (g,7)) is
completely similar.

Now, we prove the left implication < of statement (2). We again inspect the proof of
statement (1), but this time the left implication. Let T = (A, 0) be some aperiodic transducer
realizing f. By Proposition 45, T can be assumed to be unambiguous and aperiodic. The

domain of 7 is defined by its underlying aperiodic and unambiguous Muller automaton A.
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By Proposition 44, the language of A is FO-definable by some formula ¢4,,,. To conclude
the proof, it suffices to remark that the Muller automaton which accepts L,, is aperiodic
whenever A is aperiodic, as the product of two aperiodic automata. This shows that L., for
all v € V, is FO-definable by some formula ),,. Then, the transformation applied on v, to
obtain ¢, () preserves the fact of being first-order. «
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