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SCREENING IN THE FINITE-TEMPERATURE REDUCED

HARTREE-FOCK MODEL

ANTOINE LEVITT

Abstract. We prove the existence of solutions of the reduced Hartree-Fock equations at finite
temperature for a periodic crystal with a small defect, and show total screening of the defect
charge by the electrons. We also show the convergence of the damped self-consistent field
iteration using Kerker preconditioning to remove charge sloshing. As a crucial step of the
proof, we define and study the properties of the dielectric operator.

1. Introduction

A point charge Q placed in vacuum creates an electric potential Q
4πε0r

, r being the distance to
the charge and ε0 being the permitivity of the vacuum. By contrast, when an defect is placed
in a material, the material reorganises itself: a positive charge creates an energetically favorable
region for the electrons, which flock towards the defect. At equilibrium, they form a “shield” of
negative charge, effectively screening the Coulomb interaction at long range.

Phenomenologically, insulators and metals exhibit a different screening behavior. In insula-
tors, electrons are tightly bound to the nuclei, and cannot deviate too much from their equi-
librium position to move towards the defect. Accordingly, the long-range behavior of the total
potential, including the effects of the electrons, is Q/(4πεr), where ε > ε0 is the permitivity of
the material. Thus, effectively, the charge Q is scaled by the dielectric constant ε/ε0: this is
called partial screening.

In metals, however, electrons are free to move in response to the defect and totally screen
it, so that the total potential becomes effectively short-range. A simple model for the total
potential is the Yukawa potential

V (x) =
Qe−k|x|

|x|
where 1/k is the screening length. At low temperatures however, V displays an oscillatory
behavior with a power-law decay, called Friedel oscillations.

The purpose of this paper is to justify the total screening of small defects in the reduced
Hartree-Fock (rHF) model at finite temperature. This is to be contrasted with the partial
screening of insulators at zero temperature obtained in [7] in the same model: at finite temper-
ature, electrons are mobile and behave as in a metal. We also justify the Kerker preconditioning
scheme, which neutralizes the “charge sloshing” effect that slows down simple self-consistent
iterations in extended systems [14].

For a finite system of Nel electrons in an external potential Vext, the reduced Hartree-Fock
(rHF) equation for the total potential V is given by{

V = Vext + vcFεF (V ),´
R3 FεF (V ) = Nel.

The Coulomb operator vc is given by the convolution

(vcρ)(x) =
1

4π

ˆ
R3

ρ(y)

|x− y|
dy.

The potential-to-density mapping FεF is given by

FεF (V ) = fεF (−∆ + V )(x, x)
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where the Fermi-Dirac distribution fεF is

fεF (ε) =
1

1 + e
ε−εF
kBT

,

with T the temperature and kB the Boltzmann constant. The density matrix fεF (H) is defined
through the functional calculus of self-adjoint operators, and fεF (H)(x, x) is the associated
density (see Section 3.3). The Fermi level εF is determined through the charge neutrality
condition

´
R3 FεF (V ) = Nel.

This model, also called the Hartree model, random phase approximation (RPA) or Schrödinger-
Poisson, can be seen as a simplification of Kohn-Sham density functional theory where the
exchange-correlation potential is neglected, or of the Hartree-Fock model without the exchange
term. In the zero-temperature case, it derives from a convex variational principle, which allows
for a complete existence and uniqueness theory [24].

This convexity also means that it is possible to justify rigorously the thermodynamic limit for
periodic systems [9], something that seems out of reach for the full Hartree-Fock or Kohn-Sham
model. The resulting periodic model takes the following form. Let R be the crystal lattice, Γ
a unit cell, and Wnucl the R-periodic potential created by the nuclei. Then the periodic rHF
model is {

W = Wnucl + vperFεF (W )´
Γ FεF (W ) = Nel

(1)

where vperρ is the unique periodic solution of{
−∆(vperρ) = ρ´

Γ(vperρ) = 0
(2)

and Nel is now the number of electrons per unit cell. The potential-to-density mapping takes the
same form FεF (W ) = fεF (−∆ +W )(x, x), and maps periodic potentials to periodic densities.

The periodic model with zero temperature was studied in [9], where it is derived as a thermo-
dynamic limit. The existence and uniqueness of solutions W (Wnucl) to (1) at finite temperature
was proved in [19], using a variational principle for the potential W . We study the convergence of
fixed-point iterations to solve these equations, both for its independent interest and to establish
the methods and estimates needed later for the study of defects. First, for a given W , the charge
neutrality condition can be uniquely solved for εF (see Lemma 4.2), yielding a map εF (W ) and
allowing us to reformulate the self-consistent equation as simply W = Wnucl + vperF (W ), with
F (W ) = FεF (W ). A very natural iterative method to solve this equation is

Wn+1 = Wnucl + vperF (Wn),

the simple self-consistent iteration. Unfortunately, as is well-known, this algorithm does not
necessarily converge, not even locally [6, 16]. This suggests the simple damping (or mixing)
strategy

Wn+1 = Wn + α(Wnucl + vperF (Wn)−Wn)(3)

for small α. It is not a priori clear why this iteration, based on an arbitrary splitting of the
self-consistent equation, should converge, even for small α > 0. We prove that this is the case
(recall that L2

per is the space of R-periodic functions that are square-integrable over the unit
cell Γ)

Theorem 1.1. Assume that there is W ∗nucl ∈ L2
per and W ∗ ∈ L2

per such that W ∗ = Wnucl +

vperF (W ∗). Then there are α0 > 0, neighborhoods Wnucl of W ∗nucl and W of W ∗ in L2
per such

that, for all Wnucl ∈ Wnucl, there is a unique solution W (Wnucl) ∈ W of W = Wnucl +vperF (W ).
Furthermore, for all 0 < α ≤ α0, the iteration (3) with W0 ∈ W converges to W (Wnucl) in L2

per.
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Note that the Jacobian of the fixed-point mapping (3) is

Jα(W ) = 1− α+ αvperF
′
εF

(W ).

We show in Lemma 4.1 that the Jacobian F ′εF (W ) is self-adjoint and non-positive from L2
per

to itself. Since vperF
′
εF

(W ) is the product of a non-negative and a non-positive self-adjoint
operator, it has non-positive spectrum, and therefore Jα will have spectrum between −1 and
1 for α small enough, proving Theorem 1.1. To analyze F ′εF (W ), we use a contour integral
formulation which allows us to prove sum-over-states expressions for the derivatives. A similar
method was used in [19]. Although we focus on this very simple algorithm, the behavior of
more complex algorithms such as Anderson acceleration (also known as DIIS or Pulay mixing)
depends crucially on the properties of the underlying fixed-point iteration [25], and our analysis
is a necessary first step towards the understanding of these methods.

We next study defects. The model for defects at zero temperature for insulators at zero
temperature was introduced in [3], again through a thermodynamic limit argument. At finite
temperature, the model is as follows. We fix a solution Wper of the periodic model above and
its Fermi level εF . For a given defect potential Vdef , we solve the equation

V = Vdef + vcG(V )(4)

for the total potential V , with G(V ) the renormalized potential-to-density mapping

G(V ) = (fεF (−∆ +Wper + V )− fεF (−∆ +Wper)) (x, x).(5)

We note that, to our knowledge, neither this defect model nor even the periodic model has
been derived from a thermodynamic limit for the rHF model at finite temperature (see [10] for
related work in a simpler model).

It is natural to try to solve these equations by a procedure similar to (3):

Vn+1 = Vn + α(Vdef + vcG(Vn)− Vn).(6)

However, in contrast to the periodic case, the operator vc is not bounded. This is easily seen
by noting that vc acts in Fourier space as a multiplication operator by 1/|q|2. The iteration (6)
is therefore not well-defined. The practical consequence of this is that, when the equations
are truncated to a finite box of linear size L with appropriate boundary conditions, vc has
eigenvalues on the order of L2. This forces α to be on the order of L−2, which slows down
the convergence1. Because the large eigenvalues are caused by low wavelengths, this appears in
calculations as charge moving back and forth at the extremities of the system, a phenomenon
known as charge sloshing [14]. This effect does not appear when the density is constrained to
be periodic, as evidenced by Theorem 1.1.

This can be fixed by using a more elaborate numerical method. The Newton method applied
to (4) is

Vn+1 = Vn + J(Vn)−1(Vdef + vcG(Vn)− Vn)

where

J(V ) = 1− vcG
′(V )

There is an intimate link between the Jacobian J(V ), describing the behavior of iterative algo-
rithms, and the linear response properties of the system. The operator χ0 = G′(0) is called the
independent-particle susceptibility operator. It describes the linear response of the density of
a non-interacting system of electrons to a small defect potential. It can be computed through
the Adler-Wiser sum-over-states formula [1, 26], which we prove in Lemma 5.2. The operator
ε−1 = J(0)−1 = (1 − vcχ0)−1 is called the dielectric operator. As we will see, it describes the
linear response of the total potential V to a defect Vdef .

1This reasoning also holds true for more complex methods. The Jacobian of the system has a condition number
proportional to L2, and therefore we expect simple methods to require a number of iterations proportional to
L2, and Krylov-type methods such as Anderson acceleration to require a number of iterations proportional to L
[25, 22].
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Since J(V ) or even J(0) is difficult to compute, an approximation has to be found, yielding a
preconditioned scheme. A simple approximation can be found using the Thomas-Fermi theory
of the free electron gas [17]. This model takes the same form (4) of a fixed-point equation, but
with a much simpler potential-to-density mapping

GTF(V ) = (εF − V )
3
2
+.

In this case we simply have χ0,TF = G′TF(0) = −3
2

√
εF . Because of translational invariance, the

operator εTF = JTF(0) takes the simple form of a multiplication operator in Fourier space

εTF(q) = 1− 1

|q|2
χ0,TF =

|q|2 − χ0,TF

|q|2
.

The 1/|q|2 divergence for low wavelengths created by Coulomb interaction is the cause of charge
sloshing. One can then simply take the inverse of this Thomas-Fermi Jacobian as a precondi-
tioner. In practice, the unknown constant χ0,TF is estimated according to the system under
consideration (in this paper we take it equal to −1 for simplicity). This choice,

K(q) =
|q|2

1 + |q|2
,(7)

or in operator form K = −∆
1−∆ , is known as Kerker preconditioning [14]. The preconditioned

fixed-point iteration is then

Vn+1 = Vn + αK(Vdef + vcG(Vn)− Vn)(8)

which is found in practice to substantially improve the convergence of self-consistent algorithms.
We now turn to the related matter of screening. Expanding (4) to first order in Vdef , we

obtain formally

V = (1− vcχ0)−1Vdef +O(‖Vdef‖2).

As mentionned previously, the operator

ε−1 = (1− vcχ0)−1(9)

is the dielectric operator. In the case of the homogeneous Thomas-Fermi model, χ0 is a negative
constant, and ε−1

TF is a Fourier multiplication operator given by

ε−1
TF(q) =

|q|2

|q|2 − χ0,TF

When Vdef(x) = Q
|x| , up to normalization we have V̂def(q) = Q

|q|2 , and so

̂ε−1
TFVdef(q) =

Q

|q|2 − χ0,TF
,

the Fourier transform of a short-range Yukawa potential

(ε−1
TFVdef)(x) = Q

e−
√
−χ0,TF|x|

|x|
.

The Thomas-Fermi theory of screening beyond linear response was discussed in [17], and ex-
tended to the Thomas–Fermi–von Weiszäcker model in [4, 18].

The purpose of this paper is to extend the justification of Kerker preconditioning as well as
the Thomas-Fermi theory of screening to the more realistic rHF model of defects.

Our main result is

Theorem 1.2. Fix Wper ∈ L2
per and εF ∈ R. There are α0 > 0 and neighborhoods Vdef and V

of 0 in vcH
−2 and L2 respectively such that, for all Vdef ∈ V, there is a unique solution V (Vdef)

of

V = Vdef + vcG(V )
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in V. Furthermore, for 0 < α ≤ α0, the iteration

Vn+1 = Vn + αK(Vdef + vcG(Vn)− Vn).

with V0 ∈ V converges to V (Vdef) in L2.
We have the expansion

V (Vdef) = ε−1Vdef +O(‖Vdef‖2vcH−2)

in L2, where

ε−1 = (1− vcχ0)−1

is continuous from vcH
−2 to L2, and χ0 = G′(0) is continuous from L2 to itself.

When for instance Vdef(x) = Q
|x| for Q small enough (which belongs to vcH

−2), this result

states that the screened potential V (Vdef) is in L2, and therefore decays faster than Vdef . When
the defect potential is the Coulomb potential generated by a localized charge density ρ, we expect
from the analysis of the Thomas-Fermi model that V (Vdef) will have the same decay properties

as ρ (because q 7→ ε−1
TF(q)

|q|2 is smooth). To quantify this, we need to define the weighted Sobolev

spaces (see Section 2 for more details): for every n ∈ R, N ≥ 0,

L2
N =

{
f ∈ L2,

ˆ
R3

(1 + |x|2)N |f(x)|2dx <∞
}

and

Hn
N = {f, (1 + |x|2)

N
2 f ∈ Hn}.

We then have

Theorem 1.3. Fix Wper ∈ L2
per and εF ∈ R. There is a neighborhood Ṽdef ⊂ Vdef of zero in

vcH
−2
1 such that, if Vdef ∈ Ṽdef , and if Vdef ∈ vcH

−2
N , then V (Vdef) ∈ L2

N .

Therefore, if Vdef(x) = Q
|x| for Q small enough, then V (Vdef) decays faster than any polyno-

mial.
To prove Theorem 1.2, we need to generalize the results of the Thomas-Fermi model to our

setting. The first obstacle is the more complicated nature of the potential-to-density mapping
G. This is handled by using a contour-integral formulation, which allows for the computation of
response functions (derivatives of G). The second is the absence of translation invariance, and
therefore of the simple decomposition of operators Fourier space. However, the periodicity of the
underlying crystal allows the use of the Bloch transform, which replaces the Fourier transform
used in the homogeneous case. We also need to establish the invertibility of the operator εK,
which is done by studying the low-wavelength behavior of the independent-particle susceptibility
operator χ0, and relating it to F ′εF (Wper). Finally, the improved decay estimates in Theorem 1.3
are obtained by considering the off-diagonal decay of the resolvent of the periodic Hamiltonian,
a property related to the well-known locality of the density matrix [20, 2, 5].

Remark 1.4 (Exponential decay). It follows from our estimates that the operator ε−1vc rep-
resenting the linear response of the screened potential to a defect charge density has an expo-
nentially decaying kernel. Indeed, from the proof of Lemma 5.2 one can see that its fibers are
analytic in a strip in the complex plane, and therefore ε−1vc maps exponentially decaying charge
densities to exponentially decaying potentials. The exponential decay rate depends in particular
on the temperature. Proving this for the non-linear mapping V (Vdef) requires the use of more
involved functional spaces quantifying exponential decay, and we do not do it in this paper.

Remark 1.5 (Zero temperature limit). The results above are to be compared with those of [7]
(see also [8] for the dynamical case). There, the authors study the linear response in the case of
insulators at zero temperature. They obtain partial screening, whereby the total potential behaves
at long range as a Coulombic potential whose effective charge is reduced by a constant factor
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(the dielectric constant of the material). The difference can be schematized as follows: in the
case of insulators at zero temperature, the independent-particle susceptibility operator χ0 behaves
for low wavelengths as |q|2, reflecting the lack of bulk movement of electrons. Accordingly, the
dielectric operator ε−1 = (1− vcχ0)−1 behaves as a constant. In the finite-temperature case, χ0

behaves as a constant for low wavelengths, and therefore ε−1 behaves as |q|2.
The discussion above in terms of wavelengths is complicated by the fact that these operators

do not commute with all translations but only with those of the crystal lattice, and so are not
diagonalized by the Fourier transform but by the Bloch transform. Because of the appearance of
the inverse, the behavior of ε−1 for low wavelengths is not determined only by that of χ0 for low
wavelengths. This discrepancy is sometimes called “local field effects” in the physical literature.
However, the conclusions above are qualitatively correct, although the proper treatment of these
effects is more involved, as we will see.

This work is only concerned with the finite-temperature case. Physically, this has the effect
of making every material metallic, in the sense that there are free electrons available to move
towards the defect. Mathematically, this allows response functions to be derived straightforwardly
from contour integrals. The case of the zero-temperature limit of metals remains open (although
see [11] in the linear case). A particular challenge is that of the appearance of Friedel oscillations,
which in the case of the free Fermi gas (Wper = 0) are linked with non-smoothness of the
independent-particle susceptibility χ0(q). In the periodic case, the shape of Friedel oscillations
depends on the properties of the Fermi surface.

Remark 1.6 (Energy methods). In this work, we are concerned with the convergence of fixed-
point iterations, and screening in the small defect regime. Therefore, we use a fixed-point
approach to the existence of solutions of the defect equations, and do not exploit the existence
of an energy. This limits our range of applicability to small defects, and cannot ensure the
uniqueness of solutions. It would be interesting to prove the existence of solutions outside of the
perturbative regime through energy methods.

The use of an energy sheds some light on the convergence of the damped fixed-point iteration,
which decreases the (free) energy of the system for small enough damping parameter. Similarly,
the non-positivity of the derivative of the potential-to-density mapping, which we obtained by
direct computation, can also be seen through energy methods. For concreteness, we sketch this
argument now in a periodic system at fixed Fermi level. Consider a periodic system of non-
interacting electrons in a periodic potential W . Define the free energy (per unit cell) of a
density matrix γ

E(γ,W ) = Tr((−∆ +W − εF )γ) + kBT Tr(γ log γ + (1− γ) log(1− γ))

where Tr is the trace per unit cell (see Section 2). Then E is convex on a suitable subset of the
convex set of periodic self-adjoint operators satisfying 0 ≤ γ ≤ 1 and admits a unique minimizer
γ∗(W ) = fεF (−∆ +W ). The functional

I(W ) = inf
γ
E(γ,W ) = E(γ∗(W ),W )

is concave, being the infimum of affine functionals. Its gradient is computed using an Hellmann-
Feynman-type argument as

I ′(W ) =
∂E

∂W
(γ∗(W ),W ) = γ∗(W )(x, x) = FεF (W )

and it follows that F ′εF , being the Hessian of a concave functional, is self-adjoint and non-
positive.

Remark 1.7 (Kohn-Sham density functional theory). We consider here the rHF model, which
neglects any exchange-correlation effects. In the case of the Kohn-Sham model, the dielectric
operator is

ε−1 = (1− (vc +Kxc)χ0)−1,
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where Kxc is the derivative of the exchange-correlation potential with respect to the density. It
is not a priori clear that the operator ε is invertible in this case, even for a finite system. This
is related to the non-convexity of the model. The full investigation of this property, which can
only hold locally close to a ground state, would be interesting future work.

The structure of the paper is as follows. We first introduce our notations in Section 2 and
recall properties of the Bloch transform and of periodic operators. In Section 3 we state general
theorems and prove some estimates on resolvents and densities of operators. Then we study
the periodic rHF model in Section 4, establishing properties of the response operators and
proving Theorem 1.1. We finally study the defect model in Section 5, culminating in the proof
of Theorems 1.2 and 1.3.

2. Notations

Let R be a periodic lattice in R3, R∗ = {K ∈ R3| ∀R ∈ R, eiK·R = 1} be its dual lattice,
Γ be a unit cell of R, and Γ∗ = B be a unit cell of R∗. By abuse of language we call B the
Brillouin zone. Both Γ and B are considered to have the topology of a torus: this means that,
for instance, a continuous function on Γ extends to a continuous and R-periodic function on
R3.

We let kBT > 0 be a fixed temperature, and set

fεF (ε) =
1

1 + e
ε−εF
kBT

the Fermi-Dirac occupation function. We recall that f is decreasing on R and analytic on
R + i(πT, πT ).
L2 is the usual Lebesgue space on R3, and L2

per ∼ L2(Γ) is the space of R-periodic functions.

For s ∈ R, Hs is the Sobolev space on R3 and Hs
per ∼ Hs(Γ) the Sobolev space on the torus

Γ, defined via Fourier transform and Fourier series respectively. All these spaces are Hilbert
spaces with their usual inner product.

We normalize the Fourier series, transforms and Bloch transforms to consistently have un-
normalized decompositions: for a function u ∈ L2

per, we have

u(x) =
∑
K∈R∗

eiKxcK(u), cK(u) =

 
Γ
e−iKxu(x)dx

where
ffl

Ω = 1
Ω

´
Ω is the normalized integral. For a function w ∈ L2 we have

w(x) =

ˆ
R3

eiqxŵ(q)dq, ŵ(q) =
1

(2π)3

ˆ
R3

e−iqxw(x)dx

The Bloch transform for w ∈ L2 is

w(x) =

ˆ
B
eikxuk(x)dk, uk(x) =

∑
K∈R∗

eiKxŵ(k +K).

The map k 7→ uk belongs to the space L2(B, L2
per), by which we mean the space of functions

uk : R3 7→ L2
per that are locally L2 and satisfy the pseudo-periodicity condition uk+K(x) =

e−iKxuk(x) for all K ∈ R∗. This space is equipped with the norm

‖u‖2L2(B,L2
per)

=

ˆ
B
‖uk‖2L2

per
.

The Bloch transform is, up to normalization, unitary from L2 to L2(B, L2
per).

Recall that −i∂xiw has Bloch transform k 7→ (−i∂xi+ki)uk, and that xiw has Bloch transform

k 7→ i∂kiuk. Let 〈x〉 =
√

1 + |x|2. For every n,N ∈ R, let the weighted Sobolev spaces

Hn
N = {f ∈ S ′, 〈x〉Nf ∈ Hn}
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and

L2
N = H0

N = {f ∈ L2, ‖〈x〉Nf‖L2 <∞}

with natural norms. The Fourier transform is bounded and invertible from Hn
N to HN

n . The
Bloch transform is similarly bounded and invertible fromHn

N toHN (B, Hn
per), whereHN (B, Hn

per)
is defined as above (see for instance [15]).

If A is a bounded operator on a Banach space, we call ‖A‖ its norm, σ(A) its spectrum and

r(A) = limn→∞ ‖An‖1/n = sup{|z|, z ∈ σ(A)} its spectral radius.
We denote by Sp the space of Schatten-class operators on L2. The spaces Sp equipped with

their norm ‖A‖Sp = (Tr |A|p)1/p are Banach spaces (Hilbert space for p = 2). In particular, the
cases p = 1, 2,∞ correspond to trace-class, Hilbert-Schmidt and bounded operators respectively.

We say that a bounded operator A on L2(R3) is a periodic operator if it commutes with
the translations of the lattice R. As is well-known [21], such operators are decomposed by the
Bloch transform, in the sense that there exists a family {Ak}k∈B of bounded operators on L2

per

such that, if w =
´
B e

ikxuk(x)dk ∈ L2, then

(Aw)(x) =

ˆ
B
eikx(Akuk)(x)dk.

We call the operators Ak the fibers of A. The smoothness of the fibers of operators reflect the
off-diagonal properties of their kernel: if an operator A has fibers Ak that are smooth from R3

to bounded operators from Hn
per to Hm

per and if w ∈ Hn
N for some N ≥ 0, then Aw ∈ Hm

N .

If Ak are trace-class on L2
per almost everywhere and

´
B Tr |Ak| <∞, we define the trace per

unit cell

TrA =

 
B

TrAk.

One can then define the Schatten classes of periodic operators

Sp,per = {A periodic,Tr|A|p <∞}

with associated norms. Note that this is distinct from (and larger than) the class of Schatten
operators on L2

per.
If A ∈ S1, then A has the singular value decomposition A =

∑
n∈N λn|φn〉〈ψn| with φn and

ψn two orthonormal sets and
∑

n∈N |λi| <∞, and we define its density A(x, x) ∈ L1 by

A(x, x) =
∑
n∈N

λnφn(x)ψn(x).

Similarly, if A is locally trace class then A(x, x) ∈ L1
loc, if A is a trace-class operator on L2

per

then A(x, x) ∈ L1
per and if A is in S1,per then A(x, x) ∈ L1

per, with

A(x, x) =

 
B
Ak(x, x)dk.

3. General results and estimates

3.1. General results. We recall the following classical properties

Lemma 3.1. Let X be a Banach space and A, B be bounded operators on X. Then σ(AB) \
{0} = σ(BA) \ {0}.

Proof. Let λ /∈ σ(AB) and λ 6= 0. Then (λ−BA) is invertible with inverse

(λ−BA)−1 = λ−1(1 +B(λ−AB)−1A)

and λ /∈ σ(BA). The proof follows by interchanging A and B. �

Lemma 3.2. Let X be a Banach space and A a bounded operator on X. Then for every ε > 0,
there is a norm ‖ · ‖ε equivalent to ‖ · ‖X such that ‖A‖ε ≤ r(A) + ε.

8



Proof. See [13] for instance. �

We will make use of the following variant of the Banach fixed point theorem:

Theorem 3.3. Let X,Y be two Banach spaces, U and V be two neighborhoods of x∗ ∈ X and
y∗ ∈ Y , and T : U × V 7→ X be a continuously differentiable mapping such that T (x∗, y∗) = x∗,
and

r

(
∂T

∂x
(x∗, y∗)

)
< 1.

Then there are neighborhoods Ũ ⊂ U and Ṽ ⊂ V of x∗ and y∗ such that, for all y ∈ Ṽ , the
iteration

xn+1 = T (xn, y)(10)

with x0 ∈ U converges to a solution x(y) of T (x(y), y) = x(y) in Ũ . This solution is unique in

Ũ . Furthermore, x(y) is differentiable, and

x′(y) =

(
1− ∂T

∂x
(x(y), y)

)−1 ∂T

∂y
(x(y), y).

Proof. Applying Lemma 3.2 to A = ∂T
∂x (x∗, y∗) and using the continuous differentiability of T ,

we see that, for all ε > 0, there is an equivalent norm ‖ · ‖ε on X such that∥∥∥∥∂T∂x (x, y)

∥∥∥∥
ε

≤ r
(
∂T

∂x
(x∗, y∗)

)
+ ε+O(‖x− x∗‖+ ‖y − y∗‖)

It follows that, for ε small enough, there is a neighborhood Ũ× Ṽ of (x∗, y∗) such that, for every

y ∈ Ṽ , T (·, y) maps Ũ to itself and is a contraction for the ‖ · ‖ε norm. The convergence of (10)
(in the ‖ · ‖ε and therefore in the ‖ · ‖ norm), as well as the uniqueness of x(y) follows from the
Banach fixed-point theorem. The differentiability follows as in the proof of the implicit function
theorem. �

Remark 3.4. The implicit function theorem also shows the existence of x(y) under weaker
assumptions (that 1− ∂T

∂x is invertible). The main difference is that the implicit function theorem

uses the Newton-like iteration xn+1 = xn + (1 − ∂T
∂x (x∗, y∗))−1(T (xn, y) − xn) instead of the

simpler iteration (10). We use here this version because we are interested in the convergence of
the fixed-point iteration.

Recall that in general r(∂T∂x ) < ‖∂T∂x ‖ for general non-normal operators, and therefore T is not
necessarily a contraction.

3.2. Resolvent estimates. In the following, we want to prove that products of resolvents and
potentials have certain trace properties, in order to define potentials-to-density mappings via
contour integrals. The following equality, a building block of the general Kato-Seiler-Simon
inequality [23], will be very useful:

Lemma 3.5 (Kato-Seiler-Simon equality). For every f ∈ L2, g ∈ L2, f(−i∇)g(x) ∈ S2 and

‖f(−i∇)g(x)‖S2 = (2π)−3/2‖f‖L2‖g‖L2 .

Similarly, for f ∈ L2, g ∈ L2
per,

‖f(−i∇)g(x)‖S2,per = (2π)−3/2‖f‖L2‖g‖L2
per
.

Proof. The proof of the first assertion is standard, see e.g. [23]: note that f(−i∇)g(x) has
integral kernel

(f(−i∇)g(x))(x, y) = f̌(x− y)g(y)

and therefore

‖f(−i∇)g(x)‖2S2
=

ˆ
R6

|f̌(x− y)g(y)|2dxdy = (2π)−3‖f‖L2‖g‖L2

9



For the second, we first note that, if f ∈ `2(R∗) and g ∈ L2
per, then f(−i∇)g(x) is an operator

on L2
per. By writing its kernel (matrix in the basis of the 1√

|Γ|
eiKx for K ∈ R∗), we get

‖f(−i∇)g(x)‖S2(L2
per)

=
1√
|Γ|
‖f‖`2(R∗)‖g‖L2

per

(see [12]). The result then follows by writing, for f ∈ L2, g ∈ L2
per,

‖f(−i∇)g(x)‖2S2,per
=

 
B
‖f(−i∇+ k)g(x)‖2S2(L2

per)
dk

=
1

|Γ|
‖g‖2L2

per

 
B

∑
K∈R∗

|f(k +K)|2dk = (2π)−3‖g‖2L2
per
‖f‖2L2

�

In particular, since f(q) = (1 + |q|2)−1 is in L2, this implies that (1 − ∆)−1V is bounded
for V ∈ L2 + L2

per. This can be amplified to prove that both L2 and L2
per potentials are −∆-

bounded with relative bound zero, so that, for V ∈ L2 +L2
per, −∆ +V is self-adjoint on L2(R3)

with domain H2(R3). In particular, the resolvent of −∆ + V is the resolvent of the Laplacian,
modulo a bounded operator:

Lemma 3.6. There is C > 0 such that, for all V ∈ L2 + L2
per, if z 6∈ σ(−∆ + V ), then

Bz = (z −H)−1(1−∆)(11)

is bounded, with

‖Bz‖ ≤ C

(
1 +

1 + |z|+ ‖V ‖4L2+L2
per

d(z, σ(H))

)
.

Proof. In this proof and others in the sequel, C denotes a constant whose value might change
from line to line.

The following argument is classical, see e.g. [3, Lemma 1]. The idea of the proof is that,
if V is small, we can expand (z − H)−1(1 − ∆) =

∑
n≥0((z + ∆)−1V )n(z + ∆)−1(1 − ∆) and

bound (z + ∆)−1V by the Kato-Seiler-Simon equality. To extend this argument for arbitrary
large sizes of V , we consider the shifted operator H + ic, where c > 0.

Let c > 0. For V ∈ L2, we have that

‖(−∆− ic)−1V ‖ ≤ ‖(−∆− ic)−1V ‖S2 ≤ ‖V ‖L2‖(|ξ|2 − ic)−1‖L2 ≤ c−1/4‖V ‖L2‖(|ξ|2 − i)−1‖L2

while similarly for W ∈ L2
per we have

‖(−∆− ic)−1W‖ ≤ ‖(−∆− ic)−1W‖S2,per ≤ ‖W‖L2
per
‖(|K|2 − ic)−1‖`2 ≤ c−1/4‖W‖L2

per
‖(|K|2 − i)−1‖`2

It follows that by taking c = C(1 + |z|+ ‖V ‖4L2+L2
per

) with C large enough, we get

(z − (H + ic))−1 = ((−∆− ic) + z − V )−1 = (1 + (−∆− ic)−1(z − V ))−1(−∆− ic)−1

and so (z − (H + ic))−1(1−∆) is bounded uniformly in V and z. The result then follows from

Bz = (z −H)−1(z − (H + ic))(z − (H + ic))−1(1−∆)

‖Bz‖ ≤ C sup
λ∈R

|z − (λ+ ic)|
z − λ

≤ C
(

1 +
c

d(z, σ(H))

)
�
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3.3. Density of an operator. The following lemma gives a useful condition for an operator
to have a density in L2, or for a periodic operator to have a density in L2

per.

Lemma 3.7. There is C > 0 such that, if A is an operator such that A(1 − ∆) ∈ S2, then
A(x, x) ∈ L2, with

‖A(x, x)‖L2 ≤ C‖A(1−∆)‖S2‖f‖L2

Similarly, if Aper is a periodic operator such that Aper(1−∆) ∈ S2,per, then Aper(x, x) ∈ L2
per.

‖A(x, x)‖S1,per ≤ C‖Aper(1−∆)‖S2,per .

Proof. By the Kato-Seiler-Simon equality, for any function f ∈ L2,

‖Af‖S1 ≤ ‖A(1−∆)‖S2‖(1−∆)−1f‖S2 ≤ C‖A(1−∆)‖S2‖f‖L2 ,

and similarly in the periodic case. �

4. The periodic finite-temperature rHF model

Given a nuclear potential Wnucl ∈ L2
per, we look for a solution of the equations{

W = Wnucl + vperFεF (W )´
Γ FεF (W ) = Nel.

(12)

Recall that the existence and uniqueness of solutions of this equation have been proved in [19].
Our goal for this section is Theorem 1.1, which states the local convergence of a fixed-point
iteration.

For any ρ ∈ L2
per, vperρ was defined in (2) as the solution of the periodic Poisson equation

with zero mean:

(vperρ)(x) =
∑

K∈R∗,K 6=0

cK(ρ)

|K|2
eiKx.

It is a bounded non-negative self-adjoint operator on L2
per. It is the pseudo-inverse of the

negative Laplacian on L2
per, in the sense that −∆(vperρ) = ρ for all ρ ∈ L2, and vpere = 0, where

the constant function e spans the kernel of −∆.
We first investigate the mapping FεF and its derivative. The last property that F ′εF (W )+β∆

is positive for all β > 0 is recorded for future use in the case of defects.

Lemma 4.1. For all εF ∈ R, the map

FεF (W ) = fεF (−∆ +W ) (x, x)

is analytic from L2
per to itself. For all W ∈ L2

per, its differential F ′εF (W ) is self-adjoint and
non-positive. Furthermore, for every β > 0, F ′εF (W ) + β∆ is negative.

Proof. Step 1: FεF : L2
per 7→ L2

per. Let W ∈ L2
per, and H = −∆ + W . Recall that H is

periodic, with fibers Hk = (−i∇ + k)2 + W . We label the eigenvectors and eigenvalues of Hk

(a self-adjoint operator on L2
per with compact resolvent) by

Hkunk = εnkunk

where the (εnk)n∈N are ordered by increasing order. We have

FεF (W ) =

 
B

∑
n∈N

fεF (εnk)|unk|2dk

By standard comparison arguments, there are a ∈ R, b > 0 such that εnk ≥ a + bn2/3. By
the Sobolev embedding H1

per ↪→ L4
per, |unk|2 is controlled in L2

per by ‖unk‖2H1
per
≤ C(1 + n2/3)

for some C > 0, uniformly in k ∈ B, and it follows from the exponential decay of fεF that
FεF (W ) ∈ L2

per.
11



−Σ εF σ(H)

εF + iπkBT

εF − iπkBT

C

Figure 1. Contour C used to differentiate the potential-to-density mapping.
Note that this differs from standard rectangular contours because we need to
ensure that (z −H)−1 remains Hilbert-Schmidt uniformly in z ∈ C.

Step 2: FεF is analytic. Since potentials in L2
per are infinitesimally ∆-bounded, there is

Σ > 0 such that σ(H) ⊂ [−Σ,+∞) for all W with ‖W‖L2
per
≤ R. Let C be the contour given

by Figure 1. This contour encloses the spectrum of σ(H), avoids the poles of the Fermi-Dirac
function at εF + iπkBT + 2iπkBTZ, and is asymptotic to Im(z) = a± bRe(z) for large z ∈ C,
for some a ∈ R, b > 0. The function fεF is therefore analytic inside C, decays exponentially
when |z| → ∞, and we have

fεF (H) =
1

2πi

ˆ
C
fεF (z)(z −H)−1dz

as bounded operators2. Let Rz = (z − H)−1. Because d(z, σ(H)) increases at the same rate
as Re(z), it follows from Lemma 3.6 that Bz = Rz(1 − ∆) is bounded in operator norm,
independently of z ∈ C (note that this would not be true for a rectangular contour). From the
Kato-Seiler-Simon equality, there is therefore C > 0 such that, for all z ∈ C, δW ∈ L2

per,

‖RzδW‖S2,per ≤ ‖Bz‖‖(1−∆)−1δW‖S2,per ≤ C‖δW‖L2
per
.

Therefore, for ‖δW‖L2
per
≤ 1

2C , for all z ∈ C, (z −H − δW ) is invertible, and

(z −H − δW )−1 = (1−RzδW )−1Rz =
∑
n≥0

(RzδW )nRz.

We can expand fεF (H + δW ) as bounded operators:

fεF (H + δW )− fεF (H) =
1

2πi

ˆ
C
fεF (z)

∑
n≥1

(RzδW )nRzdz.

For all n ≥ 1, we have that

‖(RzδW )nRz(1−∆)‖S2,per
≤ ‖Bz‖‖RzδW‖nS2,per

≤ Cn‖δW‖nL2
per
.

It follows from the decay properties of fεF on C thatˆ
C

∑
n≥1

fεF (z) ‖(RzδW )nRz(1−∆)‖S2,per
<∞,

and therefore that FεF is analytic at W .

2Note that if other occupation functions are used, the contour may need to be modified. For instance,
Gaussian smearing [5] decays exponentially only if b < 1. Our technique is less general than that of [19] based
on the Helffer-Sjöstrand formula, which does not require any analyticity in fεF .
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Step 3: F ′εF is self-adjoint and non-positive. From the previous computations, we have

F ′εF (W ) · δW =
1

2πi

ˆ
C
fεF (z)(RzδWRz)(x, x)dz.

with (RzδWRz)(x, x) ∈ L2
per uniformly in z ∈ C.

For all z ∈ C, RzδWRz is periodic with fibers (z−Hk)
−1W (z−Hk)

−1. Inserting the spectral
(z −Hk)

−1 =
∑

n∈N(z − εnk)−1|unk〉〈unk|, we get, for all δW1, δW2 ∈ L2
per,

〈δW1, F
′
εF

(W ) · δW2〉

=
1

2πi

ˆ
C
fεF (z)

 
B

∑
n,m∈N

1

(z − εnk)(z − εmk)
Tr
(
δW1|unk〉〈unk, δW2umk〉〈umk|

)
dkdz.

=
1

2πi

ˆ
C
fεF (z)

 
B

∑
n,m∈N

1

(z − εnk)(z − εmk)
〈δW1umk, unk〉〈unk, δW2umk〉dkdz.

The absolute convergence of this sum in L2
per follows from the estimates above. For completeness,

we give a more direct proof. Let eK(x) = eiKx√
|Γ|

. The (eK)K∈R∗ form a Hilbert basis of L2
per,

and we have the property 〈eK , δWeK′〉 = 1√
|Γ|
〈eK−K′ , δW 〉 for all δW ∈ L2,K,K ′ ∈ R∗. It

follows that∑
n,m∈N

|〈unk, δWumk〉|2

|z − εnk|2
=

∑
n,m∈N,K,K′∈R∗

|〈unk, eK〉〈eK , δWeK′〉〈eK′ , umk〉|2

|z − εnk|2

=
1

|Γ|
∑

n∈N,K,K′∈R∗

|〈unk, eK〉〈eK−K′ , δW 〉|2

|z − εnk|2

=
‖δW‖2L2

per

|Γ|
∑

n∈N,K∈R∗

|〈unk, eK〉|2

|z − εnk|2

=
‖δW‖2L2

per

|Γ|
∑
n∈N

1

|z − εnk|2

which is bounded uniformly in k ∈ B, z ∈ C. The result follows by a Cauchy-Schwarz inequality.
Performing the contour integration, we obtain the following sum-over-states formula

〈δW1, F
′
εF

(W ) · δW2〉 =

 
k∈B

∑
n,m∈N

fnk − fmk
εnk − εmk

〈δW1umk, unk〉〈unk, δW2umk〉dk

where fnk = fεF (εnk), and with the convention that

fεF (ε)− fεF (ε)

ε− ε
= f ′εF (ε)

arising from the double pole (z− εmk)−2 when εnk = εmk. F
′
εF

(W ) is therefore self-adjoint and,
since

〈δW,F ′εF (W ) · δW 〉 =

 
k∈B

∑
n,m∈N

fnk − fmk
εnk − εmk

|〈unk, δWumk〉|2 dk

and fεF is decreasing, it follows that F ′εF (W ) is non-positive.
Step 4: F ′εF (W )+β∆ is negative. Assume that F ′εF (W )+β∆ is not negative. This means

that there exists a sequence Wn of potentials with ‖Wn‖L2
per

= 1 such that

〈Wn, F
′
εF

(W ) ·Wn〉 − β
ˆ

Γ
|∇Wn|2 → 0.
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Let e be the constant function in L2
per. We have

∑
K 6=0 |K|2|cK(Wn)|2 → 0, so that P⊥e Wn → 0

in H1. Up to a subsequence, we can assume that 〈e,Wn〉 → c, with c ∈ C. It follows from
Wn = PeWn + Pe⊥Wn that Wn → ce in L2, and that |c| = 1√

|Γ|
. Then,

〈Wn, F
′
εF

(W ) ·Wn〉 ≤
 
k∈B

f ′εF (ε1k)|〈u1k,Wnu1k〉|2dk

→ 1√
|Γ|

 
k∈B

f ′εF (ε1k)dk < 0.

where we have used that ‖|u1k|2‖L2 ≤ C‖u1k‖2H1 is bounded uniformly in k. �

4.1. Self-consistent Fermi level. We now solve the equation
´

Γ FεF (W ) = Nel for εF .

Lemma 4.2. For all W ∈ L2
per and Nel > 0, the equation

´
Γ FεF (W ) = Nel has a unique

solution εF (W ). The map

F (W ) = FεF (W )(W )

is analytic from L2
per to L2

per. Its differential F ′(W ) is self-adjoint and non-positive, and satisfies
F ′(W ) · e = 0 where e is the constant function.

Proof. Let

N (εF ,W ) = 〈e, FεF (W )〉 =

 
B

∑
n∈N

fεF (εnk)dk

be the total number of electrons with Fermi level εF . Then, since FεF (W ) = F (W − εF e), by
the previous lemma N is analytic on R× L2

per, with

∂N
∂εF

(εF ,W ) = −〈e, F ′εF (W ) · e〉 = −
 
B

∑
n∈N

f ′εF (εnk)dk > 0

∂N
∂W

(εF ,W ) · δW = 〈e, F ′εF (W ) · δW 〉 = 〈F ′εF (W ) · e, δW 〉

For all W ∈ L2
per, N (·,W ) has limit 0 at −∞ and +∞ at +∞, so that there is a unique solution

εF (W ) of N (εF ,W ) = Nel. From the implicit function theorem, we get that εF (W ) is analytic
on L2

per and

ε′F (W ) · δW =
1

〈e, F ′εF (W ) · e〉
〈F ′εF (W ) · e, δW 〉

and therefore

F ′(W ) · δW = F ′εF (W ) · δW − 1

〈e, F ′εF (W ) · e〉
〈F ′εF (W ) · e, δW 〉 F ′εF (W ) · e

In particular, F ′(W ) · e = 0 and F ′(W ) is self-adjoint.
The expression above is of the form F ′(W ) = A− 1

〈e,Ae〉 |Ae〉〈Ae|, with A = F ′εF (W ) bounded,

self-adjoint and non-positive on a Hilbert space H and e ∈ H. In particular, F ′(W ) is self-
adjoint, F ′(W ) · e = 0, and we compute, for all x ∈ H,〈

x,

(
A− 1

〈e,Ae〉
|Ae〉〈Ae|

)
x

〉
= −

(
‖|A|1/2x‖2 − |〈|A|

1/2x, |A|1/2e〉|2

‖|A|1/2e‖2

)
≤ 0

by the Cauchy-Schwartz inequality, from where it follows that F ′(W ) is non-positive.
�

We now look for solutions W ∈ L2
per of the equation

W = Wnucl + vperF (W ).

We are ready for the
14



Proof of Theorem 1.1. Set

Tα(W,Wnucl) = W + α(Wnucl + vperF (W )−W )

In particular, Tα is analytic from L2
per to itself. From Theorem 3.3, we only need to check that

the spectral radius of the operator

Jα = 1 + α(vperF
′(W ∗)− 1)

is smaller than 1 for α small enough. This is ensured by the fact that vper and F ′(W ∗) are
bounded operators on L2

per and vper is non-negative, so that, from Lemma 3.1,

σ(vperF
′(W ∗)) \ {0} = σ(

√
vperF

′(W ∗)
√
vper) \ {0}

This last operator is a non-positive self-adjoint bounded operator on L2
per, hence the result. �

5. The defect problem

In this section we fix Wper ∈ L2
per and εF ∈ R. Let

Hper = −∆ +Wper

be the background periodic Hamiltonian.
We first investigate the renormalized potential-to-density mapping.

Lemma 5.1. There is a neighborhood V of 0 in L2 in which the map

G(V ) = (fεF (Hper + V )− fεF (Hper))(x, x)

is analytic from L2
N to L2

N for all N ≥ 0.
Let χ0 = G′(0). Then V 7→ G(V )− χ0V maps V ∩ L2

N to L2
2N for all N ≥ 0.

Proof. Step 1: the case N = 0. The proof of this step is similar to that of Lemma 4.1. We
take a contour C enclosing the spectrum of Hper with the same shape as in Figure 1, which
encloses the spectrum of Hper + V for ‖V ‖L2 small because L2 potentials are infinitesimally
∆-bounded. From Lemma 3.6, there is C > 0 such that, for all z ∈ C and V ∈ L2,

‖RzV ‖S2 = ‖Rz(1−∆)(1−∆)−1V ‖S2 ≤ C‖V ‖L2 .

with Rz = (z −Hper)
−1. It follows that, for ‖V ‖L2 ≤ 1

2C , (1−RzV ) is invertible, and we have

fεF (Hper + V )− fεF (Hper) =
1

2πi

ˆ
C
fεF (z)

(
(z − (Hper + V ))−1 − (z −Hper)

−1
)
dz

=
1

2πi

ˆ
C
fεF (z)

∑
n≥1

(RzV )nRzdz(13)

as bounded operators. From the estimate

‖(RzV )n−1RzV Rz(1−∆)‖S2 ≤ ‖Rz(1−∆)‖‖RzV ‖nS2
≤ Cn‖V ‖nL2

with C uniform in z ∈ C and the decay properties of fεF , it follows that the expansion (13)
converges absolutely. Therefore, fεF (Hper +V )− fεF (Hper) can be associated a density G(V ) ∈
L2, and G is analytic in a neighborhood of 0.

Step 2: Bloch structure of the expansion of the density at all orders. We first note
that

Hk+q −Hk = 2(−i∇+ k) · q + |q|2.

The bounded operator Rz = (z −H)−1 on L2 is periodic with fibers Rz,k = (z −Hk)
−1. Since

Rz,k(1−∆) is bounded uniformly in z ∈ C and k ∈ B,

‖Rz,k(2(−i∇+ k) · q + |q|2)‖ = ‖Rz,k(1−∆)(1−∆)−1(2(−i∇+ k) · q + |q|2)‖ ≤ C(|q|+ |q|2).
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For q small enough, we then have

Rz,k+q =
∑
n≥0

(
Rz,k(2(−i∇+ k) · q + |q|2)

)n
Rz,k

and, from the previous estimate, Rz,k is analytic in the ‖ · (1−∆)‖S2,per topology, uniformly in
z ∈ C and k ∈ B.

For z ∈ C, let

D(n)
z (V ) = ((RzV )nRz)(x, x).

We first consider the first-order term D
(1)
z . Let V =

´
B e

iqxVq(x)dq ∈ L2. Elementary

computations show that if A is a periodic operator with fibers Ak, then e−iqxAeiqx is a periodic
operator with fibers Ak+q, and that eiqxA has density

(eiqxA)(x, x) = eiqxA(x, x) = eiqx
 
B
Ak(x, x)dk.

Therefore,

D(1)
z (V ) =

ˆ
B

(eiqxe−iqxRze
iqxVqRz)(x, x)dq =

ˆ
B
eiqx

 
B

(Rz,k+qVqRz,k)(x, x)dk dq

D(1)
z (V )q =

 
B

(Rz,k+qVqRz,k)(x, x)dk.

Similarly, in the general case,

D(n)
z (V )q =

ˆ
q1,...,qn−1∈B

 
k∈B

(Rz,k+qVq−q1Rz,k+q1Vq1−q2 · · ·Rz,k)(x, x)dk dq1 · · · dqn(14)

Step 3: the case N > 0. Since for i = 1, 2, 3

(xiD
(n)
z (V ))q = i∂qiD

(n)
z (V )q(15)

and Rz,k is analytic for the ‖ · (1−∆)‖S2,per topology, uniformly in z ∈ C, k ∈ B, the repeated
application of (15) to (14) yields a bound of the form

‖D(n)
z (V )‖L2

N
≤ CN‖V ‖L2

N
Cn−1‖V ‖n−1

L2

for all N ≥ 0, with C independent on N , this bound being uniform in z ∈ C.
It follows that, for ‖V ‖L2 ≤ 1

2C , for all N , we have the absolutely convergent expansion

G(V ) =
1

2πi

ˆ
C
fεF (z)

∑
n≥1

D(n)
z (V )dz

in L2
N .

Step 4: G(V )− χ0V : L2
N 7→ L2

2N . We have

G(V )− χ0V =
1

2πi

ˆ
C
fεF (z)

∑
n≥2

D(n)
z (V )dz.

Consider terms of the form

I =

ˆ
q1,...,qn−1∈B

 
k∈B

(R
(1)
z,k+qV

(1)
q−q1R

(2)
z,k+q1

V
(2)
q1−q2Rz,k+q2Vq2−q3 · · ·Rz,k)(x, x)dkdq1 · · · dqn(16)

where R
(1)
z,k, R

(2)
z,k are Rz,k or their derivatives, and V

(1)
q , V

(2)
q are Vq or its derivatives. These

terms have the form of a periodic convolution and their q derivatives can be expressed with

respect to either V (1) or V (2). Indeed, q1 7→ V
(1)
q−q1R

(2)
z,k+q1

V
(2)
q1−q2 is R∗-periodic. Performing the
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change of variable q′1 = q−q1 and using the periodicity to integrate q′1 over B rather than q−B,

we can transfer the q dependence on V (2):

I = −
ˆ
q′1,...,qn−1∈B

 
k∈B

(R
(1)
z,k+qV

(1)
q′1
R

(2)
z,k+q−q′1

V
(2)
q−q′1−q2

Rz,k+q2Vq2−q3 · · ·Rz,k)(x, x)dkdq′1 · · · dqn.

(17)

Let p2N be a polynomial of degree 2N . Applying (15) successively to p2N (x)(G(V ) − χ0V )
involves terms of the form (16), which can be rewritten using (17) to contain at most N deriva-

tives of V
(1)
q and V

(2)
q with respect to q. Using the analyticity of k 7→ Rz,k, we obtain a bound

of the form

‖D(n)
z (V )‖L2

2N
≤ CN‖V ‖2L2

N
Cn−2‖V ‖n−2

L2

where C is independent of N , the bound being uniform in z ∈ C. The result follows.
�

Recall that the operator vc is given by the convolution

(vcρ)(x) =
1

4π

ˆ
R3

ρ(y)

|x− y|
dy.

In Fourier space, this is a multiplication by 1
|q|2 . This is an unbounded non-negative self-adjoint

operator on L2. We denote its formal inverse by vc
−1 = −∆, also an unbounded non-negative

self-adjoint operator on L2. vc
−1 does not have a spectral gap at zero, but −χ0 + vc

−1 does:

Lemma 5.2. Let N ≥ 0. The operator −χ0 + vc
−1 is self-adjoint and positive on L2, and its

inverse is bounded from H−2
N to L2

N .The operator ε = 1−vcχ0 is invertible in L2
N , with bounded

inverse

ε−1 = (1− vcχ0)−1 =
(
−χ0 + vc

−1
)−1

vc
−1.

The operator Kε is therefore bounded and invertible on L2
N .

Proof. We have, for V ∈ L2 with Bloch transform Vq

χ0V =
1

2πi

ˆ
C
fεF (z)

ˆ
B

 
B

(Rz,k+qVqRz,k)(x, x)dkdqdz

and therefore χ0 is fibered, with fibers

χ0,qW =
1

2πi

ˆ
C
fεF (z)

 
B

(Rz,k+qWRz,k)(x, x)dkdz(18)

for W ∈ L2
per. As in Lemma 4.1, inserting the decomposition Rz,k =

∑
n∈N(z−εnk)−1|unk〉〈unk|,

we obtain the sum-over-states formula

〈W1, χ0,qW2〉 =

 
B

∑
n,m≥0

fn,k+q − fm,k
εn,k+q − εm,k

〈W1um,k, unk+q〉〈unk+q,W2um,k〉dk

converging absolutely, from where it follows that χ0,q is self-adjoint and non-positive on L2 for
all q, and therefore that χ0 is too.

It follows from the regularity of Rz,k and (18) that χ0,k is analytic as bounded operators in
L2

per, with χ0,0 = F ′εF (Wper). The operator vc
−1 = −∆ has fibers vc,k

−1 = (−i∇+ k)2 positive
except at k = 0. Using Lemma 4.1 with β = 1/2, it follows that

−χ0,k +
1

2
vc,k
−1 = −(χ0,k − F ′εF (Wper))− F ′εF (Wper) +

1

2
vc,k
−1

is bounded away from zero for k small, and therefore for all k. Therefore, there is c > 0 such
that

−χ0 + vc
−1 = −χ0 +

1

2
vc
−1 +

1

2
vc
−1 ≥ c(1−∆)

17



as quadratic forms, from where it follows that (−χ0 + vc
−1)−1 ≤ 1

c (1 − ∆)−1 as quadratic

forms and then that, for all V ∈ L2, ‖(−χ0 + vc
−1)−1V ‖L2 ≤ 1

c‖(1−∆)−1V ‖L2 . The operator

(−χ0 + vc
−1)−1 is therefore bounded from H−2 to L2.

Its fibers are (χ0,k + vc,k
−1)−1 and, for q small enough,

(χ0,k+q + vc,k
−1)−1 =

∑
n≥0

(
(χ0,k + vc,k

−1)−1(χ0,k+q − χ0,k)
n
)

(χ0,k + vc,k
−1)−1

which shows that the family (χ0 + vc
−1)−1

k is analytic on B as operators from H−2
per to L2

per, and

therefore that (χ0 + vc
−1)−1 is bounded from H−2

N to L2
N . It then follows that ε is invertible on

L2
N , with inverse

ε−1 = (1− vcχ0)−1 =
(
−χ0 + vc

−1
)−1

vc
−1.

Finally, we have

(Kε)−1 = (−χ0 + vc
−1)−1vc

−1K−1 = (−χ0 + vc
−1)−1(1−∆),

hence the result. �

We are now ready for the

Proof of Theorem 1.2. We proceed as in Theorem 1.1, and apply Theorem 3.3 to

T (V, Vdef) = V + αK(Vdef + vcG(V )− V ),

analytic in a neighborhood of 0 in L2 × vcH
−2 to L2, with Jacobian at (0, 0)

Jα = 1− αK + αKvcχ0) = 1− αKε.

Since Kvc = (1−∆)−1 is bounded, self-adjoint and non-negative on L2, we have

σ(Kvcχ0) \ {0} = σ(
√
Kvcχ0

√
Kvc) \ {0}.

It follows that by taking α0 small enough, we can impose that σ(Jα) ⊂ (−1, 1] Since from
Lemma 5.2 the operator Kε is invertible on L2, we even have that σ(Jα) ⊂ (−1, 1), hence the
result. �

Proof of Theorem 1.3. The proof is based on a bootstrap argument on the equation

V = ε−1(Vdef + vc(G(V )− χ0V ))(19)

satisfied by V (Vdef).
For the base case N = 1, we prove that V (Vdef) ∈ L2

1 by applying Theorem 3.3 to

T (V, Vdef) = ε−1(Vdef + vc(G(V )− χ0V )),

an analytic map from L2
1×vcH

−2
1 to L2

1 with Jacobian 0 at (0, 0). It follows from the uniqueness
of V (Vper) that V (Vper) ∈ L2

1.
We then use the fact that T (·, Vdef) maps L2

1 to L2
2 to conclude from (19) that V (Vper) ∈ L2

2.
Repeating this argument, we obtain that V (Vper) ∈ L2

N . �
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