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In this paper, we present various new algorithms for the integration of sti� di�erential

equations that allow the step size to increase proportionally with time. We mainly

focus on high precision integrators, which leads us to use high order Taylor schemes.

Wewill also present various algorithms for certifying the numerical results, againwith

the property that the step size increases with time.
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1. INTRODUCTION

Consider the di�erential equation

�

Ù

+�� = ¦(�), (1)

where � � �

d×d

is a diagonal matrix with positive real entries 0 } �

1

} ï } �

d

, and

where ¦��[F

[1]

,&, F

[d]

]

d

is a polynomial forcing term. We are interested in analytic

solutions �: I¦�

d

, where I is either an interval of the form [0,T] with T>0, or a larger

subset of� that contains an interval of this form. The d components of this mappingwill

be written �

[1]

,&,�

[d]

: I¦�, whereas subscripts will be reserved for the coe�cients of

local power series solutions. A similar notation will be used for the components of other

vectors and matrices.

If the largest eigenvalue �

d

of� gets large with respect to the forcing term¦, then the

equation (1) is said to be sti� . Generic numerical integration schemes experience di�cul-

ties with this kind of equations, whether we use Euler's method, a Runge�Kutta scheme,

or high order algorithms based on Taylor expansions. Roughly speaking, the problem

is that all generic methods become inaccurate when the step size exceeds �

d

�1

. One of

the most di�cult cases is when d is large, but each of the quotients �

k+1

/�

k

remains

reasonably close to one. This happens for instance when �

k

= k

2

, a case that is naturally

encountered when discretizing certain partial di�erential equations.

Implicit integration schemes allow for larger step sizes than generic methods, but

involve the computation and inversion of Jacobian matrices, which may be expensive

in high dimension d. But even such more expensive schemes only seem to deal with
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the step size issue in a somewhat heuristic manner: one typically selects a scheme that

is �stable� when applied to any equation �

2

+��=0 for all � ~ 0, and then hopes that

the scheme continues to behave well for the actual target equation (1). We refer to [25,

Section 17.5] and [4, Section 6] for more information on classical integration schemes for

sti� di�erential equations.

We aremainly interested in high precision computations, inwhich case it is natural to

use high order integration schemes that are based on Taylor expansions. In this context,

we are not aware of any numerical method that allows the step size to increase propor-

tionally with time. The main aim of this paper is to present such a method, together

with several variants, as well as a way to compute rigorous bounds for the error. Our

fastest method is an explicit scheme, but its convergence deteriorates when the eigen-

values �

i

are close. The slower and rigourous counterparts rely on the computation of

Jacobian matrices.

In sections 3 and 4, we recall various approaches that can be used to compute trun-

cated series solutions to initial value problems and how to derive high order integration

schemes from this. More precisely, given a numerical approximation 
èté for �(t) at

time t, we compute the �rst n terms of a power series solution f èté to the initial value

problem

� f èté

�z

+� f èté=¦( f èté), f èté

0

=
èté (2)

and return f èté

0

+ f èté

1

ÿ+ï+ f èté

n�1

ÿ

n�1

as an approximation of �(t+ÿ) for some suit-

able step size ÿ. The inaccuracy of such schemes for larger step sizes is due to the fact that

the k-th coe�cient of f èté tends to change proportionally to �

d

k

/k! for slight perturbations

of 
èté. If �

d

is large, then even small multiples of �

d

k

/k! quickly dominate f èté

k

, which

severely limits the step sizes that we can use.

This numerical instability is an unpleasant artifact of traditional methods for the inte-

gration of di�erential equations. It is well know that solutions of sti� equations tend

to become very smooth after a certain period of time (in which case one says that the

system has reached its steady state), but this does not lead to larger step sizes, as we

would hope for.

In order tomake this idea of �smoothness after a certain period of time�more precise,

it is instructive to study the analytic continuation of � in the complex plane. In section 2,

for a �xed initial condition �(0)=c and a �xed forcing term¦, we show the existence of

a compact half disk H

R

={t�� : |t|}R, Re t~ 0}, R>0, on which the solution � of (1) is

analytic, for any choice of�. In particular, for t�[0,R/2], the radius of convergence �èté

of the exact Taylor expansion f

�

èté of � at time t is at least t. Setting K=max

z�H

R

|�(z)|,

Cauchy's formula thus yields the bound | f

�

èté

k

|}K/t

k

for all k��.

If t k �

d

�1

, then this means that e�cient integration schemes should allow for step

sizes of the order ü t at time t, for some �xed constant ü>0. In section 5, we will present

various such schemes. They are all based on the computation of good approximations

f èté

;n

= f èté

0

+ f èté

1

z+ï+ f èté

n�1

z

n�1

of the exact Taylor expansion f

�

èté

;n

of � at time t

and order n. Bywhat precedes, such an approximation cannot be obtained by solving (2).

Instead, for a suitable so-called critical index ��{0,&,d} that depends on t, we will solve

the following so-called steady-state problem:

� f èté

�z

+� f èté=¦( f èté),

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{
{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

f èté

0

[i]

=
èté

[i]

if i}�

f èté

n

[i]

=0 if i>�

. (3)
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Intuitively speaking, the system has reached a steady state for the eigenvalues �

i

with i>�. Such eigenvalues �

i

are �large�, so it is more accurate to determine coe�-

cients f èté

k

[i]

as a function of later coe�cients f èté

k+1

,&, f èté

n�1

rather than earlier ones.

Furthermore, the coe�cients f

�

èté

n

[i]

are so �small� that they can be approximated by

zeros; this explains the steady-state conditions f èté

n

[i]

=0. The remaining eigenvalues �

i

with i}� are small enough for the step size under consideration that the dependence

of f èté on the initial condition 
èté

[i]

is su�ciently moderate for (3) to admit an accurate

solution. We say that the system (1) is in a transient state for such eigenvalues �

i

at time t.

A �nal topic is the computation of rigorous error bounds for the numerical integration

process. For di�erential equations that are not sti�, this is a classical theme in interval

analysis [21, 15, 5, 16, 18, 19, 11]. It has long been an open problem to develop e�cient

reliable integrators for sti� di�erential equations. We report on progress in this direc-

tion in section 6.

2. ANALYTIC CONTINUATION

Consider the equation (1) for a �xed initial condition �(0) = c ��

d

and a �xed forcing

term¦, but where we will allow ourselves to vary�. Our main aim is to show that there

exists a compact �half disk�

H

R

= {t�� : |t|}R,Re t~0}

with R > 0 on which the solution � to (1) exists and is analytic, independently of the

choice of �. We will both prove a weak and simpler version of this result and a stronger

version that allows us to take larger radii R and that is also more convenient if we want

to actually compute a radius R that works.

2.1. Notations

We will need a few more notations. We denote the interior of H

R

by

H

R

�

={t�� : |t|<R,Re t>0}.

Given a non-empty open subset U��, we write �(U) for the Banach space of analytic

functions g:U�� with �nite sup-norm

�g�=sup

z�U

|g(u)|.

We will often use vector notation: given v��

d

, g��(U)

d

, and r, s� (�

~

)

d

, we write

|v| = (|v

[1]

|,&, |v

[d]

|)

�g� = (�g

[1]

�,&, �g

[d]

�)

r} s Ô r

[1]

} s

[1]

'ï' r

[d]

} s

[d]

.

In addition to such �componentwise� norms, we will also use more traditional sup-

norms: given v��

d

, g��(U)

d

, and an n×nmatrixM��

d×d

, we de�ne

|v|

�

= max(|v

[1]

|,&, |v

[d]

|)

�g�

�

= max(�g

[1]

�,&, �g

[d]

�)

|M|

�

= sup

v��

d

,|v|

�

=1

|Mv|

�

.
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2.2. Reminders from complex analysis

We will also need two well known results from complex analysis, namely an explicit

version of Cauchy-Kovalevskaya's theorem and a variant of Montel's theorem.

THEOREM 1. Let ¨(F)=¦(F)��F, m

c

=|c|

�

, and consider the initial value problem

�

Ù

= ¨(�), �(0)=c. (4)

Writing ¨=�

i

1

,&,i

d

¨

i

1

,&,i

d

(F

[1]

)

i

1

ï(F

[d]

)

i

d

, let

M

c

=max

i

1

,&,i

d

|¨

i

1

,&,i

d

| (2m

c

d)

i

1

+ï+i

d

.

Then (4) admits a unique analytic solution on the open disk with center 0 and radius

�

c

=

m

c

4M

c

.

Proof. Our assumptions imply that

�

¯

Ù

=

M

c

1�

�

¯

[1]

+ï+�

¯

[d]

2m

c

d

, �

¯

[1]

(0)=ï=�

¯

[1]

(0)=m

c

constitutes a �majorant equation� for (4) in the sense of Cauchy-Kovalevskaya. By sym-

metry, each of the components �

¯

[i]

of this equation satis�es the simpler equation

g

Ù

=

M

c

1�

g

2m

c

, g(0)=m

c

,

which admits the explicit solution

g =

(

(

(

(

(

(

(

(

(

(

(

(

(

(

2� 1�

4M

c

t

m

c

X

)

)

)

)

)

)

)

)

)

)

)

)

)

)

m

c

,

of radius �

c

. Since the formal power series solution of (4) satis�es ¡�

k

[i]

¡} ¡�

¯

k

[i]

¡=g

k

for all

i�{1,&,d} and k��, it follows that � has radius of convergence at least �

c

. ¡

THEOREM 2. Given a non-empty subset U of � and a bounded sequence g

1

,g

2

,&��(U)

d

, we

can extract a subsequence g

k

1

, g

k

2

,& that converges uniformly to a limit g

�

��(U)

d

on every

compact subset of U.

Proof. If d=1, then this is Montel's theorem. The general case is obtained using an easy

induction on d: we �rst extract a subsequence g

i

1

, g

i

2

,& such that g

i

1

[d]

, g

i

2

[d]

,& converges

to a limit in �(U) and then apply the induction hypothesis to this subsequence for the

remaining d�1 components. ¡

2.3. Analyticity on open half disks

Let J

¦

=�¦/�F denote the Jacobian matrix of¦.

THEOREM 3. Let R>0, B� (�

>

)

d

, and C<1 be such that for all z��, we have

|z� c|}B ù |¦(z)|R}B. (5)

|z� c|}B ù |J

¦

(z)|

�

R}C. (6)

Then, for any choice of �, the initial value problem

�

Ù

+��=¦(�), lim

t�0

�(t)= c (7)
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admits a unique analytic solution on H

R

�

. In addition, we have |�(t)�c|}B for all t�H

R

�

.

Proof. Consider the operator©

R

:�(H

R

�

)

d

��(H

R

�

)

d

with

©

R

(g)(t) = c+e

��t

5

0

t

e

�u

¦(g(u))du.

The �xed points � � �(H

R

�

)

d

of this operator are precisely the solutions of (7). Let us

prove the existence of such a �xed point. The uniqueness follows by analytic continua-

tion from the well known uniqueness of the solution of the initial value problem (7) on

a neighbourhood of the origin.

Let us �rst notice that©

R

maps the ball

,

R

(c,B)={g��(H

R

�

) : �g�c�}B}

with center c and radius B into itself. Indeed, given g�,

R

(c,B) and u�H

R

�

, our hypoth-

esis (5) implies

|e

�u

¦(g(u))| } e

�Reu

B

R

.

For all t�H

R

�

, it follows that

¶
5

0

t

e

�u

¦(g(u))du
¶
}

B

R

5

0

t

e

�Reu

du

}

B

R

e

�Ret

5

0

t

e

�Re(u�t)

du

}

B

R

e

�Ret

|t| } Be

�Ret

,

whence |©

R

(g)(t)�c|}B, as desired.

Let us next show that ©

R

is actually contracting on ,

R

(c, B). Given g, h�,

R

(c, B),

consider the homotopy �

�

=(1��)g+�h�,

R

(c,B) with �� [0,1]. From (6), we get

�¦(h)�¦(g)�

�

= ¾5

0

1

¦(�

�

)

��

d�¾

�

} 5

0

1

�J

¦

(�

�

) (h�g)�

�

d�

= 5

0

1

sup

t�H

R

�

|J

¦

(�

�

(t)) (h(t)�g(t))|

�

d�

}

C

R

5

0

1

sup

t�H

R

�

|h(t)�g(t)|

�

d�

=

C

R

�h�g�

�

.

It follows that

·5

0

t

e

�u

(¦(h(u))�¦(g(u)))du·

�

}

C

R

�h�g�

�

5

0

t

e

�Reu

du

}

C

R

�h�g�

�

e

�Ret

5

0

t

e

�Re(u�t)

du

}

C

R

�h�g�

�

e

�Ret

|t| } C �h�g�

�

e

�Ret

and

�©

R

(h)�©

R

(g)�

�

} C �h�g�

�

.
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This shows that ©

R

is indeed contracting on ,

R

(c, B). Since ,

R

(c, B) is complete as

a closed bounded subspace of �(H

R

�

), we conclude that g

1

,g

2

,& converges to a �xed

point ��,

R

(c,B) of©

R

. ¡

2.4. A re�nement for larger compact half disks

It turns out that the condition (6) on the Jacobian is not really needed. Moreover, the

solution can further be extended to the closure H

R

of H

R

�

.

THEOREM 4. Let R>0 and B� (�

>

)

d

be such that for all z��, we have

|z� c|}B ù |¦(z)|R}B. (8)

Then, for any choice of �, the initial value problem

�

Ù

+��=¦(�), �(0)=c (9)

admits a unique analytic solution on H

R

. In addition, we have |�(t)�c|}B for all t�H

R

.

Proof. Let©

R

:�(H

R

�

)

d

��(H

R

�

)

d

be as in the proof of Theorem 3 and notice that©

R

still

maps,

R

(c,B) into itself. Now consider the sequence g

1

,g

2

,&with g

k

T©

R

k

(c)�,

R

(c,B).

Applying Montel's theorem, we obtain a subsequence g

k

i

that converges uniformly to

a limit g

�

�,

R

(c,B) on every compact subset of H

R

�

.

We claim that g

�

is a �xed point of ©

R

. Indeed, for a su�ciently small R

2

> 0 with

R

2

}R, we have |J

¦

(z)|

�

R

2

}

/

1

2

for all z��with |z�c|}B. As in the proof of Theorem 3,

this means that ©

R

2

is contracting on ,

R

2

(c, B). Consequently, the restrictions g

1

m

, g

2

m

,&

of the functions g

1

,g

2

,& to H

R

2

�

with g

k

m

=©

R

2

k

(c) tend to a �xed point g

�

m

, and so does the

subsequence g

k

i

m

. Now this �xed point g

�

m

coincides with g

�

on H

R

2

�

and also solves the

initial value problem (7). By analytic continuation, g

�

therefore solves the same initial

value problem on H

R

�

, which completes the proof of our claim.

It remains to be shown that g

�

can be extended to an analytic function � on H

R

that

satis�es |�(t)�c|}B for all t�H

R

. Since g

�

2

=¦(g

�

)�� g

�

onH

R

�

, we �rst notice that |g

�

2

|

is bounded onH

R

�

, whence g

�

continuously extends to a function � that is de�ned on the

whole of H

R

, and we clearly have |�(t)� c|}B for all t�H

R

.

Now let us consider the unique solution �è0 | 
é to the initial value problem �

2

(t) +

� �(t) =¦(�(t)) with �(0)=
. Theorem 1 provides us with a lower bound �è0 |
é>0

for the radius of convergence of �è0 | 
é, which depends continuously on 
. By the com-

pactness of H

R

, it follows that there exists some �> 0 with �è0 | �(t)é~ � for all t�H

R

.

Now consider t on the boundary �H

R

of H

R

and let t

2

�H

R

�

be such that |t

2

� t| < �. Then

�è0 |�(t

2

)é~ � and �è0 |�(t

2

)é(z)=�(t

2

+ z) on some neighbourhood of t

2

. We conclude

that �è0|�(t

2

)é(z� t

2

) is an analytic extension of � to the open disk {u�� : |u� t

2

|<�} that

contains t. ¡

3. COMPUTING FORMAL POWER SERIES SOLUTIONS

Before we present algorithms for the numeric integration of (1), let us �rst consider the

question how to compute formal power series solutions. Since we will later be consid-

ering power series solutions at various times t, we will use the letter f instead of � for

such solutions. Notice that a vector f � �[[z]]

d

of d formal power series can also be

regarded as a formal power series f = f

0

+ f

1

z + f

2

z

2

+ï ��

d

[[z]] with coe�cients

in�

d

.
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Let c��

d

be the initial condition. Setting ¨( f )=¦( f )�� f , we are thus interested

in the computation of truncated power series solutions to the equation

� f

�z

= ¨( f ), f

0

= c. (10)

Alternatively, this equation can be rewritten in integral form

f = c+5¨( f ), (11)

where the integration operator + sends g��[[z]]

d

to g

0

z+

1

2

g

1

z

2

+

1

3

g

2

z

3

+ï.

In this section, we recall several approaches to the computation of power series solu-

tions to such equations. The e�ciency of each method can be measured in terms of the

number of �eld operations in � that are required to compute the �rst n terms of the

solution. For the time being, we assume that all computations are done at a �xed bit

precision p, so that operations in� are done at unit cost. One may also take into account

the number s of scalar operations that are necessary for the evaluation of ¨. A further

re�nement is to separately count the number s

mul

of multiplications that are needed. For

instance, if d=1 and ¨( f )=( f × f +3)× f �100× f , then we have s=5 and s

mul

=3. We

always assume that d=O(s).

Iterativemethod. For the�rstmethod,we systematically computewith truncated power

series of order n in �[z] / (z

n

), which are also called jets of order n. One addition in

�[�]/(�

n

) reduces to O(n) additions in � and similarly for scalar multiplications with

an element in �. A naive multiplication in �[�]/(�

n

) requires O(n

2

) operations in �,

although this cost can be reduced to O(n log n) using FFT techniques. The integration

operator + sends (g

0

+ ï + g

n�1

z

n�1

) mod z

n

to (g

1

+ ï + g

n�2

/(n � 1) z

n�1

) mod z

n

and can be computed in linear time.

Now assume that f

Ü

�(�[z]/(z

n

))

d

is an approximate solution to (11) whose �rst k<n

terms are correct. In other words, if f is the actual solution and f

Ç

��[z]

d

is a preimage

of f

Ü

with f

Ü

=( f

Ç

mod z

n

), then f

Ç

� f =O(z

k

). Given such an approximation, one iteration

f

Ü

T c+5¨( f

Ü

) (12)

of (11) yields a new approximation whose �rst k + 1 terms are correct. Starting with

f

Ü

T(0mod z

n

), we thus obtain a solution modulo z

n

of (11) after at most n iterations. The

total cost of this computation is bounded byO(s

mul

n

3

+s n

2

), or byO(s

mul

n

2

logn+ s n

2

)

when using FFT-techniques.

Recurrence relations. Since ¨( f ) is a polynomial, it is built from the components of f

using additions, multiplications, and scalar multiplications with constants in �. For

sums, scalar products, general products, and integrals of power series, we may extract

their coe�cients in z

k

using the following rules

(g+h)

k

= g

k

+h

k

(13)

(üg)

k

= üg

k

(14)

(gh)

k

= g

0

h

k

+g

1

h

k+1

+ï+g

k

h

0

(15)

(+g)

k+1

=

1

k+1

g

k

. (16)

Applying this recursively to the polynomial expression ¨( f ), the iteration (12) yields

a recursion relation

f

k+1

T

1

k+1

(¨( f ))

k

(17)
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that allows us to compute f

k

from f

0

, by induction on k. Proceeding in this way, the com-

putation of the solution f

0

+ï+ f

n�1

z

n�1

at order n requires O(s

mul

n

2

+ sn) operations.

The lazy power series approach. The above approach of computing the coefficients

f

1

, f

2

,& successively using the recursion relation (17) can be reformulated elegantly in

the framework of lazy power series computations. The idea is to regard a power series

g��[[z]] as given by its stream g

0

, g

1

, g

2

,& of coe�cients. Basic arithmetic operations

on power series are implemented in a lazymanner: when computing the k-th coe�cient

of a sum g+h, a product gh, or an integral +g, we compute �just the coe�cients that are

needed� from g and h. The natural way to do this is precisely to use the relations (13�16).

The lazy power series approach has the important property that the k-th coe�cient

(g h)

k

of a product (say) becomes available as soon as g

0

,&,g

k

and h

0

,&,h

k

are given. This

makes it possible to let g and h depend on the result g h, as long as the computation of

g

k

and h

k

only involves previous coe�cients (g h)

0

,&, (g h)

k�1

of g h. As a consequence,

the �xed point equation (11) can be solved simply by evaluating the right hand side

using lazy power series arithmetic. Indeed, the k-th coe�cient (+¦( f ))

k

only depends

on previous coe�cients f

0

,&, f

k�1

of f .

The relaxed power series approach. The main drawback of the lazy power series

approach is that the computation of a product at order n using (15) requires O(n

2

) oper-

ations. Here we recall that FFT techniques allow us to compute a product in �[z]/(z

n

)

using only O(n log n) operations.

One essential observation is that, in order to solve (11) using the lazy power series

approach, we only relied on the fact that each coe�cient (g h)

k

becomes available as soon

as g

0

, &, g

k

and h

0

,&,h

k

are given. In fact, it is possible to design faster multiplication

methods that still have this property; such methods are said to be relaxed or on-line. A

relaxed multiplication method that computes a product at order n in time O(n log

2

n)

was presented in [8] and can be traced back to [6]. An even faster algorithm of time

complexity n log ne

O
�

loglogn

(
�

was given in [9].

Denoting by R(n) = n (log n)

1+o(1)

the cost of relaxed multiplication at order n, the

resolution of (11) at order n now requires only O(s

mul

R(n)+ sn) operations.

Newton's method. Yet another idea to speed up computations is to replace the itera-

tion (12) with a Newton-style iteration with faster convergence. This idea was �rst used

by Brent and Kung [2] to show that (11) can be solved at order n in time O(n log n).

However, this complexity analysis does not take into account the dependence on d and s.

In particular, the dependence on d of Brent and Kung's method is exponential [8]. Faster

algorithms were proposed in [26, 1], based on the simultaneous computation of the solu-

tion f and its �rst variation. This allows for the computation of a solution of (10) at

order n in time O((s

mul

+ d) d n log n+ s d n). Whenever d= o(log n), the computation

time can be further reduced to O((s

mul

+ d) n log n+ s n) [10]. For small d, this leads to

the asymptotically most e�cient method for solving (10). For large d, the computation

of the �rst variation induces a�(d) overhead, and the relaxed method usually becomes

more e�cient.

4. NUMERICAL INTEGRATION USING TAYLOR EXPANSIONS

Let ¨(�)=¦(�)��� as before. The aim of this section is to present a naive algorithm

for the numerical integration of the di�erential equation

�

Ù

= ¨(�), (18)
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based on the computation of truncated power series solutions at successive times t

0

=

0< t

1

< t

2

,&. We will use a �xed expansion order n, a �xed bit precision p~ 24, but an

adaptive step size t

1

� t

0

, t

2

� t

1

,&. At t=0, we are given an initial condition �(0)=c��

d

and our aim is to �nd a good numeric approximation for �(t) at time t = T > 0. The

algorithm is not designed to be e�cient when the equation gets sti� and we will present

a heuristic discussion on what goes wrong when this happens.

4.1. Naive integration using Taylor series

Let us write f èté = �(t+ z)��[[z]]

d

E�

d

[[z]] for the Taylor series expansion of � at

time t and f èté

;n

��

d

[z]E�[z]

d

for its truncation at order n. In other words, setting

�[z]

;n

={g��[z] :deg g<n},

we have f èté

;n

��[z]

;n

d

and

�(t+z) = f èté

;n

+O(z

n

) = f èté

0

+ f èté

1

z+ï+ f èté

n�1

z

n�1

+O(z

n

).

If the time t at which we expand � is clear from the context, then wewill simply drop the

post�x èté andwrite f instead of f èté. Conversely, for any other quantities that implicitly

depend on t, we will use the post�x èté to make this dependence explicit.

So let f = f èté be the power series expansion of � at a �xed time t. In view of (18), this

power series satis�es the equation

� f

�z

= ¨( f ). (19)

In the previous section, we have recalled various methods for computing truncated

power series solutions f

;n

as a function of the initial condition f

0

= 
 = 
èté = �(t) at

time t. In what follows, we will use any of these algorithms as a black box, and show

how to device a numerical integration scheme from that.

Obviously, given �(t) and an appropriate step size ÿ = ÿèté at time t, the idea is to

compute f

;n

= f èté

;n

and simply evaluate

�(t+ÿ)H f èté

;n

(ÿ)= f èté

0

+ f èté

1

ÿ+ï+ f èté

n�1

ÿ

n�1

.

We next continue with t + ÿ in the role of t and with a suitably adapted step size ÿ.

The main question is therefore to �nd a suitable step size ÿ. Now the expected order of

magnitude of f èté

;n

(ÿ) is given by

M = max

k<n

| f

k

|

�

ÿ

k

. (20)

Since we are computing with p bits of precision, we wish to keep the relative error of our

numeric integration scheme below 2

�p

, approximately. Therefore, we need to ensure that

the truncation error

E =

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

y

k~n

f

k

ÿ

k

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

�

(21)

remains bounded by M 2

�p

. Although we have not computed any of the coe�cients f

k

for k~n, a reasonable approximate upper bound for E is given by

E

guess

= max

n�þ}k<n

| f

k

|

�

ÿ

k

, (22)

where þ>0 is a small positive integer, called the number of guard terms. In order to protect

ourselves against the occasional vanishing of f

n�1

, it is wise to take þ>1. Nevertheless,

a small value such as þ=2 or þ=3 should usually provide acceptable upper estimates

for E. We now simply take the step size ÿ to be maximal with E

guess

}M 2

�p

. This leads

to the following algorithm for the numerical integration of (18):
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Algorithm 1

Input: an initial condition c��

d

and T>0

Output: a numerical approximation for �

�

(T), where �

�

satis�es (18) with �

�

(0)= c


T c, tT0

while t<T do

Compute the truncated solution f

;n

to (19) with f

0

=


Let ÿ be maximal such that E

guess

}M 2

�p

, with M and E

guess

as in (20) and (22)

ÿTmin(ÿ,T� t)


T f

;n

(ÿ), tT t+ÿ

return 


4.2. Step size and error analysis

Let �

�

denote the exact solution of (18) with �

�

(0) = c and let � denote the computed

approximation by Algorithm 1. In order to analyze various aspects of the algorithm, it

is instructive to look at the radius of convergence �

�

of �

�

at time t. Roughly speaking,

with the notations from the previous subsection, the coe�cients f

k

�

of the power series

expansion f

�

= f

�

èté of � at time t grow as

| f

k

�

|

�

HM (�

�

)

�k

.

Ideally speaking, if we were able to compute f

;n

with su�cient accuracy, then the coe�-

cients f

k

should grow in a similar way. Setting ÿ

�

for the step size in this ideal situation,

we would then expect that E

guess

HEHM (ÿ

�

/�

�

)

n

HM 2

�p

, whence

ÿ

�

H�

�

2

�p/n

. (23)

This suggests to take the expansion order n to be proportional to p, after which the step

size ÿ

�

should be proportional to the radius of convergence �

�

.

Let us pursue this line of wishful thinking a little further. Theorem 4 implies that �

�

is analytic on a compact half disk H

R

that is independent of �. In particular, we get that

�

�

èté ~ t for t } R/2. It can also be shown that the radius of convergence of �

�

at the

origin is of the order �

�

è0éH�

d

�1

or more. For sti� equations, we typically have Rk �

d

�1

.

In order to integrate the equation until a time T}R/2, we thus hope for a step size that

increases geometrically from �

d

�1

to T 2

�p/n

. The entire integration would then require

approximately 2

p/n

log(T �

d

) steps. Using the most e�cient algorithms from section 3,

each step requires O

Ü

(s n) �oating point operations (here the ��at Oh� notation O

Ü

(	)

stands for O(	 (log 	)

O(1)

)). Since additions and multiplications of p bit �oating point

numbers can be performed in time O

Ü

(p), the overall bit cost of the entire integration

would thus be bounded by O

Ü

(snp2

p/n

log(T �

d

)).

But are we indeed able to compute f

;n

with enough accuracy in order to ensure that

the coe�cients f

k

grow according to | f

k

|

�

HM (�

�

)

�k

? Let us carefully analyze each of the

sources of error for one step of our integration scheme. By construction, we ensured the

truncation error to be of the order |( f � f

;n

)(ÿ)|

�

HM 2

�p

. One of themost intrinsic sources

of error comes from the initial condition f

0

: since we are computing with a precision

of p bits, the mere representation of f

0

induces a relative error of the order of 2

�p

. Even

when computing f

;n

from f

0

with in�nite precision, this intrinsic source of error cannot

be removed.
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Let us now study how the error in the initial condition a�ects the errors in the other

coe�cients f

k

. For this, we need to investigate the �rst variation of �, which describes

the sensitivity of the �ow to the initial condition. More precisely, let f èt |
é be the power

solution of (19) at time t as a function of the initial condition f èt | 
é

0

= 
 � �

d

. Then

the �rst variation Vèt | 
é is the d × d matrix with entries Vèt | 
é

[i, j]

= � f èt | 
é

[i]

/�


[j]

.

Dropping èt | 
é su�xes when they are clear from the context, the �rst variation satis�es

the linear di�erential equation

�V

�z

= (J

¦

( f )��)V, V

0

=Id

d

.

Here we recall that J

¦

= �¦/�F stands for the Jacobian matrix of ¦. If our equation is

very sti�, then J

¦

is small with respect to �, which leads to the extremely crude approx-

imation VHe

��z

for the �rst variation.

Now the relative error in the initial condition 
= f

0

is at best 2

�p

, as explained above,

which means that |
� 


�

|

�

HM 2

�p

for 


�

= f

0

�

. In combination with the relation f � f

�

H

V (
�


�

)He

��z

(
�


�

), this leads to the following errors for the other coe�cients:

| f

k

� f

k

�

|

�

H

�

d

k

k!

M 2

�p

.

Now if �

d

k (�

�

)

�1

, then the error | f

n

� f

n

�

|

�

HM �

d

n

2

�p

/n! dominates the actual value

| f

n

�

|

�

HM (�

�

)

�n

, which yields EHM (�

d

ÿ

t

)

n

2

�p

/n! instead of EHM (ÿ/�

�

)

n

2

�p

. When

chosing our step size ÿ such that EHM 2

�p

, as in Algorithm 1, this yields (�

d

ÿ)

n

Hn! and

ÿ H

n!

n

(

�

d

H

n

e�

d

, (24)

instead of the desired step size ÿH�

�

2

�p/n

. The actual bit cost of the complete integration

is therefore bounded by O

Ü

(snpT/�

d

) instead of O

Ü

(snp2

p/n

log(T �

d

)).

An interesting aspect of this analysis is the fact that the step size ÿ still turns out to

be n/e times larger than �

d

�1

, whence larger orders n allow for larger step sizes. However,

this comes at the expense of a larger relative error than 2

�p

. Indeed, we have

| f

k

ÿ

k

� f

k

�

ÿ

k

|

�

H

(�

d

ÿ)

k

k!

M 2

�p

H Ç

n

k

È

k

M 2

�p

.

This error is maximal for k

max

Hn/e, in which case we have

| f

k

max

ÿ

k

max

� f

k

max

�

ÿ

k

max

|

�

H e

n/e

M 2

�p

.

This means that the relative error for one step of our integration method is 2

n/(elog2)�p

instead of 2

�p

. In other words, we have �sacri�ced� n/(e log 2) bits of precision, so that

the method admits an �e�ective precision� of only p�n/(e log 2) bits.

The last source of errors for Algorithm 1 comes from rounding errors during the com-

putation of f

;n

from f

0

. The nature of these errors depends on the particular method

that we used for computing the power series f

;n

. Nevertheless, for most methods, the

rounding errors only contribute marginally to the total error. This is due to the fact that

| f

k

ÿ

k

|

�

2

�p

j | f

k

ÿ

k

� f

k

�

ÿ

k

|

�

for k> 0, so the rounding errors are absorbed by the errors

induced by the error in the initial condition f

0

.

5. FIGHTING STIFFNESS

Let us continue with the notations from section 4 and its subsection 4.2. In particular,

we assume that the exact solution �

�

to (1) with initial condition �

�

(0)=c is analytic on

the compact half disk H

R

. We also denote by K an upper bound for |�

�

|

�

on H

R

, so that

�èté

�

~ t and

| f èté

k

�

|

�

}Kt

�k
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for all t}R/2 and k��, by Cauchy's theorem. From now on, we assume that Rk �

d

�1

,

so that Algorithm 1 only allows us to use a step size of the order (24) instead of (23). The

aim of this section is to present a new way to compute truncated power series solutions

of the equation

� f

�z

+� f = ¦( f ) (25)

at time t, with the property that f

;n

is a good approximation of the true truncated solu-

tion f

;n

�

. In a similar way as in section 4, we will then use this to derive an algorithm for

the numerical integration of (1). Contrary to before, the property that | f

k

|

�

H | f

k

�

|}K/t

k

for k<n allows us to take step sizes of the desired order (23) for t}R/2.

5.1. Integrating sti� equations using Taylor series

We stress once more that the reduced step size for Algorithm 1 is a consequence of our

choice to compute the truncated solution f

;n

of (25) in terms of the initial condition f

0

=


(that can only be known approximately) and not of the choice of the particular algorithm

that is used for this computation.

Indeed, as explained in section 4.2, only a small change in 
 of the order of |�
|

�

H

|
|

�

2

�p

HM 2

�p

can have a dramatic e�ect on the solution f

;n

, since the coe�cient f

n

can

change by as much as |� f

n

|

�

HM 2

�p

�

d

n

/n!. Since | f

n

�

|

�

} K / t

n

jM 2

�p

�

d

n

/n! for large

tk�

d

�1

, it follows that a minor change in 
 leads to a completely incorrect computation of

the coe�cients f

k

with k close to n.

For small t, the error |� f

n

|

�

generally does remain bounded by the actual value | f

n

�

|

�

.

In the theory of sti� di�erential equations, it is customary to say that the system is in

a transient state for such t. As soon as the error |� f

n

|

�

HM 2

�p

�

d

n

/n! exceeds | f

n

�

|, we say

that the system has reached its steady state for the largest eigenvalue �

d

of �. When this

happens, the system may still be in a transient state for some of the other eigenvalues

�

i

<�

d

. This motivates the de�nition of the critical index �� {0,&,n} as being the largest

index i such that we are in a transient state for �

i

; we take �=0 if we reached the steady

state for all eigenvalues �

i

.

The concepts of transient state, steady state, and critical index are deliberately some-

what vague. As a tentative de�nition, we might say that we reached the steady state for

�

i

if | f

n

�

|

�

}M 2

�p

�

i

n

/n!. However, for computational purposes, it is convenient to inter-

pret this inequality as an approximate one. The crucial property of reaching the steady

state for �

i

is that the smallness of |( f

n

�

)

[i]

|

�

essentially determines the i-th component 


[i]

of the initial condition up to the last p-th bit.

Themain idea behind our algorithm is to use this property as a �boundary condition�

for the computation of f

;n

. More precisely, we boldly impose the boundary conditions

f

n

[�+1]

=ï= f

n

[d]

=0 as a replacement for the initial conditions f

0

[�+1]

=


[�+1]

,&, f

0

[d]

=


[d]

,

while keeping the remaining initial conditions f

0

[1]

= 


[1]

, &, f

0

[�]

= 


[�]

for the tran-

sient states. In other words, we wish to �nd the truncated solution f

;n

of the system

� f

�z

+� f =¦( f ),

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{
{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

f

0

[i]

=


[i]

if i}�

f

n

[i]

=0 if i>�

. (26)

We will call f

n

[i]

=0 the steady-state condition for �

i

and (26) a steady-state problem.
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In order to solve (26), it is natural to adapt the iterative method from section 3 and

introduce the operator �:�[z]

;n

d

��[z]

;n

d

with

�

[i]

(g) =

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{
{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{




[i]

++(¦

[i]

(g)��

i

g

[i]

) if i}�

�

i

�1

(¦

[i]

(g)��g

[i]

) if i>�

mod z

n

. (27)

The actual arithmetic is performed over �[z] / (z

n

), but it will be more convenient to

view � as an operator from�[z]

;n

d

into itself. The computation of f

;n

as a �xed point of�

leaves us with two questions: how to chose a suitable ansatz for the iteration gT�(g) and

how to determine the critical index � ?

For the ansatz, we go back to the solution f èt

2

é

;n

from the previous step at time t

2

=

t � ÿ

2

and simply use f èt

2

é

;n

(ÿ

2

+ z) as a �rst approximation of the solution f èté

;n

(z) at

time t. For t=0, we fall back to the traditional method from section 4. For the initial and

steady-state conditions to �propagate to the other end�, at least n iterations are required

in order to �nd a �xed point of �, whereas 2 n iterations usually su�ce. One may thus

take f èté

;n

T�

2n

( f èt

2

é

;n

(ÿ

2

+z)).

As to the critical index �, we determine it as a function of the step size ÿ through

�=max�i}d :�

i

ÿ}

n

e

 . (28)

This choice is meant to ensure the fastest convergence of the iteration gT�(g) and we

used n/e as an approximation of n!

n

(
. The step size ÿ itself is chosen in the same way

as in section 4. Since f

;n

is not yet available for the computation of ÿ, we may use the

previous step size ÿ

2

as an approximation for ÿ in (28). Optionally, one may also wish to

implement a few additional sanity checks in order to ensure convergence of the �-itera-

tion and decrease the step size in case of failure. One useful such check is to verify that

| f èté

0

� f èt

2

é

;n

(ÿ

2

)|

�

}M 2

�p/2

.

Altogether, this leads to the following algorithm:

Algorithm 2

Input: an initial condition c��

d

and T>0

Output: a numerical approximation for �

�

(T), where �

�

satis�es (1) with �

�

(0)= c


T c, tT0

Compute the truncated solution f

;n

to (19) with f

0

=


while t<T do

Let ÿ be maximal such that E

guess

}M 2

�p

, with M and E

guess

as in (20) and (22)

ÿTmin(ÿ,T� t)


T f

;n

(ÿ), tT t+ÿ

�Tmax{i}d :�

i

ÿ}

n

e

}

Replace f

;n

by the approximate �xed point �

2n

( f

;n

(ÿ+z)) of � as in (27)

return 


5.2. Convergence of the �-iteration

Let us now study the convergence of � as a mapping on the dn-dimensional vector

space�[z]

;n

d

over�. We de�ne a norm �Å�

�

on this space by

�g�

�

= max

k<n

�

k

|g

k

|

�

= max

1}i}d,k<n

�

k

¡
g

k

[i]

¡

�

k

=

k!

�

�

k

�

�

= �

�

�

�+1

4

.
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For a linear map on this space, represented as a matrix M, we have the corresponding

matrix norm

�M�

�

= sup

�g�

�

=1

�Mg�

�

.

Recall that J

¦

and J

�

stand for the Jacobian matrices of¦ and �.

THEOREM 5. Assume that g is a �xed point of � and that A>0 and �>n/�

�

are constants such

that |(J

¦

(g))

k

|

�

}A�

�k

for all i, j=1,&,d and k=0,&,n�1. Then

�J

�

(g)�

�

}

�

�

�

�

+

A

�

�

(

(

(

(

(

(

(

(

(

(

1�

n

�

�

�

)

)

)

)

)

)

)

)

)

)

�1

.

Proof. Consider an in�nitesimal perturbation �g of g with �(g + �g) = �(g) + ��(g).

Given i}� and 0<k<n, we have

�

k

¡
(��(g))

k

[i]

¡
=

�

k

k

¡
(J

¦

(g)�g)

k�1

[i]

��

i

(�g)

k�1

[i]

¡

}

�

k

k

(

(

(

(

(

(

(

(

(

(

(

(

(

(

y

0}�}k�1

|(J

¦

(g)

�

� g)

k�1��

|

�

+�

i

|(�g)

k�1

|

�

)

)

)

)

)

)

)

)

)

)

)

)

)

)

}

�

k

k

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

y

0}�}k�1

A

�

�

��g�

�

�

k�1��

+�

i

��g�

�

�

k�1

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

=

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

y

0}�}k�1

A�

k

k�

k�1

�

k�1

�

k�1��

�

�

+

�

i

�

k

k�

k�1

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

��g�

�

=

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

y

�}k�1

A

�

�

(k�1)!

(k�1� �)! (�

�

�)

�

+

�

i

�

�

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

��g�

�

}

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

y

�}k�1

A

�

�

(

(

(

(

(

(

(

(

(

(

n

�

�

�

)

)

)

)

)

)

)

)

)

)

�

+

�

i

�

�

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

��g�

�

}

(

(

(

(

(

(

(

(

(

(

A

�

�

(

(

(

(

(

(

(

(

(

(

1�

n

�

�

�

)

)

)

)

)

)

)

)

)

)

�1

+

�

�

�

�

)

)

)

)

)

)

)

)

)

)

��g�

�

Similarly, given i>� and k<n, we have

�

k

¡
(��(g))

k

[i]

¡
=

�

k

�

i

¡
(J

¦

(g)�g)

k

[i]

�(k+1)(�g)

k+1

[i]

¡

}

�

k

�

i

(

(

(

(

(

(

(

(

(

(

(

(

(

(

y

�}k

|(J

¦

(g)

�

�g)

k��

|

�

+(k+1) |(�g)

k+1

|

�

)

)

)

)

)

)

)

)

)

)

)

)

)

)

}

�

k

�

i

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

y

�}k

A

�

�

��g�

�

�

k��

+(k+1)

��g�

�

�

k+1

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

=

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

y

�}k

A

�

i

�

k

�

k��

�

�

+

(k+1)�

k

�

i

�

k+1

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

��g�

�

=

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

y

�}k

A

�

i

k!

(k� �)! (�

�

�)

�

+

�

�

�

i

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

��g�

�

}

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

y

�}k

A

�

i

(

(

(

(

(

(

(

(

(

(

n

�

�

�

)

)

)

)

)

)

)

)

)

)

�

+

�

�

�

i

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

��g�

�

}

(

(

(

(

(

(

(

(

(

(

A

�

�

(

(

(

(

(

(

(

(

(

(

1�

n

�

�

�

)

)

)

)

)

)

)

)

)

)

�1

+

�

�

�

�

)

)

)

)

)

)

)

)

)

)

��g�

�
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Putting both relations together, we obtain ���(g)�

�

}Ç

A

�

�

Ç1�

n

�

�

�

È

�1

+

�

�

�

�

È ��g�

�

. ¡

Assume that

�

�

�

�

+

A

�

�

(

(

(

(

(

(

(

(

(

(

1�

n

�

�

�

)

)

)

)

)

)

)

)

)

)

�1

<1. (29)

Then the theorem implies the existence a small neighbourhood of the �xed point g of �

on which the �-iteration converges to g. Whenever this condition is met, the �-iteration

actually tends to converge on a rather large neighbourhood that includes our ansatz; see

the next subsection for a more detailed discussion. Intuitively speaking, the condition

requires the eigenvalues �

i

to be su�ciently separated with respect to the norm of the

forcing term¦. Even when the condition does not hold, the �-iteration usually still dis-

plays an initial convergence for our ansatz, but the quality of the approximate solution

to (26) ceases to improve after a while.

If the condition (29) is satis�ed for all critical indices � that we encounter when inte-

grating from 0 until time T, thenAlgorithm 2 should produce an accurate result. The ide-

alized analysis from section 4.2 then also applies, so the algorithm takesO(2

p/n

log(�

d

T))

steps. Since each step now requires O

Ü

(s n

2

) �oating point operations at bit precision p,

we �nally obtain the bound O

Ü

(sn

2

p2

p/n

log(�

d

T)) for the total running time.

5.3. Quality of the computed solution

Let us now investigate in more detail why fixed points f

;n

of the �-iteration indeed

approximate the true solution f

;n

�

quite well. For this, we will determine a more pre-

cise small neighbourhood of the �xed point g on which the �-iteration converges and

show that this neighbourhood in particular contains f

;n

�

. We start with two lemmas.

LEMMA 6. Let M(z)=�

k��

M

k

z

k

be a d×d matrix of analytic functions de�ned on the closed

ball,(0,�)with center zero and radius �>0. Let A=sup

|z|}�

|M(z)|

�

. Then |M

k

|

�

}A/�

k

for

all k��.

Proof. Given v��

d

with |v|

�

=1, we have

|M

k

v|

�

= Ä

1

2À i

9

|z|=�

M(z)v

z

k+1

dzÄ

�

}

1

�

k

sup

|z|=�

|M(z)v|

�

}

A

�

k

.

It follows that |M

k

|

�

=sup

|v|

�

=1

|M

k

v|

�

}A/�

k

. ¡

LEMMA 7. Let �>0, �>0, C<1, g��[z]

;n

d

, and

A = sup

|u|}�,|�|}

�

1�C

e

��

�

|J

¦

(g(u)+�)|

�

.

Then for all g

Ü

��[z]

;n

d

with �g

Ü

�g�

�

}

�

1�C

and k��, we have

|J

¦

(g

Ü

)

k

|

�

}

A

�

k

.

Proof. Setting �g=g

Ü

�g, we �rst notice that

sup

|u|}�

|�g(u)|

�

}
y

k��

|�g

k

|

�

�

k

}
y

k��

||�g||

�

�

k

�

k

=
y

k��

(��

�

)

k

k!

||�g||

�

}

�

1�C

e

��

�

��g�

�

.
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It follows that

sup

|u|}�

|J

¦

(g

Ü

(u))|

�

}A

and we conclude using the previous lemma. ¡

THEOREM 8. Let �>n/�

�

and A>0 be such that

C=

�

�

�

�

+

A

�

�

(

(

(

(

(

(

(

(

(

(

1�

n

�

�

�

)

)

)

)

)

)

)

)

)

)

�1

<1.

Let g��[z]

;n

d

and �= ��(g)�g�

�

be such that

|u|}�, |�|}

�

1�C

e

��

�

ù |J

¦

(g(u)+�)|

�

}A.

Then the sequence g,�(g),�

2

(g),& tends to a unique �xed point g on the set

,

�

Çg,

�

1�C

È = Ëh��[z]

;n

d

: �h�g�

�

}

�

1�C

Ì.

Proof. A straightforward adaptation of the proof of Theorem 5 shows that �J

�

(g)�

�

}C

on the ball ,

�

�g,

�

1�C

�, which means that ��(h

1

) � �(h

2

)�

�

} C �h

1

� h

2

�

�

on this ball.

By induction on i � �, it follows that ��

i+1

(g) � �

i

(g)�

�

} C

i

� and ��

i+1

(g)�g�

�

}

� (1+C+ï+C

i

). We conclude that g, �(g), �

2

(g), & converges to a fixed point

g+(�(g)�g)+(�(g

2

)��(g))+ï of � in,

�

�g,

�

1�C

�. ¡

Returning to the Taylor series expansion f

;n

�

of the exact solution of (1) at time t, we

notice that

�

[i]

( f

;n

�

) =

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{
{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

( f

;n

�

)

[i]

if i}�

( f

;n

�

)

[i]

+

n

�

i

( f

n

�

)

[i]

z

n�1

if i>�

.

It follows that

��( f

;n

�

)� f

;n

�

�

�

}

n

�

�

�

n�1

K

t

n

=K

n!

(�

�

t)

n

HK
Ý

n

e�

�

ÿ

Þ

n

(

(

(

(

(

(

(

ÿ

t

)

)

)

)

)

)

)

n

}K

(

(

(

(

(

(

(

ÿ

t

)

)

)

)

)

)

)

n

.

Now assuming that the aimed step size ÿ H t 2

�p/n

was more or less achieved at the

previous step, it follows that � T ��( f

;n

�

) � f

;n

�

�

�

r K 2

�p

is of the desired order. If the

condition (29) is indeed satis�ed for �=t, we thus should be able to apply Theorem 8 and

conclude that the computed �xed point � is within distance �/(1�C) for the �Å�

�

norm.

Using a similar reasoning, we also see that the ansatz at the next step will be su�ciently

close to the true solution for the �-iteration to converge.

5.4. Solving steady-state problems through the �rst variation

A more robust but costly approach to solve the steady-state problem (26) is to compute

the initial values f

0

[�+1]

,&, f

0

[d]

with su�cient precision using Newton's method. Given a

tentative approximation 
= f

0

for the initial condition, we both compute f

;n+1

= f èt |
é

;n+1

and the �rst variation V

;n+1

=Vèt |
é

;n+1

, after which we update 
T
+�
 by solving the

linear system

f

n

+V

n

�
 = 0, � 


[1]

=ï=�


[�]

=0.
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This method admits quadratic convergence, but it requires us to compute with a preci-

sion of n log

2

(e �

d

/n) bits at least in order to be accurate. Indeed, this comes from the

fact that |V

n

|

�

grows roughly as �

d

n

/n!. On the upside, we may compute f

;n+1

and V

;n+1

using any of the algorithms from section 3. The total running time is therefore bounded

byO

Ü

(d s n (p+n log �

d

) 2

p/n

log(�

d

T)). Notice also that it actually su�ces to compute the

last d�� rows of V

n

, due to the requirement that �


[1]

=ï=�


[�]

=0.

Themain disadvantage of the abovemethod is that the computation of the �rst varia-

tionV

;n+1

alongwith f

;n+1

induces an overhead of d, whichmay be a problem for systems

of high dimension. Let us now sketch how onemight reduce this overhead by combining

the variational approach with the �-iteration. We intend to return to a more detailed

analysis in a future work.

Instead of using a single critical index �, the �rst idea is to use a range �

¯

, &, �

¯

of

indices starting at �

¯

=�, and such that the condition (29) holds for

�

�

= �

�

¯

�

�

¯

+1

4

.

The second idea is to only vary the components 


[�

¯

+1]

,&,


[�

¯

]

of the initial condition and

use the steady-state conditions for the indices �

¯

+1,&,d.

More speci�cally, for a tentative initial condition f

0

=
, we �rst solve the steady-state

problem

� f

�z

+� f =¦( f ),

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

f

0

[i]

=


[i]

if i}�

¯

f

n

[i]

=0 if i>�

¯

using the�-iteration technique. In a similar way, we next solve the following variational

steady-state problem for the d×(�

¯

��

¯

)matrixW:

�W

�z

+�W= J

¦

( f )W,

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

W

0

[i, j]

=Id

[i, j+�

¯

]

if i}�

¯

W

n

[i, j]

=0 if i>�

¯

.

As our ansatz, we may use W

[i, j]

=Id

[i, j+�

¯

]

for all i, j. Having computed f

;n+1

andW

;n+1

at precision n+1, we �nally update 
T
+d
 by solving the linear system

f

n

[i]

+W

n

[i,1]

(�
)

[�

¯

+1]

+ï+W

n

[i,�

¯

��

¯

]

(�
)

[�

¯

]

= 0, i=�

¯

+1,&,�

¯

and setting �


[1]

=ï= �


[�

¯

]

= �


[�

¯

+1]

=ï = �


[d]

= 0. We repeat this whole process

until f

n

[i]

is su�ciently close to zero for i=�

¯

+1,&,�

¯

.

Remark 9. The algorithms in this section are reminiscent of implicit numerical schemes

for the integration of (1). One interesting di�erence is that our second optimizedmethod

only needs to compute a small part of the full Jacobian matrix.

Remark 10. Instead of imposing the exact steady-state conditions f

n

[�+1]

=ï= f

n

[d]

=0,

yet another approach would be to minimize the norm | f

n

|

�

under the condition that

| f

0

�
|

�

} |
|

�

2

�p

. This approach admits the advantages that one does not need to know �

and that it might be applied to more general complex matrices �. However, it requires

the computation of the full Jacobian matrix.
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6. CERTIFICATION

In the previous two sections, we have described numerical algorithms for integrating (1).

An interesting question is how to compute a tight error bound such that the distance

between the true and the computed solutions lieswithin this error bound. Ball arithmetic

provides a suitable framework for such computations. This variant of interval arithmetic

is well suited for high precision computations with complex numbers andwewill brie�y

recall its basic principles in section 6.1. As a �rst application, we show how to make

Theorem 4 more e�ective.

The certi�ed integration of di�erential equations that are not sti� (i.e. the robust coun-

terpart of section 4) is a classical topic in interval arithmetic [20, 21, 15, 5, 24, 16, 7, 22,

18, 14, 17, 23, 19]. For recent algorithms of good complexity, much in the spirit of the

present paper, we refer to [11]. Most of the existing algorithms rely on Taylor series

expansions as we do, while providing rigorous tail bounds for the truncation error.

The e�ective counterpart of Theorem 4 provides suitable tail bounds in the case of

sti� di�erential equations. In sections 6.3 and 6.4, we show how to use this for the cer-

ti�ed resolution of steady-state problems using the�-iteration from section 5.1. Unfortu-

nately, our �rst algorithms are rather naive and typically lead to heavily overestimated

error bounds. The classical way to reduce this overestimation is to also compute the

�rst variation and apply the mean value theorem: see section 6.5 for how to do this in

our context.

6.1. Ball arithmetic

Given a�� and r��

~

T {x��:x~0}, we write B(a, r)={z��: |z�a|} r} for the closed

ball with center a and radius r. The set of such balls is denoted by ,(�,�) or �

"

. One

may lift the ring operations +,�,× in� to balls in�

"

, by setting:

,(a, r)±,(b, s) T ,(a±b, r+ s)

,(a, r)×,(b, s) T ,(ab, (|a|+ r) s+|b| r).

These formulas are simplest so as to satisfy the so called inclusion principle: given

��{+,�,×}, u�,(a, r) and v�,(b, s), we have u�v�,(a, r)�,(b, s). This arithmetic

for computing with balls is called exact ball arithmetic. It extends to other operations that

might be de�ned on�, as long as the ball lifts of operations satisfy the inclusion principle.

Any ordinary complex number z�� can be reinterpreted as a ball,(z, 0)��

"

. Given

a ball ,(a, r) ��

"

, we also notice that �,(a, r)	 = |a| + r and 
,(a, r)� =max(|a|� r, 0)

provide us with reliable upper and lower bounds for |,(a, r)| in�

~

.

Another interesting operation on balls,(a, r),,(b, s)��

"

that we will need below

is intersection. Assuming that the set intersection IT,(a, r)),(b, s) is non-empty, we

de�ne the ball intersection J=,(a, r)�,(b, s)��

"

to be the ball of smallest radius that

contains I. In order to determine this ball intersection, we may assume without loss of

generality that r~s. If,(a,r)�,(b,s), then J=,(b,r). Otherwise, let u,v�� be the two

(possibly identical) intersections of the circles �,(a, r) and �,(b, s). If |a� (u+v)/2|~

|a�b|, then we still have J=,(b, r). Otherwise, J=,((u+v)/2, |v�u|/2).

It will also be convenient to extend vector notations to balls. First of all, we identify

vectors of balls (,(a

[1]

, r

[1]

),&,,(a

[d]

, r

[d]

))�,(�,�)

d

with �ball vectors� ,(a, r)�

,(�

d

,�

d

). Given z��

d

and v

"

� (�

"

)

d

, we also write z� v

"

if and only if z

[i]

� (v

"

)

[i]

for i=1,&,d. Similar remarks apply to ball matrices, ball series, etc.
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Remark 11. For e�ective computations, one can only work with approximations of real

and complex numbers of �nite precision. The IEEE 754 norm provides a standard for

real �oating point arithmetic based on the concept of �correct rounding�. It naturally

generalizes to �oating point numbers with a mantissa of p bits and an exponent of e

bits [3]. Let�

p,e

and�

p,e

the sets of real and complex �oating point numbers of this type

(strictly speaking, one also has {��,�}��

p,e

for the reliable rounding of over�owing

operations). One may adapt the above arithmetic on exact balls to �oating point balls

in ,(�

p,e

,�

p,e

) while preserving the inclusion principle: it su�ces to slightly increase

the radii of output balls so as to take care of rounding errors. For precise formulas and

interesting variations, we refer to [13]. For simplicity, the sequel will be presented for

exact ball arithmetic only, but it is not hard to adapt the results to take into account

rounding errors.

6.2. Computing bounds on compact half disks

The polynomials ¦

[i]

in (1) can either be represented as linear combinations of mono-

mials, or using a dag (directed acyclic graph). In both cases, the ball arithmetic from the

previous subsection allows us to reliably evaluate¦ at balls in�

"

.

For the e�ective counterpart of Theorem 4, there is a trade-o� between the qualities

of the radius R (larger radii being better) and the bound B� (�

>

)

d

(smaller values of B

being better). For a given B�(�

>

)

d

, it is simple to compute the �best� corresponding R

that satis�es the condition (8), by taking R=min

i


B/¦(,(z, B))�

[i]

. Conversely, for a

�xed R��

>

, let us recall a classical technique from interval analysis that can be used to

compute an �almost best� corresponding bound B�(�

>

)

d

that satis�es (8).

We simply construct a sequence B

0

}B

1

}B

2

}ï in (�

~

)

d

by taking B

0

=0 and B

k+1

=

�¦(,(c,B

k

))R	 for all k. If there exists a �nite B for which (8) holds, then the sequence B

k

usually converges to a minimal such B quite quickly. After say ten iterations, we should

therefore have a reasonable approximation. One then slightly in�ates the last value by

taking B = B

10

+ (B

10

� B

9

). If �¦(,(c, B)) R	 } B, then we have succeeded in �nding

a suitable B. If not, then we return �failed�.

Using the above procedure, we may also compute a reasonably large compact half

disk H

R

on which � is analytic, together with a bound for |�|: we simply perform

a dichotomic search for the largest R for which the computation of a corresponding B

does not fail. If we also wish the bound B to remain reasonably small, one may simply

divide R by two at the end of the search and compute the corresponding B.

6.3. Certi�ed integration of sti� di�erential equations

Let us now return to the integration of (1) and let �

�

be the exact solution for the initial

condition �

�

(0)= c��

d

. Let R��

>

and B� (�

>

)

d

be computed as above such that (8)

holds. Assume that we were able to reliably integrate (1) until a given time t}R/2 and

let 


"

=�

"

(t)�(�

"

)

d

, so that �

�

(t)�


"

.

In order to adapt the �-iteration to ball arithmetic, we �rst deduce from Theorem 4

that ¡ f

�

èté

n

[i]

¡}B

[i]

/t

n

for i=�+1,&, d. This provides us with the required steady-state

conditions f

n

[�+1]

= ,(0, B

[�+1]

/ t

n

), &, f

n

[d]

= ,(0, B

[d]

/ t

n

), in addition to the initial

conditions f

0

[1]

=


[1]

,&, f

0

[�]

=


[�]

. The ball counterpart of our steady-state problem thus

becomes

� f

"

�z

+� f

"

=¦( f

"

),

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

( f

0

"

)

[i]

=(


"

)

[i]

if i}�

( f

n

"

)

[i]

=,(0,B

[i]

/t

n

) if i>�

(30)
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We correspondingly de�ne the ball version of � for g��

"

[z]

;n

d

by

�

[i]

(g

"

) =

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

(


"

)

[i]

++(¦

[i]

(g

"

)��

i

(g

"

)

[i]

) if i}�

�

i

�1

(¦

[i]

(g

"

)�� (g

"

)

[i]

�,(0,nB

[d]

/t

n

)z

n�1

) if i>�

mod z

n

.

This map has the property that f

;n

�

�g

"

Ò f

;n

�

��(g

"

). In our ball context, we may actually

iterate using the following improved version �

�

of �:

�

�

(g

"

) = g

"

��(g

"

).

Here we understand that the intersections are taken coefficientwise. Since iterations

using �

�

can only improve our enclosures, we do not need to worry much about the

ansatz. Wemay deduce a reasonably good ansatz from the power series expansion f

"

èt

2

é

;n

at the previous time t

2

< t, and the Cauchy bounds ¡ f

"

èt

2

é

k

[i]

¡ } B

[i]

/ (t

2

)

k

for all k~n.

But it is perfectly reasonable as well to use

f

;n

an,"

=


"

+,(0,B/t)z+ï+,(0,B/t

n�1

)z

n�1

.

Applying�

�

a su�cient number of times to this ansatz, we obtain the desired ball enclo-

sure f

;n

"

=�

�

2n

( f

;n

an,"

) of the truncated power series expansion of �

�

at time t. Assuming

that ÿ< t, we may then deduce the enclosure

�

"

(t+ÿ)= f

;n

"

(ÿ)+,

(

(

(

(

(

(

(

0,B

t

t�ÿ

(

(

(

(

(

(

(

ÿ

t

)

)

)

)

)

)

)

n

)

)

)

)

)

)

)

(31)

of �

�

at time t+ ÿ. Notice that the cost of the computation of certi�ed solutions in this

way is similar to the cost of Algorithm 1, up to a constant factor.

6.4. Certi�cation of approximate solutions

The above method relies on the property that the steady-state problem (30) for balls spe-

cializes into a numerical steady-state problem that admits f

�

as a solution, since f

0

�

�


"

and f

n

�

�,(0,B/t

n

). Given a numerical approximation of f

;n

�

, as computed in section 5,

a related problem is whether we can certify the existence of an actual solution in a small

neighbourhood of the approximate solution.

In order to make this more precise, let us introduce a few more notations. Given




[1]

,&,


[�]

�� and �

[�+1]

,&,�

[d]

��, consider the numeric steady-state problem

� f

�z

+� f =¦( f ),

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{
{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

f

0

[i]

=


[i]

if i}�

f

n

[i]

=�

[i]

if i>�

. (32)

We will denote by f

�

èt | 
, �é any exact solution to this problem if such solution exists.

It will be convenient to regard 
 and � as elements of �

d

, through padding with zeros.

Now consider the operator �


,�

:�[z]

;n

d

��[z]

;n

d

de�ned by

�


,�

[i]

(g) =

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{




[i]

++(¦

[i]

(g)��

i

g

[i]

) if i}�

�

i

�1

(¦

[i]

(g)��g

[i]

�n�

i

z

n�1

) if i>�

mod z

n

,

Through the iterated application of �


,�

to a suitable ansatz, we may obtain a numerical

approximation f

H

èt |
,�é

;n

of f

�

èt |
,�é

;n

.

Now consider balls (


"

)

[1]

,&,(


"

)

[�]

��

"

and (�

"

)

[�+1]

,&,(�

"

)

[d]

��

"

, again padded

with zeros. Then we have the following ball analogue of (32):

� f

"

�z

+� f

"

=¦( f

"

),

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

( f

0

"

)

[i]

=(


"

)

[i]

if i}�

( f

n

"

)

[i]

=(�

"

)

[i]

if i>�

. (33)

20 ON HIGH PRECISION INTEGRATION OF STIFF DIFFERENTIAL EQUATIONS



Let 


cen

and �

cen

denote the centers of 


"

and �

"

. Starting from a numerical approxima-

tion f

H

èt |


cen

,�

cen

é

;n

of f

�

èt |


cen

,�

cen

é

;n

, we wish to compute the truncation f

;n

"

��

"

[z]

;n

d

of a solution to (33), with the property that f

�

èt |
,�é

;n

� f

;n

"

for all 
�


"

and ���

"

.

In order to do this, the idea is again to use a suitable ball version of �


,�

, given by

�




"

,�

"

[i]

(g

"

) =

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

(


"

)

[i]

++(¦

[i]

(g

"

)��

i

(g

"

)

[i]

) if i}�

�

i

�1

(¦

[i]

(g

"

)�� (g

"

)

[i]

�n (�

"

)

[i]

z

n�1

) if i>�

mod z

n

,

and to keep applying �




"

,�

"

on the ansatz f

H

èt | 


cen

,�

cen

é

;n

until we are su�ciently close

to a �xed point. Using a similar in�ation technique as in section 6.2, we �nally obtain

a truncated series f

;n

"

with �( f

;n

"

) � f

;n

"

, or �failed�. Now for any 
 � 


"

and � � �

"

,

we notice that this also yields �


,�

( f

;n

"

) � f

;n

"

. Thinking of f

;n

"

as a compact set of series

in �[z]

;n

d

, this means in particular that �


,�

admits a �xed point g= f

�

èt | 
, �é

;n

� f

;n

"

, as

desired.

6.5. Curbing the wrapping e�ect

If � = d, then the algorithm from subsection 6.3 specializes to a classical way to com-

pute the enclosure (31) of a solution to (1) at time t + ÿ as a function of the enclosure




"

= ,(


cen

, 


rad

) = f

0

at time t. However, it is well known that this method su�ers

from a large overestimation of the errors, due to the so-called �wrapping e�ect�. A well

know technique to reduce this overestimation is to �rst compute a certi�ed solution for

the initial condition ,(


cen

, 0) instead of 


"

and then to bound the error due to this

replacement, by investigating the �rst variation. Let us now show how to extend this

technique to general critical indices �.

With 


cen

in the role of 


"

and,(0,B/t

n

) in the role of �

"

, we start with the computa-

tion of a truncated certi�ed solution f

;n

acc,"

��

"

[z]

;n

d

to (33). Recall that this ball solution

has the property that f

�

èt |


cen

,�é

;n

� f

;n

acc,"

for all ���

"

. Since the initial conditions are

exact, this solution is generally fairly accurate. Now for any 


2

�


"

, we may write

f

�

èt |


cen

,�é = f

�

èt |


cen

,�é+5

0

1

�

��

f

�

èt |


cen

+(


2

�


cen

)�,�éd�. (34)

We next observe that

�

��

f

�

èt |


cen

+(


2

�


cen

)�,�é = V

�

èt |


cen

+(


2

�


cen

)�,�é(


2

�


cen

),

where V

�

èt |
,�é denotes the exact solution of the following equation for the �rst steady-

state variation:

�V

�z

+�V= J

¦

( f èt |
,�é)V,

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{
{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

V

0

[i, j]

=Id

d

[i, j]

if i}�

V

n

[i, j]

=0 if i>�

.

This equation again admits a ball analogue

�V

"

�z

+�V

"

= J

¦

( f

"

)V

"

,

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{
{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

(V

0

"

)

[i, j]

=Id

d

[i, j]

if i}�

(V

n

"

)

[i, j]

=0 if i>�

,

where f

"

is a solution to (30). We only compute a crude solution V

cru,"

to this equation,

for a crude solution f

cru,"

to (30), both truncated to the order n. These solutions can be

obtained using the techniques from section 6.3. From (34) we �nally conclude that

f

;n

"

= f

;n

acc,"

+V

;n

cru,"

,(0,


rad

)
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is a ball enclosure for f

;n

�

. This enclosure is usually of a much better quality than f

cru,"

.

However, its computational cost is roughly d times higher, due to the fact that we need

to determine the �rst variation.

6.6. Handling close eigenvalues

In the case when �

�+1

/ �

�

is too small for (29) to hold, we may generalize the above

strategy and incorporate some of the ideas from section 5.4. With �=�

¯

and �

¯

from there,

let us brie�y outline how to do this. We proceed in four stages:

" We �rst compute a truncated numeric solution f

;n

H

��[z]

;n

d

to (26), using the tech-

nique from section 5.4.

" Let 


acc,"

�(�

"

)

d

be such that (


acc,"

)

[i]

=( f

0

H

)

[i]

for i}�

¯

and (


acc,"

)

[i]

=0 for i>�

¯

.

Similarly, let �

acc,"

� (�

"

)

d

be such that (�

acc,"

)

[i]

= 0 for i } �

¯

and (�

acc,"

)

[i]

=

,(0,B

[i]

/t

n

) for i> �

¯

. We use f

;n

H

as an ansatz for its deformation into a reliable

truncated solution f

;n

acc,"

��

"

[z]

;n

d

to (33), but with �

¯

in the role of �, with 


acc,"

in

the role of 


"

, and �

acc,"

in the role of �

"

.

" We further deform f

;n

acc,"

into a reliable truncated solution f

;n

aux,"

��

"

[z]

;n

d

to (33),

this time with �

¯

in the role of �. We do this by computing f

;n

cru,"

as above, together

with a crude but reliable solution to the equation

�W

"

�z

+�W

"

= J

¦

( f

cru,"

)W

"

,

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{
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(W

0

"

)

[i, j]

=0 if i}�

¯

(W

n

"

)

[i, j]

=Id

d

[i, j]

if �

¯

< i}�

¯

(W

n

"

)

[i, j]

=0 if i>�

¯

.

We then take

f

;n

aux,"

= f

;n

acc,"

+W

;n

"

,(0,�

aux

),

where (�

aux

)

[i]

=B

[i]

/t

n

for �

¯

< i}�

¯

and (�

aux

)

[i]

=0 for i}�

¯

and i>�

¯

.

" We �nally compute the desired truncated solution f

;n

"

��

"

[z]

;n

d

to (30) as

f

;n

"

= f

;n

acc,"

+V

;n

cru,"

,(0,


rad

),

where V

;n

cru,"

is computed as above.

7. CONCLUSION

There are several directions for generalizations and further improvements of the results

in this paper. For simplicity, we assumed � to be a diagonal matrix with positive eigen-

values. It should not be hard to adapt the results to arbitrary matrices � with positive

real eigenvalues only (as long as the forcing term ¦ does not explode for the change of

coordinates that puts � in Jordan normal form).

A more interesting generalization would be to consider complex eigenvalues �

i

with

strictly positive real parts. In that case, the half disks H

R

would need to be replaced by

smaller compact sectors of the form S

R,�

={z�� : |z|}R, |arg z|} �} with �<À/2. Even

more generally, one may investigate how to develop accurate Taylor series methods for

integrating arbitrary di�erential equations with the property that the step size is propor-

tional to the radius of convergence of the exact solution; see also Remark 10.
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In this paper, we focussed on high precision computations using high order Taylor

schemes. Another interesting question is whether it is possible to develop analogues of

our methods in the same spirit as more traditional Runge�Kutta schemes. How would

such analogues compare to implicit integration schemes?

Concerning certi�ed integration, the theory of Taylor models [18, 23, 19] allows for

higher order expansions of the �ow f èt |
é as a function of the initial condition 
 (that is,

beyond the computation of the �rst variation as in this paper). We think that it should

be relatively straightforward to adapt our techniques to such higher order expansions.

In a similar vein, we expect that the techniques from [7, 11] to further curb the wrapping

e�ect can be adapted to the sti� setting.

From a more practical point of view, it would �nally be interesting to have more and

better machine implementations. For the moment, we only did a toy implementation

of the main algorithm from section 5.1 in the MATHEMAGIX system [12]. We found this

implementation to work as predicted on various simple examples. Detailed machine

experiments with larger systems and the algorithms from sections 5.4 and 6 shouldmake

it possible to further improve the new techniques.
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