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Application of the minimum total potential energy principle to the simplified general relativistic model for spiral galaxies

Recently, a new model based on the theory of general relativity has been developed to analyze the structure of spiral galaxies. More specifically, the analytical stationary solution of an axisymmetric rotating pressureless fluid for the linearized equations of the theory of general relativity was determined. It has been shown that this model can explain why spiral galaxies present generally a flat rotation curve in the disk region. The model however still requires dark matter to explain how this flat rotation curve can exist.

In this article, the model is completed by assuming that the galaxy's structure at equilibrium is dictated by the minimum total potential energy principle. With this assumption we show that the structure is completely determined by only 3 parameters, which are linked to the total mass, angular momentum and energy contents of the galaxy. The relevance of the model is illustrated by applying it on the specific cases of M33 and of the Milky Way. We show that, by estimating adequate values for the 3 governing parameters, the model is able to correctly predict quantitatively or qualitatively all fields, in particular the rotation curve and the density profile.

The results clearly highlight the interest to consider general relativistic effects when analyzing the structure of spiral galaxies.

Introduction

Observations show that spiral galaxies present a typical structure, characterized by a flat rotation curve in the disk region, and a density profile presenting large values in the bulge region, but decreasing exponentially in the disk region. Up to now, attempts to derive this structure from physical laws generally required the need to make assumptions on the overall matter distribution profile. It is indeed known that using Newtonian gravity, the density profile of a spiral galaxy cannot be inferred from the rotation curve only, even if it assumed that all matter lies in a thin axisymmetric disk (see [START_REF] Binney | Galactic Dynamics[END_REF]). The usual approach consists hence in postulating some matter distribution and comparing the induced rotation curve with the measured one. On the other hand, since a decade, some non-Newtonian approaches were proposed, which used the inverse procedure, meaning that the observed rotation curve is used as input from which the density profile is derived, see for example [2], [START_REF] Cooperstock | Galactic Dynamics via General Relativity: A Compilation and New Developments[END_REF], [START_REF] Dey | Galactic space-times in modified theories of gravity[END_REF] and [START_REF] Magalhaes | Galactic mapping with general relativity and the observed rotation curves[END_REF].

Both approaches present the disadvantage of requiring the knowledge of some field, being the rotation curve or the overall density profile, to deduce the global structure of a specific spiral galaxy. However, as most of the spiral galaxies present a very common and typical structure, being very similar on a qualitative point of view, and differing globally only on a quantitative point of view, we may wonder if such a structure is not characterized by more fundamental properties, and that few information only would be needed to completely establish it. In this article, we will investigate if the knowledge of global quantities such as the total mass, total angular momentum and total energy contents of a spiral galaxy would be sufficient to completely establish its structure.

To answer this question, we will make use of the model that has been developed by [START_REF] Deledicque | A simplified general relativistic model to analyze the structure of spiral galaxies[END_REF]. This model is made up of two differential equations and several algebraic equations. With respect to the usual approach, which consists in relying on the Newton's law of gravitation, the main difference is the fact that this new model uses the linear approximation of the theory of general relativity. On the basis of the positiveness of the density, it has been shown by [START_REF] Deledicque | A simplified general relativistic model to analyze the structure of spiral galaxies[END_REF] that the model predicts a constant velocity profile in the regions where the density and the general relativistic effects are negligible, such as in the disk region of a spiral galaxy. Paradoxically, general relativistic effects do not explain the flatness of the rotation curve, but their consideration proved to be very helpful in the understanding of this property. Dark matter is nevertheless still required to explain how this flat rotation curve can be reached in the disk region. Although the model was shown to be able to predict a correct velocity profile in the disk region, the model should be further investigated to confirm its adequacy for the study of spiral galaxies. In particular, it should be applied on specific cases of real spiral galaxies to illustrate its ability to correctly predict the rotation curve and all other fields.

With this aim in mind, it is observed that the model developed in [START_REF] Deledicque | A simplified general relativistic model to analyze the structure of spiral galaxies[END_REF] is not sufficient in itself to establish the complete structure of a specific spiral galaxy. It suffers from the same disadvantage as the other models used up to now. In particular, solving its two differential equations requires the knowledge of adequate boundary conditions for the velocity and the density. If boundary conditions can be defined for the velocity with some confidence on the basis of the observations, estimations of the density in the galaxy are not very reliable, particularly because it is not sure that all masses can be seen (cf. the dark matter hypothesis). Linked to that, we do not know what the shape of a spiral galaxy is and thus on which region the integration of the differential equations has to be performed. Moreover, this approach does not explain why spiral galaxies present always the specific structure we typically observe, or in other words, why we may not impose any boundary conditions for the velocity and density fields. In particular, we understand why the velocity profile reaches a constant value in the disk region because in that region we expect that the density and the general relativistic effects are negligible, and it has been shown that such conditions are sufficient to lead to a flat rotation curve, but we do not know why these two latter fields are indeed negligible there. A model that could establish the whole structure of a spiral galaxy only on the basis of its total mass, angular momentum and energy contents would hence be very valuable.

The aim of this article is to further develop the model of [START_REF] Deledicque | A simplified general relativistic model to analyze the structure of spiral galaxies[END_REF] in order to answer these questions. Therefore, after having synthesized the simplified general relativistic model in section 2, we complete it in section 3 by postulating that the structure of a given spiral galaxy at equilibrium is dictated by the minimum total potential energy principle. In applying this principle on our model by using variational calculus, we end up with two new supplementary partial differential equations, which provide the necessary information to determine adequate boundary conditions (in particular the rotation curve along the galactic plane). We also show that the structure is completely characterized by only three parameters, which are linked to the total mass, angular momentum and energy contents of the galaxy. In section 4 we then apply this model on the specific spiral galaxy M33 and on the Milky Way to illustrate its relevance. We show that by estimating adequately the three parameters, the rotation curves predicted by the model are in a good agreement with the measured ones. We also show that the other fields (in particular the density fields) present the expected profiles along the galactic plane.

The simplified general relativistic model

The model established in [START_REF] Deledicque | A simplified general relativistic model to analyze the structure of spiral galaxies[END_REF] is based on the following assumptions:

1. The galaxy presents a cylindrical symmetry, as well as a symmetry plane through its height, corresponding to the galactic plane. We therefore use a reference frame expressed in cylindrical coordinates (r, θ, z) such that its origin lies at the center of the galaxy, the symmetry axis corresponds to r = 0 and the symmetry plane corresponds to z = 0. The basis vectors are denoted e r , e θ and e z .

2. The matter inside the galaxy is considered as a pressureless fluid, having a well defined density ρ and velocity v at each point.

3. The motion of the fluid in the galaxy follows a perfect circle.

To develop the model, the linearized approximation of the theory of general relativity is used. By analogy with electromagnetism, which presents a similar set of equations, the fields that appear in the linearized approximation of general relativity are defined as gravitoelectric and gravitomagnetic fields, and the associated theory is called gravitoelectromagnetism. We now define

ξ = v r . ( 1 
)
It has been shown in [START_REF] Deledicque | A simplified general relativistic model to analyze the structure of spiral galaxies[END_REF] that the stationary state of a rotating pressureless fluid verifies the following equations:

k r = 1 2 r ∂ξ ∂z F , (2) 
k z = - 1 2 ξ - 1 2 r ∂ξ ∂r F , (3) 
g z = 2r 2 ξ ∂ξ ∂z F , (4) 
g r = rξ 2 + 2r 2 ξ ∂ξ ∂r F , (5) 
for the gravitoelectromagnetic fields k r , k z , g r and g z , whereas for the density:

ρ = - K 2π F r 2 ∂ξ ∂r 2 + 2rξ ∂ξ ∂r + r 2 ∂ξ ∂z 2 + ξ 2 KG -4v 2 . ( 6 
)
Hence, the fields k r , k z , g r , g z and ρ are expressed in terms of ξ and a new defined field F. These two latter fields are then determined from two differential equations:

∂ξ ∂z 2Fr + r 2 ∂F ∂r -r = r 2 ∂ξ ∂r ∂F ∂z , (7) 
and

∂ ∂z 1 2 ∂ξ ∂z F + 1 r ∂ ∂r 1 2 ξ + 1 2r ∂ξ ∂r F = 2ξ ξ 2 -F r 2 ξ r 2 + 2rξ ∂ξ ∂r -r 2 ∂ξ ∂z 2 KG -4ξ 2 r 2 . ( 8 
)
If we could give appropriate boundary conditions for F and ξ, we would be able to solve these two differential equations, and afterwards, completely determine the fields ρ, k r , k z , g r and g z in whole space. In this article we will determine adequate boundary conditions for F and ξ along the galactic plane. Solving the complete fields in whole space is however out of the scope of this article.

Application of the minimum total potential energy principle

As explained in the introduction, the model developed in [START_REF] Deledicque | A simplified general relativistic model to analyze the structure of spiral galaxies[END_REF] is not sufficient in itself to establish the complete structure of a specific spiral galaxy. In order to complete it, we assume that the structure at equilibrium is dictated by the minimum total potential energy principle. In applying this principle we will also assume that some quantities remain conserved. Indeed, the model we used is based on the assumption of stationarity, and this implies that quantities such as the total mass, the total angular momentum and the total energy contents of a considered spiral galaxy are conserved. This is an idealized view of reality, because small perturbations inside the galaxy imply that the structure is not perfectly stationary, meaning that flows of mass, angular momentum and/or energy could exist at the surface of the galaxy. For example, these perturbations could allow giving to some particles the required kinetic energy to be propelled far away from the galaxy, meaning that its total mass would progressively decrease. Also, these perturbations could lead to the radiation of angular momentum or energy from the gravitoelectromagnetic fields (through gravitational waves), meaning that these quantities are neither conserved. On the long term, we may thus not exclude that the total mass, the total angular momentum and the total energy of the galaxy vary. However, the aforementioned processes would be significant only for periods which would exceed some characteristic time, and for shorter periods of time, it makes sense to postulate the conservation of these quantities.

Conservation laws

Since we assume the conservation of the total mass, the total angular momentum and the total energy contents of a spiral galaxy, in this section, we will first derive these quantities in the frame of our model. We note that since the system of equations of gravitoelectromagnetism is very similar to the one of classical electromagnetism, we can establish the related angular momentum and energy conservation laws in an analogous manner as they are generally established in electromagnetism.

For that reason, a complete derivation of these laws will not be detailed here. Firstly, mass conservation is a general postulate in classical physics. In our stationary case, the mass conservation law is expressed as

d dt V ρdx 3 = dM dt = 0 , (9) 
where V and M are the total volume and mass of the galaxy, respectively. Using Eq. (6), M is given by

M = ρrdrdzdθ = -2π K 2π F ∂ξ ∂r 2 + 2rξ ∂ξ ∂r + r 2 ∂ξ ∂z 2 + ξ 2 KG -4r 2 ξ 2 rdrdz , ( 10 
)
where the limits of the integrations correspond to the boundaries of the galaxy. Secondly, in our stationary and axisymmetric case, the angular momentum conservation is expressed as

d dt V (r × ρv) dx 3 - d dt V 1 πG (r × g × k) dx 3 = dL c dt + dL g dt = 0 , (11) 
where L c is the total classical mechanical angular momentum of the galaxy, and L g is the total angular momentum associated to the gravitoelectromagnetic field. Let us define the classical mechanical angular momentum density L c and the angular momentum density associated to the gravitoelectromagnetic field L g as being, respectively

L c = r × ρv (12)
and

L g = - 1 πG r × g × k . ( 13 
)
Using the Eq. (2) to (5), the θ-component of these terms, noted respectively L c and L g for simplicity, are

L c = - K 2π F r 2 ∂ξ ∂r 2 + 2rξ ∂ξ ∂r + r 2 ∂ξ ∂z 2 + ξ 2 KG -4r 2 ξ 2 ξr 2 (14) 
and

L g = - 1 πG 1 2 ξ 3 r 2 + 3 2 r 3 ξ 2 ∂ξ ∂r F + r 4 ξ ∂ξ ∂r 2 F 2 + r 4 ξ ∂ξ ∂z 2 F 2 . ( 15 
)
Thirdly, in our stationary and axisymmetric case, the energy conservation law is expressed as

d dt V 1 2 ρv 2 dx 3 - d dt V 1 8πG g 2 + c 2 k 2 dx 3 = dE k dt + dE p dt = 0 . ( 16 
)
The first term is the variation of the total classical mechanical energy E k and the second term is the variation of the total potential energy E p associated to the gravitoelectromagnetic field. Let us define the classical mechanical energy density and the potential energy density, respectively, as

e k = 1 2 ρv 2 (17) 
and

e p = - 1 8πG g 2 + c 2 k 2 . ( 18 
)
Using the Eq. (2) to (5), we find

e k = - K 2π F r 2 ∂ξ ∂r 2 + 2rξ ∂ξ ∂r + r 2 ∂ξ ∂z 2 + ξ 2 KG -4r 2 ξ 2 ξ 2 r 2 2 , (19) 
and

e p = - 1 8πG c 2 + 16r 2 ξ 2 1 2 r ∂ξ ∂z F 2 + - 1 2 ξ - r 2 ∂ξ ∂r F 2 -3r 2 ξ 4 -4r 3 ξ 3 ∂ξ ∂r F . ( 20 
)

The minimum total potential energy principle

We thus consider some spiral galaxy having a total mass M, a total angular momentum L = L c + L g , and a total energy E = E k + E p , and all these quantities are supposed to be conserved for some time. We then raise the following question: for such a galaxy, what would be the structure at equilibrium? Raising the question as such suggests that all galaxies having identical mass, angular momentum and energy contents would present exactly the same structure at equilibrium. We however cannot exclude that the structure at equilibrium depends on the formation mechanism and on the initial conditions which led to the spiral galaxy's structure, and thus that identical mass, angular momentum and energy contents will not necessarily lead to the same structure. Here we will examine another assumption, consisting in postulating that the structure at equilibrium is dictated by the minimum total potential energy principle. According to this principle, the structure of the spiral galaxy is such that it minimizes its total potential energy. This assumption implies that galaxies having identical mass, angular momentum and energy contents indeed present a same structure.

To apply the minimum total potential energy principle, we will make use of the tools of variational calculus. When applying variational calculus, we consider small variations of all different independent fields, and claim that, around the real equilibrium state, these small variations do not imply any variation of the total potential energy. This then leads to the wellknown Euler-Lagrange equations. Moreover, when the independent fields have no prescribed value on the boundaries and/or when the boundaries themselves are not fixed, these Euler-Lagrange are supplemented by specific boundary conditions, also called transversality conditions.

In the next sections we use variational calculus to derive the Euler-Lagrange equations and the transversality conditions of our model. Here, the independent fields are the ξ field and the F field, since all other variables can be expressed in terms of these two fields. From now on, ξ and F will be the particular fields which minimize the total potential energy of a spiral galaxy of total mass M, total energy E and total angular momentum L. For practical reasons, let also ξ r , ξ z , F r and F z be the derivatives of these fields with respect to r and z, respectively.

In a referential which is not Cartesian, the Euler-Lagrange equations are written as (see [START_REF] Weinstock | Calculs of variations with applications to physics and engineering[END_REF] for example)

D -1 ∂ f D ∂w - 3 ∑ i=1 ∂ ∂x i ∂ f D ∂w x i = 0 , (21) 
where x i are the coordinates, D is the Jacobian determinant and f is the function whose integral over some volume has to be optimized. This function is assumed to be generally dependent on the field(s) w and its derivatives with respect to the coordinates, written as w x i . In our case, the function whose integral has to be optimized is the potential energy density e p . Also, in cylindrical coordinates, we have D = r.

In the optimization process, we have to take into account the three constraints related to the conservation of the total mass, total energy, and total angular momentum contents of the spiral galaxy. Indeed, when varying the fields ξ and F, these contents must remain constant. To take into account these constraints, we will make use of the Lagrange multipliers method. For practical reasons we then define

I = e p + λ 1 ρ + λ 2 L c + L g + λ 3 e k + e p r , (22) 
where λ 1 , λ 2 and λ 3 are the Lagrange multipliers. Hence, I replaces e p as the function whose integral has to be optimized, by taking into account the different constraints and the fact that we use cylindrical coordinates.

Applying variational calculus to our case, we show that at the minimum total potential energy, a variation δξ and δF of the independent fields ξ and F respectively and a variation δn of the location of the galaxy's boundaries lead to a variation of the total potential energy which is given by

δE p = S δF ∂I ∂F - ∂ ∂r ∂I ∂F r - ∂ ∂z ∂I ∂F z + δξ ∂I ∂ξ - ∂ ∂r ∂I ∂ξ r - ∂ ∂z ∂I ∂ξ z drdz + C δF ∂I ∂F r e r + ∂I ∂F z e z • n + δξ ∂I ∂ξ r e r + ∂I ∂ξ z e z • n +δn I -F r ∂I ∂F r + F z ∂I ∂F z -ξ r ∂I ∂ξ r + ξ z ∂I ∂ξ z dl = 0 , ( 23 
)
where S is the surface on the rz plane occupied by the galaxy, C is its contour, dl is an infinitesimal contour element and n is the local outward unit normal to the contour. From the surface integral of Eq. (23) we deduce the Euler-Lagrange equations, whereas from the contour integral we deduce the transversality conditions. In our specific case, variational calculus will only lead to transversality conditions, and no Euler-Lagrange equation will be derived. Indeed, when the location of the boundaries and the values of the fields ξ and F on them are fixed, the Eq. ( 7) and [START_REF] Kuhn | Nonlinear programming[END_REF] completely define the fields ξ and F on the whole domain of the galaxy. This means that we have absolutely no freedom to vary these fields, and necessarily δξ = δF = 0 everywhere.

On the other hand, no values are specified on the boundaries of the spiral galaxy for ξ and F. Moreover, the location of these boundaries is not fixed as well. This gives us the necessary freedom in the fields ξ and F to minimize the total potential energy of the galaxy. Therefore, in order to completely establish the optimized state, we need further information to fix the boundaries and the values of the fields ξ and F on them. Such information is given by the transversality conditions.

Firstly, the fact that no constraint is specified on the values of the fields ξ and F at the boundaries of the spiral galaxy leads to the two following transversality conditions:

∂I ∂F z e z - ∂I ∂F r e r • n = 0 , ( 24 
)
∂I ∂ξ z e z - ∂I ∂ξ r e r • n = 0 . ( 25 
)
where n is the unit normal vector to the boundary curve of the spiral galaxy in the rz plane. Note that since I is independent from F r and F z , Eq. ( 24) is always satisfied. Secondly, the fact that the boundaries themselves are not fixed leads to the following transversality condition:

I -ξ r ∂I ∂ξ r -ξ z ∂I ∂ξ z -F r ∂I ∂F r -F z ∂I ∂F z = 0 . ( 26 
)
Once λ 1 , λ 2 and λ 3 are fixed, the complete state of a galaxy, defined by the fields F and ξ from which all other fields can be derived, can hence theoretically be established from the Eq. [START_REF] Kam | HI kinematics and mass distribution of MESSIER 33[END_REF] and [START_REF] Kuhn | Nonlinear programming[END_REF], and from the transversality conditions given by Eq. (24) to (26). Establishing this state, analytically or even numerically, is a difficult task. This is in particular due to the non-linearity of the equations, and to the fact that the location of the boundaries are not known a priori and must be deduced in some way from the transversality condition. Moreover, the transversality conditions could be a little bit more complex than the ones we have determined, because in addition to the constraint of conservation of the total mass, angular momentum and energy contents, we should also consider the constraint on the positiveness of the density. This last one is an inequality constraint, and it is much more difficult to handle than an equality constraint. An equivalent method to the Euler-Lagrange method has been developed for inequality constraints (known as the Karush-Kuhn-Tucker method, see [START_REF] Kuhn | Nonlinear programming[END_REF] for example), but its applicability is subjected to some conditions, and it is not an easy task to verify if they are respected in our case. On a mathematical point of view, this simply means that if the state of a spiral galaxy is indeed the one that minimizes the total potential energy for all possible equilibrium states having only positive densities, other equilibrium states could be obtained with still smaller total potential energies but having, at least in some regions, negative densities.

For these reasons, we will not try to establish the state of the galaxy on its whole domain here. Rather, in order to convince us of the adequacy of the model, we will just compare some of its predictions with observable data. To do so, will we make one further assumption, whose relevance will be assessed on the basis of the adequacy of the predictions to which it leads. In fact, we would like to derive the profile of the fields along the galactic plane, as it is on this location that we have observable data. Unfortunately, the transversality conditions do not allow to derive these profiles, since the galactic plane is not a boundary. Of course, we could take advantage of the fact that the galactic plane is a symmetry plane, and artificially consider that is a boundary of half a galaxy. But in doing so, the transversality equations (24) and (25) are always verified (because n = (0, -1) and ∂I/∂ξ z = 0) and we are simply left with symmetry conditions (∂F/∂z = ∂ξ/∂z = 0), which is not sufficient to establish the profile of the fields.

The additional assumption we will make is the following. We have considered that the state at equilibrium is dictated by the minimum total potential energy principle. This principle is applied on the galaxy as a whole. On a subregion of the galaxy, it could be that the potential energy is not minimized, but the overall structure is such that the total potential energy of the galaxy is minimized. We will now assume that this property also applies just on the galactic plane itself. This is not a new postulate of physics, but we make the guess that minimizing the overall potential energy could coincide with a minimum of the total potential energy of matter lying on the galactic plane. This guess is motivated by the special location of the galactic plane. As said above, the validity of this assumption will have to be justified by comparing the predicted profiles along the galactic plane (and in particular the rotation curve and in some sense the density profile) with the measured ones.

So, minimizing the total potential energy on the galactic plane reduces variation calculation in our case to a one-dimensional process. More particularly, a variation δξ and δF of the independent fields ξ and F respectively and a variation δn of the location of the galactic plane's boundaries (on the left or right side) lead to a variation of the total potential energy which is given by

δE p = δF ∂I ∂F - ∂ ∂r ∂I ∂F r + δξ ∂I ∂ξ - ∂ ∂r ∂I ∂ξ r dr +δF ∂I ∂F r + δξ ∂I ∂ξ r + δn I -F r ∂I ∂F r -ξ r ∂I ∂ξ r = 0 . ( 27 
)
The difference with the previous complete approach is that now the Eq. ( 7) and [START_REF] Kuhn | Nonlinear programming[END_REF] together with the two punctual boundary conditions of the galactic plane are not sufficient to definitively fix the values of F and ξ along this galactic plane. We thus have the freedom to consider small variations of δF and δξ with respect to the optimized fields on this galactic plane, and this will allow us to derive Euler-Lagrange equations.

In a first step, we will assume that the total mass, angular momentum and energy contents along the galactic plane are conserved. This means that in Eq. (27), I is still given by Eq. (22). Mass must indeed be conserved, and the total mass content must correspond to its value along the galactic plane of the considered galaxy (to be correct here it is the mass per unit height that is conserved, but for simplicity we will still speak about the mass). If mass was not conserved, the process consisting in minimizing the total potential energy content would simply lead to a vanishing total potential energy corresponding to the absence of matter everywhere. This is not what we are looking for. On the other hand, the interpretation of the results obtained in doing so will clearly show that in fact, the total angular momentum and total energy contents are not conserved, indicating hence that matter along the galactic plane should have interacted with a surrounding medium to exchange angular momentum and energy.

Approximations

If we consider the complete relations we developed above for the conserved quantities and use them in the Euler-Lagrange equations, we will end up with very long and complex equations, which are difficult to handle. In order to avoid as much as possible unnecessary difficulties, we will make some justified approximations.

• Approximation of the density

Since typically KG = c 2 4r 2 ξ 2 = 4v 2 , we will admit that KG -4r 2 ξ 2 ≈ c 2 in Eq. [START_REF] Gebhardt | M33: A Galaxy with No Supermassive Black Hole[END_REF]. Reminding that ∂ξ/∂z vanishes on the galactic plane, we then have

ρ ≈ - K 2πc 2 F r 2 ∂ξ ∂r 2 + 2rξ ∂ξ ∂r + ξ 2 . ( 28 
)
• Approximation of the potential energy We first note that in a similar way we typically have c 2 16r 2 ξ 2 , and thus

c 2 1 2 r ∂ξ ∂z F 2 + - 1 2 ξ - r 2 ∂ξ ∂r F 2 16r 2 ξ 2 1 2 r ∂ξ ∂z F 2 + - 1 2 ξ - r 2 ∂ξ ∂r F 2 . (29) 
Let us now show that we also have

c 2 1 2 r ∂ξ ∂z F 2 + - 1 2 ξ - r 2 ∂ξ ∂r F 2 -3r 2 ξ 4 -4r 3 ξ 3 ∂ξ ∂r F 16r 2 ξ 2 1 2 r ∂ξ ∂z F 2 + - 1 2 ξ - r 2 ∂ξ ∂r F 2 . (30) 
Two cases must be considered:

1. -3r 2 ξ 4 -4r 3 ξ 3 ∂ξ ∂r F ≥ 0. In this case, adding a positive value to the positive left hand side of the inequality (29) will not modify the inequality, and hence the inequality (30) is verified.

2. -3r 2 ξ 4 -4r 3 ξ 3 ∂ξ ∂r F < 0. Since g 2 > 0, we have the constraint that

-3r 2 ξ 4 -4r 3 ξ 3 ∂ξ ∂r F < 16r 2 ξ 2 1 2 r ∂ξ ∂z F 2 + - 1 2 ξ - r 2 ∂ξ ∂r F 2 . ( 31 
)
But this means that -3r 2 ξ 4 -4r 3 ξ 3 ∂ξ ∂r F is also negligible with respect to the left hand side of the inequality (29), and the inequality (30) is verified in this case as well.

Taking now the inequality (30) into account, and reminding once again that ∂ξ/∂z vanishes on the galactic plane, we may approximate the potential energy (Eq. (20)) as

e p ≈ - 1 8πG c 2 - 1 2 ξ - r 2 ∂ξ ∂r F 2 -3r 2 ξ 4 -4r 3 ξ 3 ∂ξ ∂r F . ( 32 
)
All these approximations provide much more simpler equations, and this is valuable in a first attempt to solve the problem. Note that the approach developed below could be followed without the above approximations, albeit a little more complex to be implemented mathematically.

Euler-Lagrange equations and transversality conditions

The Euler-Lagrange equations are

∂I ∂F - ∂ ∂r ∂I ∂F r = 0 , ( 33 
) ∂I ∂ξ - ∂ ∂r ∂I ∂ξ r = 0 . ( 34 
)
Let us start with examining Eq. (33). We first note that I can be written as

I = p + λ 1 rρ + λ 2 r ρr 2 ξ + L g + λ 3 r ρ r 2 ξ 2 2 + e p = rρΛ + λ 2 rL g + (1 + λ 3 )re p , (35) 
where, for practical reasons, we defined

Λ = λ 1 + λ 2 r 2 ξ + λ 3 r 2 ξ 2 2 . ( 36 
)
Since ρ, Λ and e p are independent from F r and F z , Eq. (33) simplifies as

rΛ ∂ρ ∂F + λ 2 r ∂L g ∂F + (1 + λ 3 )r ∂e p ∂F = 0 . ( 37 
)
Developing this expression for r = 0 and since ∂ξ/∂r = 0 (otherwise the denisty would be negative), we obtain

KΛ 2πc 2 r ∂ξ ∂r + 2ξ + λ 2 πG 3 2 r 2 ξ 2 + 2r 3 ξ ∂ξ ∂r F + (1 + λ 3 ) 8πG c 2 2 ξ + r ∂ξ ∂r F -4r 2 ξ 3 = 0 . ( 38 
)
We deduce that

Fr ∂ξ ∂r + ξ = r 2 ξ 2 [λ 2 + (1 + λ 3 )ξ] -Λ r ∂ξ ∂r + 2ξ 4λ 2 r 2 ξ + (1+λ 3 ) 8 c 2 . ( 39 
)
Let us now examine Eq. (34). This is a quite long equation, and we will examine it in two steps.

Let (43)

But according to Eq. (38), the whole expression which is multiplied by Fr 2 is zero, and since this is true for all r on the r axis, the derivative with respect to r is also zero. Equation (43) simplifies thus to ∂ ∂r

Kr 2 Λ 2πc 2 Fr ∂ξ ∂r . ( 44 
)
Considering all terms, using Eq. (38) and after some arrangement, the second Euler-Lagrange equations leads to:

ξr (2λ 2 + 2(1 + λ 3 )ξ + ξ) Fr ∂ξ ∂r + ξ -2λ 2 r Fr ∂ξ ∂r + ξ 2 + Λ ∂ ∂r Fr ∂ξ ∂r + ξ = rξ 2 (λ 2 + (1 + λ 3 )ξ) . (45) 
Finally, the transversality conditions are given by

∂I ∂ξ r = ∂I ∂F r = 0 , (46) 
I -ξ r ∂I ∂ξ r = 0 . ( 47 
)
But as explained above, the applicability of these transversality conditions could be questioned because they do not take into account the constrained on the positiveness of the density.

Limit analysis

In principle, given λ 1 , λ 2 and λ 3 , the Euler-Lagrange equations (38) and (45) together with the transversality and boundary conditions completely define the structure of the galaxy along the galactic plane. Unfortunately, for a specific galaxy, all these parameters are not known in advance. Therefore, some guesswork is needed. With this aim in mind, it will be useful the examine the Euler-Lagrange equations when we consider the properties we typically expect in the galaxy's disk region, i.e., when imposing that the velocity tends to the constant value v ∞ and when F → 1 (this last property has been demonstrated in [START_REF] Deledicque | A simplified general relativistic model to analyze the structure of spiral galaxies[END_REF]). This means that ξ → v ∞ /r and r∂ξ/∂r → -v ∞ /r. These are only limits, but it will be interesting to examine what happens when we make the strong assumption that they are reached. We will hence see to what particular values λ 1 , λ 2 and λ 3 tend. Firstly, Eq. (38) leads to

K 2πc 2 v ∞ r λ 1 + λ 2 rv ∞ + λ 3 v 2 ∞ 2 - λ 2 πG 1 2 v 2 ∞ - (1 + λ 3 ) 8πG 4 v 3 ∞ r = 0 , (48) 
which (admitting that v ∞ = 0) simplifies to

v 2 ∞ = 2λ 1 2 + λ 3 . (49) 
Secondly, Eq. (45) leads simply to

λ 2 r + (1 + λ 3 )v ∞ = 0 . ( 50 
)
This last relation is problematic in the sense that v ∞ would be dependent on r, hence it would not be constant, except if we admit that λ 2 = 0, or at least λ 2 is such that it does not significantly influence Eq. (50). More particularly, this would mean that |λ 2 r| |(1

+ λ 3 )v ∞ |.
This last condition should be satisfied up to the largest radius of the galaxy's domain. But if λ 2 ≈ 0, Eq. (50) then also implies that λ 3 ≈ -1, and Eq. (49) reduces to

v 2 ∞ ≈ 2λ 1 . (51) 
If we now replace λ 2 and λ 3 by 0 and -1, respectively, in Eq. (38), we obtain a very idealized galaxy's structure. Two solutions are possible, but one of them must be rejected. The first solution corresponds to ∂ξ/∂r + 2ξ = 0. Considering Eq. (28), such a solution leads to negative densities, except if ξ = 0, meaning thus that v = 0 everywhere. The second solution corresponds to Λ = 0, i.e., v 2 ∞ = 2λ 1 everywhere. In both cases, the rotation curve is constant all along the galaxy. Moreover, the density vanishes everywhere, meaning that the galaxy has expanded over the whole galactic plane. This is a very idealized situation, and real spiral galaxies deviate from it due to the fact that λ 2 and λ 3 are not exactly equal to 0 and -1, respectively.

It is not surprising to have two solutions to our equations. The aim of variational calculus is to optimize some state, but this state can be a maximum or a minimum. As we will see, it is the second solution that minimizes the total potential energy, and thus that must be considered as the physical one.

The fact that λ 2 and λ 3 tend to the particular values we deduced above should not be a surprise neither if we remember that these parameters are the Lagrange multipliers associated with the constraints relative to the conservation of angular momentum and energy, respectively. If we replace λ 2 and λ 3 by 0 and -1, respectively, in Eq. (35) we get

I = -ρ r 2 ξ 2 2 + λ 1 rρ . ( 52 
)
In variational calculus, this is as if we were looking for optimizing the kinetic energy with the constraint that the total mass of the galaxy remains constant, but without any constraint on the conservation of total angular momentum and total energy. This is simply explained by the fact that matter lying on the galactic plane is not an isolated system, since it interacts with the rest of the galaxy, with which it can exchange angular momentum and energy to minimize the overall potential energy. Moreover, since the total energy of the galaxy is conserved, minimizing its total potential energy is equivalent to maximizing its total kinetic energy. We should thus not be surprised that matter lying on the galactic plane tries also to maximize its total kinetic energy, even if on this subregion the total energy is not conserved. This remains coherent with the last assumption we made. This explains why the second of both solutions mentioned above must be considered as the physical one, because it is this state that has the highest total kinetic energy (the first one having a null total kinetic energy, hence a minimized total kinetic energy).

Approach to solve the Euler-Lagrange equations

The differential equation determining the rotation curve can be established as follows: inserting Eq. (39) into Eq. (45) and replacing ξ by v/r leads to the differential equation

A 1 + A 2 ∂v ∂r + A 3 ∂v ∂r 2 + A 4 ∂ 2 v ∂r 2 = 0 , ( 53 
)
where

A 1 = v 2λ 2 + (2λ 3 + 3) v r B 1 B 2 -2λ 2 rB 2 2 -Λ (1 + λ 3 ) v 3 r 2 -Λ v r 2 B 1 -4λ 2 vΛB 2 - v 2 r λ 2 + (1 + λ 3 ) v r B 2 1 , (54) 
A 2 = Λ 2 4λ 2 v - B 1 r , (55) 
A 3 = 2λ 2 Λ 2 r -λ 3 vΛB 1 , (56) 
A 4 = -B 1 Λ 2 , ( 57 
)
and

B 1 = 4λ 2 vr + (1 + λ 3 ) c 2 8 , (58) 
B 2 = λ 2 v 2 + (1 + λ 3 ) v 3 r -Λ v r . ( 59 
)
Integrating Eq. (53) would produce the rotation curve of a spiral galaxy, as predicted by the simplified general relativistic model. The presence of the square of ∂v/∂r in this differential equation once again implies that it could present two solutions. Therefore, when solving the Euler-Lagrange equations, caution must be paid to capture the physical one (the one that minimizes the total potential energy). Once the velocity profile has been determined, the F-field is calculated using Eq. (39). Then the gravitoelectromagnetic fields and the density are calculated using the Eq.

(2) to [START_REF] Gebhardt | M33: A Galaxy with No Supermassive Black Hole[END_REF].

Ideally, we need the knowledge of boundary conditions to solve Eq. (53). But due to mathematical difficulties linked to the inequality constraint of the positiveness of the density, we do not know them in our case. Therefore, we will simply admit that we know the velocity and its first and second derivatives at a particular point, taken from the real rotation curve, and Eq. (53) will be integrated starting from that particular point.

Before integrating Eq. (53) we have to determine the values of λ 1 , λ 2 and λ 3 for a specific galaxy. The limit analysis has shown that λ 2 → 0 and λ 3 → -1 for a spiral galaxy having a flat rotation curve in the disk region. But λ 2 and λ 3 are not necessarily exactly equal to 0 and -1, respectively, and therefore also, Eq. (51) linking v ∞ to λ 1 is neither verified exactly. In order to establish the structure of a specific spiral galaxy, we will have to make a more accurate estimation of the values of these parameters. The best way to make an estimation of the Lagrange multipliers is based on the measured rotation curve itself, since this is the most reliable information we have. Advanced techniques could be used to find the values of the Lagrange multipliers that would lead to the best fit between the predicted and the observed rotation curves. However, the aim here is only to convince us that the model is relevant to describe the structure of spiral galaxies, in particular along its galactic plane. Rough estimations of the Lagrange multipliers are deemed sufficient for that purpose, and in the following, estimations of their values have been made by trial and error, considering the fact that they are probably not far from their limit values.

Application to two specific cases

With the aim to demonstrate the relevance of the model developed above, in this section we apply it to two particular spiral galaxies. In this article, we will not determine the galaxy's structure in the whole space, but only on the galactic plane, allowing us to make a comparison with the measured rotation curve. We consider the specific cases of he Milky Way and of M33. The reason for considering these two galaxies is that the former one is typical of centrally peaked rotation curves, whereas the latter one is typical of shoulder rise rotation curves. We will thus show that the model is able to correctly describe both types of spiral galaxies.

Galaxy M33

Galaxy M33 is a low-luminosity spiral galaxy, and the third most luminous member of the Local Group. Due to its proximity, the rotation curve can be measured with higher resolution than for other spiral galaxies. We will use here the measured values tabulated in [START_REF] Kam | HI kinematics and mass distribution of MESSIER 33[END_REF].

As explained above, the integration of Eq. (53) is started from a point where the velocity and its first and second derivatives are assumed to be known, estimated from the real rotation curve. We therefore fix v = 106 × 10 3 m s -1 , ∂v/∂r = 1.0 × 10 -16 m s -2 and ∂ 2 v/∂r 2 = -9.5 × 10 -37 m s -3 at r = 6.0 kpc. We also fix λ 1 = -9.26 × 10 9 J kg -1 , λ 2 = 0.0 s -1 and λ 3 = -1.0018. We see that λ 2 and λ 3 are indeed very close to the limit values deduced in section 3.5. We emphasize also that λ 1 has not been estimated independently from the other parameters, because at the particular point were we fixed the velocity and its derivatives, Eq. (53) has to be verified, imposing a compatibility constraint between the different parameters.

The numerical integration is performed using finite differences, with a second order scheme. A resolution of 100 nodes per kpc has been used. Calculations with higher resolutions have been performed to verify that convergence has been reached. We stress however that the values mentioned below should be considered with caution, because calculations showed that some of them are extremely sensitive to very small variations of the Lagrange parameters or of the estimation of the first and second derivatives of the velocity at the starting point. The results should hence be interpreted more on a qualitative point of view.

In Fig. 1a we plot the predicted velocity profile along the galactic plane and compare it with the measured rotation curve taken from [START_REF] Kam | HI kinematics and mass distribution of MESSIER 33[END_REF]. Qualitatively, a relatively good agreement can be observed, at least up to r = 16 kpc. For higher radii, the behavior of the measured rotation curve deviates from the predicted one. This can be explained by the fact that M33 presents above this radius a high velocity dispersion, especially between its receding and approaching sides, and the structure is considered as perturbed in that region (see [START_REF] Kam | HI kinematics and mass distribution of MESSIER 33[END_REF]). The perturbation in the rotation curve of M33 could be a result of its interaction with the neighboring galaxy M31. On the contrary, in the disk region, the predicted velocity tends to an almost flat profile with a limit value of about v ∞ ≈ 120 km s -1 , and does not present any perturbation. The good agreement between the predicted and measured rotation curves for a large part of the galaxy gives confidence in the fact that the simplified general relativistic model is able to reproduce the structure of spiral galaxies, even with the approximations made in section 3.3.

In Fig. 1b we plot the density profile along the galactic plane, on a log-scale. From the outer region towards the center, the density continuously increases from zero up to a maximum located at about r ≈ 0.5 kpc, corresponding to the bulge, and then suddenly drops to zero. Figure 1b clearly shows that the model is able to predict the exponential decrease in the disk region. If we admit that the boundaries of the galaxy are defined by ρ = 0, the galaxy expands from r = 0.27 kpc up to r = 39.1 kpc. We may conclude that the galaxy presents an inner boundary, meaning that it does not expand up to r = 0. Hence, the very central region is characterized by the absence of matter (except maybe at the origin itself, see further).

In Fig. 1c we plot the gravitoelectric field g r along the galactic plane. From the outer region towards the center, g r continuously decreases. In particular, at its inner boundary, it does not vanish. It even presents a steep decrease towards the origin, although the density completely vanishes there. This could be indicative of the presence of a black hole at the origin. Several authors mention indeed that, very close to the center of several galaxies, the velocity profile rises towards the origin, indicating the presence of a huge black hole in the middle of the galaxy (see, for example, [START_REF] Sofue | Rotation curves of spiral galaxies[END_REF] and references therein). However, according to [START_REF] Merritt | No Supermassive Black Hole in M33?[END_REF] and [START_REF] Gebhardt | M33: A Galaxy with No Supermassive Black Hole[END_REF] for example, M33 would be characterized by the absence of a black hole, or by the presence of a quite small black hole at most. From our model, we could estimate the mass of the black hole at the center of M33 using the gravitoelectric field at the inner boundary, and admitting that it is only due to the black hole. We stress however once again that this value should be considered very cautiously, because it is extremely sensitive to small variations of the parameters that have been estimated. By varying slightly these parameters we are able to reduce the mass of this black hole, even up to zero, without affecting significantly the global profile of the rotation curve (at least in the region for which we have measurements). This illustrates the paramount importance to use advanced techniques or to use complementary information such as the luminosity measurements in order to obtain the best possible fit with the real rotation curve.

In Fig. 1d we plot the gravitomagnetic field k z along the galactic plane. From the outer region towards the center, k z continuously increases. In particular, k z is positive in the whole galactic plane. This means that the central region in which k z must be negative (as justified in [START_REF] Deledicque | A simplified general relativistic model to analyze the structure of spiral galaxies[END_REF]) is confined to the very narrow central region characterized by the absence of matter. In order to estimate the relative importance of the gravitomagnetic effects, we plot in Fig. 1e the ratio between the gravitomagnetic and the gravitoelectric forces, i.e., |4vk z /g r |. We see that the maximum value of this ratio is about 0.17%, meaning that general relativistic effects are negligible for M33. Finally, Fig. 1 f plots the F field along the galactic plane. Note that at each boundary, the F field reaches the values of 1. This confirms that in these regions, where the density is small, the general relativistic effects are negligible, as already shown by Fig. 1e.

The Milky Way

Here also, the integration of Eq. (53) is started from a point where the velocity and its first and second derivatives are assumed to be known, estimated from the real rotation curve. We fix v = 250 × 10 3 m s -1 , ∂v/∂r = 0.0 m s -2 and ∂ 2 v/∂r 2 = -8.0 × 10 -34 m s -3 at r = 0.4 kpc. We also fix λ 1 = 7.4 × 10 10 J kg -1 , λ 2 = 0.0 s -1 and λ 3 = -0.999999. Once again we see that λ 2 and λ 3 are very close to the limit values deduced in section 3.5. The main difference is that for M33, which is of the shoulder rise type, λ 3 < -1, whereas for the Milky Way, which is of the centrally peaked type, λ 3 > -1.

The same numerical resolution has been used as for M33. Here also, it is stressed that the results should be considered qualitatively, especially in the regions where measurements are not available. Indeed, very small changes in the parameters that have been fixed could lead to significant modifications of some predicted characteristics (such as the outer boundary location for example) in these regions, without having a significant impact in the regions where measurements are available.

In Fig. 2a we plot the predicted velocity profile along the galactic plane and compare it with the data taken from Sofue's web site [START_REF]Sofue's website[END_REF]. In the central region, a good agreement can be observed. The region around the central peak of the rotation curve is correctly captured. Unfortunately, above some radius, it is known that the measurements provide velocities with large uncertainties (not shown on Fig. 2a). This is specific of the Milky Way. This is a supplementary reason to consider the results for large radii with caution. Therefore, it is difficult to assess the appropriateness of the predicted curve with the real rotation curve in these regions.

In Fig. 2b we plot the density profile along the galactic plane, on a log-scale. Here also, this profile corresponds to what we expect. A high density is predicted in the central region, and the disk region presents an exponential decreasing profile. At the radius of the sun, the density is predicted to be a little bit larger that 10 8 M kpc -3 . As in the case of M33, the location of the boundaries of the Milky Way (admitted to be defined by ρ = 0) is very sensitive to small variations of the parameters that were fixed. For the considered values of these parameters, the Milky Way is much larger than 40 kpc.

In Fig. 2c we plot the gravitoelectric field g r along the galactic plane. From the outer region towards the center, g r continuously decreases. As for M33, this profile is indicative of the presence of a black hole at the origin of the Milky Way. In Fig. 2d we plot the gravitomagnetic field k z along the galactic plane. From the outer region towards the center, k z continuously increases. Here also, k z is positive in the whole galactic plane. This means that the central region in which k z must be negative is confined to a very narrow central region characterized by the absence of matter. In order to estimate the relative importance of the gravitomagnetic effects, we plot in Fig. 2e the ratio between the gravitomagnetic and the gravitoelectric forces. Contrary to the case of M33, we observe that for the Milky Way, gravitomagnetic forces are not negligible, and are of the order of magnitude of the gravitoelectric forces. This illustrates that, at least for the Milky Way, a proper understanding of its structure requires the consideration of general relativistic effects, contrary to what is generally assumed. Such effects are due to the huge amount of masses rotating in the galaxy, and creating a gravitomagnetic field inducing forces that were neglected up to now. We again stress that these forces will not explain the flat rotation curve without dark matter. Finally, Fig. 2 f plots the F field along the galactic plane. Since F is considerably larger than 1 in a significant part of the galaxy, this also illustrates that general relativistic effects are not negligible, as already shown by Fig. 1e.

Conclusion and perspectives

In [START_REF] Deledicque | A simplified general relativistic model to analyze the structure of spiral galaxies[END_REF] a new model to investigate the interest to consider general relativistic effects in the analysis of the structure of spiral galaxies has been established. This model was based on the stationary solution of a rotating pressureless fluid for the linearized approximation of the theory of general relativity. In [START_REF] Deledicque | A simplified general relativistic model to analyze the structure of spiral galaxies[END_REF], it was already shown that on the basis of the positiveness of the density, this model necessarily implies a constant velocity profile in the regions where the density and the gravitomagnetic fields are negligible, such as in the disk region of a spiral galaxy. This result was encouraging but not sufficient to definitively convince us of the adequacy of the model to study the structure of spiral galaxies.

In this article, we continued the investigation initiated in [START_REF] Deledicque | A simplified general relativistic model to analyze the structure of spiral galaxies[END_REF]. By applying the minimum total potential energy principle, we completed the model to be able to determine the complete structure of a spiral galaxy on the basis of three independent parameters, which are linked to its total mass, total angular momentum and total energy contents. Difficulties to determine the structure on the whole galactic domain, even using a numerical approach, led us to try to only determine the profile of the different fields along the galactic plane, by assuming that the minimum total potential energy principle remains valid on this subregion. This principle would explain the reason for which spiral galaxies expand over large distances and present an almost flat velocity profile, because it is this state that maximizes the total kinetic energy which can be carried by a rotating pressureless fluid in the presence of an axisymmetric gravitoelectromagnetic field.

The relevance of the model has been illustrated by applying it on the specific case of M33 and of the Milky Way. It has been shown that, by estimating adequate values for the three governing parameters, the model is able to correctly predict quantitatively their rotation curves, and qualitatively the other fields, in particular the density field. The results also showed that these galaxies could present in their very central region a black hole surrounded by a narrow region in which matter is absent. It was however highlighted that these results must be considered cautiously, because some fields are extremely sensitive to very small variations of the governing parameters. This justifies to use or develop advanced techniques or to use complementary information such as the luminosity measurements to determine the best possible fit with the real rotation curve. It has also be shown that for some galaxies, as for M33, general relativistic effects may be considered as negligible, whereas for other galaxies, such as the Milky Way, general relativistic effects can be significant and should be taken into account to have a proper understanding of their structure.

The main interests of the simplified general relativistic model and its extension considered in this article are the following:

1. We have shown that by considering a general relativistic approach, the model puts some constraints on the rotation curve. In particular, when the density and the general relativistic effects are small (such as in the disk region), the positiveness of the density imposes the rotation curve to be flat. Such constraint does not appear in the Newtonian approach. So by considering a general relativistic model, we learn that a flat rotation curve is in fact the expected profile in the disk region.

2. The simplified general relativistic model could explain the flatness of the rotation curve in regions where the density and the general relativistic effects are small, but it was not able to explain why these fields are indeed negligible in the disk region. The further investigations of this article have shown that this could be explained by the fact that the structure of a spiral galaxy is dictated by the minimum total potential energy principle. We hence deduced that a flat rotation curve corresponds to the state that maximizes the total galactic kinetic energy in the presence of an axisymmetric gravitoelectromagnetic field.

3. Current analyses of the structure of spiral galaxies need generally a model of the dark matter distribution. Such models have a restricted application, in the sense that they represent some idealized state, and that they do not easily allow deviations from that state. Some models are applicable for some kind of galaxies only, and not for other kinds, and vice versa. They may also present some issues such as convergence issues.

The simplified general relativistic model does not need any modeling of the dark matter distribution and does not present any convergence issue. The overall density distribution simply derives from the application of the equations, and can physically be explained. This is because it has been shown that the whole structure of a spiral galaxy at equilibrium is completely determined by only 3 parameters, which are linked to its total mass, angular momentum and energy contents. Everything derives from the knowledge of these 3 parameters, in particular the rotation curve as well as the density field. This makes the simplified general relativistic model very simple in its principle, and more general in its application. However, at this stage, some mathematical and numerical difficulties remain to be overcome to be able to correctly establish the global structure of spiral galaxies without the assumption we made in this article.

4. Finally, the simplified general relativistic model allows to have a deeper insight of the structure of spiral galaxies. For example it allows to locate all its boundaries (the example considered above even shows that an inner boundary could exist). It also explains in a very simple manner why the galaxy does not collapse in the axial direction, where centrifugal forces are absent. As another example, if general relativistic effects can be quite small in some regions of the galaxy, the simplified general relativistic model suggests that they could be significant in the very central region of the galaxy, and that such effects should be considered when estimating the mass of the central massive black hole on the basis of the velocity of stars in its neighborhood. The simplified general relativistic model provides a different method to estimate this mass, that could be used to corroborate the values obtained by the previous method, or even to provide an estimation if the previous method could not be applied for some reason.

This article hence highlights the significant interest to consider general relativistic effects in the analysis of the structure of spiral galaxies.

The simplified general relativistic model and the difficulties encountered in developing it pave the way to several perspectives. First of all, in this article, we have only established the structure along the galactic plane. The next step is to determine the structure in the axial direction as well. This will require to integrate the two differential equations which have been derived in the stationary solution of a rotating pressureless fluid for the linearized approximation of the theory of general relativity. This will also allow us to determine the total mass, angular momentum and energy contents of the galaxy. Next, the relevance of the model should be confirmed by applying it on other spiral galaxies. Finally, on a more theoretical aspect, mathematical difficulties prevented us to determine adequate boundary conditions to the differential equation of the rotation curve, and this equation had to be integrated starting from a point assumed to be known. A complete model would require to determine these adequate boundary conditions, imposed by the positiveness of the density.
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 a The rotation curve of M33. The solid line corresponds to the predicted curve by the simplified general relativistic model. The + marks are measured values taken from [7]. (b) The predicted density profile along the galactic plane. (c) The predicted g r field along the galactic plane. (d) The predicted k z field along the galactic plane.(e) The predicted ratio between the gravitomagnetic force and the gravitoelectric force along the galactic plane (f) The predicted F field along the galactic plane.
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 1 Figure 1: Predicted fields of M33.
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 a The rotation curve of the Milky Way. The solid line corresponds to the predicted curve by the simplified general relativistic model. The + marks are measured values taken from Sofue's web site[START_REF]Sofue's website[END_REF]. (b) The predicted density profile along the galactic plane. (c) The predicted g r field along the galactic plane. (d) The predicted k z field along the galactic plane.(e) The predicted ratio between the gravitomagnetic force and the gravitoelectric force along the galactic plane (f) The predicted F field along the galactic plane.

Figure 2 :

 2 Figure 2: Predicted fields of the Milky Way.

  us first calculate ∂I/∂ξ, i.e., 2ξ + ξ 2 λ 2 r 2 + λ 3 r 2 ξ -

	Developing this expression, we obtain:
	-	Kr 2πc 2 Fr	∂ξ ∂r		r	∂ξ ∂r	+ KrΛ 2πc 2 2Fr	∂ξ ∂r	+ 2ξ
	-	λ 2 r πG	3 2	ξ 2 r 2 + 3r 3 ξ	∂ξ ∂r	F + r 4 ∂ξ ∂r	2	F 2
	-	(1 + λ 3 ) 8πG	r	c 2 2		ξ + r	∂ξ ∂r	F -12r 2 ξ 3 -12r 3 ξ 2 ∂ξ ∂r	F .	(41)
	Let us next calculate the term -∂/∂r (∂I/∂ξ r ), i.e.
							-	∂ ∂r		r	∂ρ ∂ξ r	Λ + λ 2 r	∂L g ∂ξ r	+ (1 + λ 3 )r	∂e p ∂ξ r	.	(42)
	When developing this expression, we can write it as follows:
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