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Introduction

Finding canonical (Kähler-Einstein, cscK, extremal) metrics on compact Kähler manifolds is one of the central questions in differential geometry (see [START_REF] Calabi | Extremal Kähler metrics[END_REF], [START_REF] Shing | On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I[END_REF], [START_REF] Székelyhidi | An introduction to extremal Kähler metrics[END_REF] and the references therein). Given a Kähler metric ω on a compact Kähler manifold X, one looks for a Kähler potential ϕ such that ω ϕ := ω + dd c ϕ is "canonical". Mabuchi introduced a Riemannian structure on the space of Kähler potentials H ω . As shown by Chen [START_REF] Chen | The space of Kähler metrics[END_REF] H ω endowed with the Mabuchi d 2 distance is a metric space. Darvas [START_REF] Darvas | The Mabuchi completion of the space of Kähler potentials[END_REF] showed that its metric completion coincides with a finite energy class of plurisubharmonic functions introduced by Guedj and Zeriahi [START_REF] Guedj | The weighted Monge-Ampère energy of quasiplurisubharmonic functions[END_REF]. Other Finsler geometries d p , p ≥ 1, on H ω were studied by Darvas [START_REF] Darvas | The Mabuchi geometry of finite energy classes[END_REF] and they lead to several spectacular results related to a longstanding conjecture on existence of cscK metrics and properness of K-energy (see [START_REF] Darvas | Tian's properness conjectures and Finsler geometry of the space of Kähler metrics[END_REF], [START_REF] Berman | Regularity of weak minimizers of the K-energy and applications to properness and K-stability[END_REF], [START_REF] Cheng | On the constant scalar curvature Kähler metrics, apriori estimates[END_REF][START_REF] Cheng | On the constant scalar curvature Kähler metrics[END_REF][START_REF] Cheng | On the constant scalar curvature Kähler metrics, general automorphism group[END_REF]). Employing the same technique as in [START_REF] Darvas | Tian's properness conjectures and Finsler geometry of the space of Kähler metrics[END_REF] and extending the L 1 -Finsler structure of [START_REF] Darvas | The Mabuchi geometry of finite energy classes[END_REF] to big and semipositive classes via a formula relating the Monge-Ampère energy and the d 1 distance, Darvas [START_REF] Darvas | Metric geometry of normal Kähler spaces, energy properness, and existence of canonical metrics[END_REF] established analogous results for singular normal Kähler varieties. Motivated by the same geometric applications, the L p (p ≥ 1) Finsler geometry in big and semipositive cohomology classes was constructed in [START_REF] Di | Geometry and topology of the space of Kähler metrics on singular varieties[END_REF] via an approximation method.

In this note we extend the main results of [START_REF] Darvas | The Mabuchi geometry of finite energy classes[END_REF][START_REF] Di | Geometry and topology of the space of Kähler metrics on singular varieties[END_REF] to the context of big and nef cohomology classes. Assume that X is a compact Kähler manifold of complex dimension n and let θ be a smooth closed real (1, 1) form representing a big & nef cohomology class. Fix p ≥ 1.

Main Theorem. The space E p (X, θ) endowed with d p is a complete geodesic metric space.

For the definition of E p (X, θ), d p and relevant notions we refer to Section 2. When p = 1 Main Theorem was established in [START_REF] Darvas | L 1 metric geometry of big cohomology classes[END_REF] in the more general case of big cohomology classes using the approach of [START_REF] Darvas | Metric geometry of normal Kähler spaces, energy properness, and existence of canonical metrics[END_REF]. Here, we use an approximation argument as in [START_REF] Di | Geometry and topology of the space of Kähler metrics on singular varieties[END_REF] with an important modification due to the fact that generally potentials in big cohomology classes are unbounded. Interestingly, this modification greatly simplifies the proof of [START_REF] Di | Geometry and topology of the space of Kähler metrics on singular varieties[END_REF]Theorem A].

Organization of the note. We recall relevant notions in pluripotential theory in big cohomology classes in Section 2. The metric space (E p , d p ) is introduced in Section 3 where we prove Main Theorem. In case p = 1 we show in Proposition 3.18 that the distance d 1 defined in this note and the one defined in [START_REF] Darvas | L 1 metric geometry of big cohomology classes[END_REF] do coincide.

Acknowledgements. We thank Tamás Darvas for valuable discussions, and the referee for several useful comments which allowed us to improve the presentation of the note.

Preliminaries

Let (X, ω) be a compact Kähler manifold of dimension n. We use the following real differential operators d = ∂ + ∂, d c = i( ∂ -∂), so that dd c = 2i∂ ∂. We briefly recall known results in pluripotential theory in big cohomology classes, and refer the reader to [START_REF] Boucksom | Monge-Ampère equations in big cohomology classes[END_REF], [START_REF] Berman | A variational approach to complex Monge-Ampère equations[END_REF], [START_REF] Darvas | On the singularity type of full mass currents in big cohomology classes[END_REF][START_REF] Darvas | Monotonicity of nonpluripolar products and complex Monge-Ampère equations with prescribed singularity[END_REF][START_REF] Darvas | L 1 metric geometry of big cohomology classes[END_REF][START_REF] Darvas | Log-concavity of volume and complex Monge-Ampère equations with prescribed singularity[END_REF] for more details.

2.1. Quasi-plurisubharmonic functions. A function u : X → R∪{-∞} is quasi-plurisubharmonic (or quasi-psh) if it is locally the sum of a psh function and a smooth function. Given a smooth closed real (1, 1)-form θ, we let PSH(X, θ) denote the set of all integrable quasi-psh functions u such that θ u := θ + dd c u ≥ 0, where the inequality is understood in the sense of currents. A function u is said to have analytic singularities if locally u = log N j=1 |f j | 2 + h, where the f j s are holomorphic and h is smooth. The De Rham cohomology class {θ} is Kähler if it contains a Kähler potential, i.e. a function u ∈ PSH(X, θ) ∩ C ∞ (X, R) such that θ + dd c u > 0. The class {θ} is nef if {θ + εω} is Kähler for all ε > 0. It is pseudo-effective if the set PSH(X, θ) is non-empty, and big if {θ -εω} is pseudo-effective for some ε > 0. The ample locus of {θ}, which will be denoted by Amp(θ), is the set of all points x ∈ X such that there exists ψ ∈ PSH(X, θ -εω) with analytic singularities and smooth in a neighborhood of x. It was shown in [START_REF] Boucksom | Divisorial Zariski decompositions on compact complex manifolds[END_REF]Theorem 3.17] that {θ} is Kähler iff Amp(θ) = X.

Throughout this note we always assume that {θ} is big and nef. Typically, there are no bounded functions in PSH(X, θ), but there are plenty of locally bounded functions as we now briefly recall. By the bigness of {θ} there exists ψ ∈ PSH(X, θ -εω) for some ε > 0. Regularizing ψ (by [30, Main Theorem 1.1]) we can find a function u ∈ PSH(X, θ -ε 2 ω) smooth in a Zariski open set Ω of X. Roughly speaking, θ u locally behaves as a Kähler form on Ω. As shown in [START_REF] Boucksom | Divisorial Zariski decompositions on compact complex manifolds[END_REF]Theorem 3.17] u and Ω can be constructed in such a way that Ω is the ample locus of {θ}.

If u and v are two θ-psh functions on X, then u is said to be less singular than v if v ≤ u + C for some C ∈ R, while they are said to have the same singularity type if u -C ≤ v ≤ u + C, for some C ∈ R. A θ-psh function u is said to have minimal singularities if it is less singular than any other θ-psh function. An example of a θ-psh function with minimal singularities is

V θ := sup{u ∈ PSH(X, θ) | u ≤ 0}.
For a function f : X → R, we let f * denote its upper semicontinuous regularization, i.e.

f * (x) := lim sup

X y→x f (y).
Given a measurable function f on X we define

P θ (f ) := (x → sup{u(x) | u ∈ PSH(X, θ), u ≤ f }) * .
Essential supremum. For u, v quasi-psh functions, the function u -v is defined almost everywhere on X (off the set where v = -∞). By abuse of notation we let sup X (u -v) denote the essential supremum of u -v. By basic properties of plurisubharmonic functions we have

u -sup X (u -v) ≤ v ≤ u + sup X (v -u), on X.
We will need the following result on regularity of quasi plurisubharmonic envelope due to Berman [START_REF] Berman | From Monge-Ampère equations to envelopes and geodesic rays in the zero temperature limit[END_REF].

Theorem 2.1. Let f be a continuous function such that dd c f ≤ Cω on X, for some C > 0. Then ∆ ω (P θ (f )) is locally bounded on Amp(θ), and

(2.1) (θ + dd c P θ (f )) n = 1 {P θ (f )=f } (θ + dd c f ) n .
If θ is moreover Kähler then ∆ ω (P θ (f )) is globally bounded on X.

If f = min(u, v) for u, v quasi-psh then f is upper semicontinuous on X and there is no need to take the upper semicontinuous regularization in the definition of P (u, v) := P θ (min(u, v)). The latter is the largest θ-psh function lying below both u and v, and is called the rooftop envelope of u and v in [START_REF] Darvas | Kiselman's principle, the Dirichlet problem for the Monge-Ampère equation, and rooftop obstacle problems[END_REF].

The proof of Theorem 2.1 can be found in [START_REF] Berman | From Monge-Ampère equations to envelopes and geodesic rays in the zero temperature limit[END_REF]. In the Kähler case, Theorem 2.1 was also surveyed in [START_REF] Darvas | Geometric pluripotential theory on Kähler manifolds[END_REF]. For convenience of the reader, and per recommendation of the referee, we briefly recall the arguments here.

Proof of Theorem 2.1. We first assume that f is smooth and fix ε ∈ (0, 1]. By nefness of {θ}, the form η := θ + εω represents a Kähler class.

Fix β > 1 and let u β ∈ PSH(X, η)∩C ∞ (X) be the unique smooth function such that

(2.2) (η + dd c u β ) n = e β(u β -f ) ω n .
The existence (and smoothness) of u β follows from Aubin [START_REF] Aubin | Équations du type Monge-Ampère sur les variétés kählériennes compactes[END_REF] and Yau [START_REF] Shing | On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I[END_REF].

By [4, Theorem 1.1], u β converges uniformly to P η (f ) along with a uniform estimate for dd c u β . The proof of [4, Theorem 1.2] actually establishes a Laplacian estimate for u β independent of ε and β.

We fix ψ ∈ PSH(X, θ) such that sup X ψ = 0, ψ is smooth in Ω, the ample locus of {θ} and θ + dd c ψ ≥ aω, where a > 0 is a small constant. Note that ψ and a, whose existence follows from the bigness of {θ} as recalled in Section 2.1, are independent of ε.

Consider H := log Tr ω (η + dd c u β ) -A(u β -ψ), defined on Ω, where A > 0 is a constant to be specified later. Then H is smooth on Ω and tends to -∞ on the boundary of Ω. Let x ∈ Ω be a point where H attains its maximum in Ω. Setting ω := η + dd c u β , it follows from [14, Lemma 2.2] (which is an improvement of [START_REF] Siu | Lectures on hermitian-einstein metrics for stable bundles and kählereinstein metrics[END_REF]) that

∆ ω log Tr ω (ω ) ≥ ∆ ω (β(u β -f )) Tr ω (ω ) -BTr ω (ω),
where -B is a negative lower bound for the holomorphic bisectional curvature of ω. In the remainder of this paragraph we carry all computations at the point x. By the maximum principle we have

0 ≥ ∆ ω H ≥ β -β Tr ω (η + dd c f ) Tr ω (ω ) -BTr ω (ω) -An + AaTr ω (ω). Let C 1 ≥ 0 be a constant such that θ + ω + dd c f ≤ e C 1 ω. Then, choosing A = B/a we arrive at 0 ≥ (β -An) -β ne C 1 Tr ω (ω )
.

Thus, for β ≥ 2An we have

(2.3) Tr ω (ω ) ≤ βne C 1 β -An ≤ 2ne C 1 .
Let also ρ 0 be the unique θ-psh function with minimal singularities such that (θ + dd c ρ 0

) n = C 3 ω n , sup X ρ 0 = 0, for a uniform normalization constant C 3 = C(θ, ω) > 0.
The existence of ρ 0 follows from [START_REF] Boucksom | Monge-Ampère equations in big cohomology classes[END_REF], [START_REF] Berman | A variational approach to complex Monge-Ampère equations[END_REF]. By [START_REF] Boucksom | Monge-Ampère equations in big cohomology classes[END_REF]Theorem 4.1] we obtain a lower bound for ρ 0 :

ρ 0 ≥ V θ -C(θ, ω). Since ρ 0 ≤ f -inf X f we have that ρ 0 + inf X f + (log C 3 )
/β is a subsolution to the Monge-Ampère equation defining u β , (2.2). By [24, Lemma 2.5] and the fact that V θ ≥ ψ, we have that

u β ≥ ρ 0 + inf X f + (log C 3 )/β ≥ ψ -C 4 ,
where C 4 > 0 depends on θ, ω, inf X f . From this and (2.3) we thus obtain

H(x) ≤ log(2ne C 1 ) + AC 4 .
We finally have, for all β ≥ 2nA,

Tr ω (η + dd c u β ) ≤ C 5 e -Aψ on Ω.
Letting β → +∞ and noting that u β converges uniformly to

P θ+εω (f ) we obtain ∆ ω (P θ+εω (f )) ≤ C 6 e -Aψ ,
where

C 6 depends on B, a, C 1 , inf X f . Letting ε → 0 we arrive at ∆ ω (P θ (f )) ≤ C 6 e -Aψ .
We finally remove the smoothness assumption on f . Assume that f is a continuous function such that dd c f ≤ Cω. We approximate f uniformly by smooth functions f j such that dd c f j ≤ (C + 1)ω. This is possible thanks to Demailly [START_REF] Demailly | Regularization of closed positive currents and intersection theory[END_REF]. Then the previous steps yield

∆ ω (P θ (f j )) ≤ C e -Aψ ,
where C > 0 depends only on C, B, a, inf X f, θ, ω. Letting j → +∞ we arrive at the conclusion. Having the Laplacian bound, one can then argue as in [START_REF] Guedj | Degenerate complex Monge-Ampère equations[END_REF]Theorem 9.25] to get (2.1), completing the proof of Theorem 2.1.

2.2.

Non-pluripolar Monge-Ampère products. Given u 1 , ..., u p θ-psh functions with minimal singularities, θ u 1 ∧ ... ∧ θ up , as defined by Bedford and Taylor [START_REF] Bedford | The Dirichlet problem for a complex Monge-Ampère equation[END_REF][START_REF] Bedford | A new capacity for plurisubharmonic functions[END_REF] is a closed positive current in Amp(θ). For general u 1 , ..., u p ∈ PSH(X, θ), it was shown in [START_REF] Boucksom | Monge-Ampère equations in big cohomology classes[END_REF] that the non-pluripolar product of θ u 1 , . . . , θ up , that we still denote by

θ u 1 ∧ . . . ∧ θ up ,
is well-defined as a closed positive (p, p)-current on X which does not charge pluripolar sets. For a θ-psh function u, the non-pluripolar complex Monge-Ampère measure of u is simply θ n u := θ u ∧ . . . ∧ θ u . If u has minimal singularities then X θ n u , the total mass of θ n u , is equal to X θ n V θ , the volume of the class {θ} denoted by Vol(θ). For a general u ∈ PSH(X, θ), X θ n u may take any value in [0, Vol(θ)]. Note that Vol(θ) is a cohomological quantity, i.e. it does not depend on the smooth representative we choose in {θ}.

2.3. The energy classes. From now on, we fix p ≥ 1.

Recall that for any θ-psh function u we have X θ n u ≤ Vol(θ). We denote by E(X, θ) the set of θ-psh functions u such that X θ n u = Vol(θ). We let

E p (X, θ) denote the set of u ∈ E(X, θ) such that X |u -V θ | p θ n u < +∞. For u, v ∈ E p (X, θ) we define I p (u, v) := I p,θ (u, v) := X |u -v| p (θ n u + θ n v ) .
It was proved in [START_REF] Guedj | Plurisubharmonic envelopes and supersolutions[END_REF]Theorem 1.6] that I p satisfies a quasi triangle inequality:

I p,θ (u, v) ≤ C(n, p)(I p,θ (u, w) + I p,θ (v, w)), ∀u, v, w ∈ E p (X, θ).
In particular, applying this for w = V θ and using Theorem 2.1 we obtain I p,θ (u, v) < +∞, for all u, v ∈ E p (X, θ). Moreover, it follows from the domination principle [24, Proposition 2.4] that I p is non-degenerate:

I p,θ (u, v) = 0 =⇒ u = v.
2.4. Weak geodesics. Geodesic segments connecting Kähler potentials were first introduced by Mabuchi [START_REF] Mabuchi | Some symplectic geometry on compact Kähler manifolds. I[END_REF]. Semmes [START_REF] Semmes | Complex Monge-Ampère and symplectic manifolds[END_REF] and Donaldson [START_REF] Donaldson | Symmetric spaces, Kähler geometry and Hamiltonian dynamics[END_REF] independently realized that the geodesic equation can be reformulated as a degenerate homogeneous complex Monge-Ampère equation. The best regularity of a geodesic segment connecting two Kähler potentials is known to be C 1,1 (see [START_REF] Chen | The space of Kähler metrics[END_REF], [START_REF] Zbigniew | On geodesics in the space of Kähler metrics[END_REF], [START_REF] Chu | On the C 1,1 regularity of geodesics in the space of Kähler metrics[END_REF]).

In the context of a big cohomology class, the regularity of geodesics is very delicate. To avoid this issue we follow an idea of Berndtsson [START_REF] Berndtsson | A Brunn-Minkowski type inequality for Fano manifolds and some uniqueness theorems in Kähler geometry[END_REF] considering geodesics as the upper envelope of subgeodesics (see [START_REF] Darvas | On the singularity type of full mass currents in big cohomology classes[END_REF]).

For a curve [0

, 1] t → u t ∈ PSH(X, θ) we define (2.4) X × D (x, z) → U (x, z) := u log |z| (x),
where

D := {z ∈ C | 1 < |z| < e}. We let π : X × D → X be the projection on X. Definition 2.2. We say that t → u t is a subgeodesic if (x, z) → U (x, z) is a π * θ-psh function on X × D. Definition 2.3. For ϕ 0 , ϕ 1 ∈ PSH(X, θ), we let S [0,1] (ϕ 0 , ϕ 1 ) denote the set of all subgeodesics [0, 1] t → u t such that lim sup t→0 u t ≤ ϕ 0 and lim sup t→1 u t ≤ ϕ 1 . Let ϕ 0 , ϕ 1 ∈ PSH(X, θ). We define, for (x, z) ∈ X × D, Φ(x, z) := sup{U (x, z) | U ∈ S [0,1] (ϕ 0 , ϕ 1 )}.
The curve t → ϕ t constructed from Φ via (2.4) is called the weak Mabuchi geodesic connecting ϕ 0 and ϕ 1 .

Geodesic segments connecting two general θ-psh functions may not exist. If ϕ 0 , ϕ 1 ∈ E p (X, θ), it was shown in [24, Theorem 2.13] that P (ϕ 0 , ϕ 1 ) ∈ E p (X, θ). Since P (ϕ 0 , ϕ 1 ) ≤ ϕ t , we obtain that t → ϕ t is a curve in E p (X, θ). Each subgeodesic segment is in particular convex in t:

ϕ t ≤ (1 -t) ϕ 0 + tϕ 1 , ∀t ∈ [0, 1].
Consequently the upper semicontinuous regularization (with respect to both variables x, z) of Φ is again in S [0,1] (ϕ 0 , ϕ 1 ), hence so is Φ. In particular, if ϕ 0 , ϕ 1 have minimal singularities then the geodesic ϕ t is Lipschitz on [0, 1] (see [START_REF] Darvas | On the singularity type of full mass currents in big cohomology classes[END_REF]Lemma 3.1]):

(2.5) |ϕ t -ϕ s | ≤ |t -s| sup X |ϕ 0 -ϕ 1 |, ∀t, s ∈ [0, 1].
2.5. Finsler geometry in the Kähler case. Darvas [START_REF] Darvas | The Mabuchi geometry of finite energy classes[END_REF] introduced a family of distances in the space of Kähler potentials

H ω := {ϕ ∈ C ∞ (X, R) | ω ϕ > 0}.
Definition 2.4. Let ϕ 0 , ϕ 1 ∈ H ω . For p ≥ 1, we set

d p (ϕ 0 , ϕ 1 ) := inf{ p (ψ) | ψ is a smooth path joining ϕ 0 to ϕ 1 },
where p (ψ) :=

1 0 1 V X | ψt | p ω n ψt 1/p dt and V := Vol(ω) = X ω n .
It was then proved in [20, Theorem 1] (generalizing Chen's original arguments [START_REF] Chen | The space of Kähler metrics[END_REF]) that d p defines a distance on H ω , and for all ϕ 0 , ϕ 1 ∈ H ω , (2.6)

d p (ϕ 0 , ϕ 1 ) = 1 V X | φt | p ω n ϕt 1/p , ∀t ∈ [0, 1],
where t → ϕ t is the Mabuchi geodesic (defined in Section 2.4). It was shown in [START_REF] Darvas | The Mabuchi geometry of finite energy classes[END_REF]Lemma 4.11] that (2.6) still holds for ϕ 0 , ϕ 1 ∈ PSH(X, ω) with dd c ϕ i ≤ Cω, i = 0, 1, for some positive constant C. By [START_REF] Demailly | Regularization of closed positive currents and intersection theory[END_REF][START_REF] Zbigniew | On regularization of plurisubharmonic functions on manifolds[END_REF], potentials in E p (X, ω) can be approximated from above by smooth Kähler potentials. As shown in [START_REF] Darvas | The Mabuchi completion of the space of Kähler potentials[END_REF] the metric d p can be extended for potentials in ϕ 0 , ϕ 1 ∈ E p (X, ω): if ϕ k i are smooth strictly ω-psh functions decreasing to ϕ i , i = 0, 1 then the limit

d p (ϕ 0 , ϕ 1 ) := lim k→+∞ d p (ϕ k 0 , ϕ k 1 )
exists and it is independent of the approximants. By [20, Lemma 4.4 and 4.5], d p defines a metric on E p (X, ω) and (E p (X, ω), d p ) is a complete geodesic metric space.

3. The metric space (E p (X, θ), d p )

The goal of this section is to define a distance d p on E p (X, θ) and prove that the space (E p (X, θ), d p ) is a complete geodesic metric space. We follow the strategy in [START_REF] Di | Geometry and topology of the space of Kähler metrics on singular varieties[END_REF], approximating the space of "Kähler potentials" H θ by regular spaces. Throughout this note we will use the notation

ω ε := θ + εω, ε > 0.
By nefness of θ, ω ε := θ + εω represents a Kähler cohomology class for any ε > 0. Note that ω ε is not necessarily a Kähler form but there exists a smooth potential f ε ∈ C ∞ (X, R) such that ω ε + dd c f ε is a Kähler form. For notational convenience we normalize θ so that Vol(θ) = X θ n V θ = 1 and we set V ε := Vol(ω ε ).

Typically there are no smooth potentials in PSH(X, θ) but the following class contains plenty of potentials sufficiently regular for our purposes:

H θ := {ϕ ∈ PSH(X, θ) | ϕ = P θ (f ), f ∈ C(X, R), dd c f ≤ C(f )ω}.
Here C(f ) denotes a positive constant which depends only on f . Note that any u = P θ (f ) ∈ H θ has minimal singularities because, for some constant C > 0, V θ -C is a candidate defining P θ (f ). The following elementary observation will be useful in the sequel.

Lemma 3.1. If u, v ∈ H θ then P θ (u, v) ∈ H θ .
Proof. Set h = min(f, g) ∈ C 0 (X, R), where f, g ∈ C 0 (X, R) are such that u = P θ (f ) and v = P θ (g) and dd c f ≤ Cω, dd c g ≤ Cω. Then -h = max(-f, -g) is a Cω-psh function on X, hence dd c (-h) + Cω ≥ 0.

3.1.

Defining a distance d p on H θ . By Darvas [START_REF] Darvas | The Mabuchi geometry of finite energy classes[END_REF], the Mabuchi distance d p,ω is well defined on E p (X, ω) when the reference form ω is a Kähler form. With the following observation we show that such a distance behaves well when we change the Kähler representative in {ω}. Proposition 3.2. Let ω f := ω +dd c f ∈ {ω} be another Kähler form. Then, given ϕ 0 , ϕ 1 ∈ E p (X, ω) we have

d p,ω (ϕ 0 , ϕ 1 ) = d p,ω f (ϕ 0 -f, ϕ 1 -f ).
Proof. Let ϕ t be the Mabuchi geodesic (w.r.t ω) joining ϕ 0 and ϕ 1 and let ϕ f t be the Mabuchi geodesic (w.r.t ω f ) joining ϕ 0 -f and ϕ 1 -f . We claim that ϕ f t = ϕ t -f . Indeed, ϕ t -f is an ω f -subgeodesic connecting ϕ 0 -f and ϕ 1 -f . Hence ϕ t -f ≤ ϕ f t . On the other hand ϕ f t + f is a candidate defining ϕ t , thus ϕ f t + f ≤ ϕ t , proving the claim. Assume ϕ 0 , ϕ 1 are Kähler potentials. By (2.6) we have

V d p p,ω (ϕ 0 , ϕ 1 ) = X | φ0 | p (ω + dd c ϕ 0 ) n = X lim t→0 + (ϕ t -f ) -(ϕ 0 -f ) t p (ω f + dd c (ϕ 0 -f )) n = X | φf 0 | p (ω f + dd c (ϕ 0 -f )) n = V d p p,ω f (ϕ 0 -f, ϕ 1 -f ).
The identity for potentials in E p (X, ω) follows from the fact that the distance d p,ω between potentials ϕ 0 , ϕ 1 ∈ E p (X, ω) is defined as the limit lim j d p,ω (ϕ 0,j , ϕ 1,j ), where {ϕ i,j } is a sequence of smooth strictly ω-psh functions decreasing to ϕ i , for i = 0, 1.

Thanks to the above Proposition we can then define the Mabuchi distance w.r.t any smooth (1, 1)-form η in the Kähler class {ω}:

(3.1) d p,η (ϕ 0 , ϕ 1 ) := d p,η f (ϕ 0 -f, ϕ 1 -f ), ϕ 0 , ϕ 1 ∈ E p (X, η)
where η f = η + dd c f is a Kähler form. Proposition 3.2 reveals that the definition is independent of the choice of f . We next extend the Pythagorean formula of [START_REF] Darvas | The Mabuchi geometry of finite energy classes[END_REF][START_REF] Darvas | The Mabuchi completion of the space of Kähler potentials[END_REF] for Kähler classes.

Lemma 3.3. If {η} is Kähler and u, v ∈ E p (X, η) then

d p p,η (u, v) = d p p,η (u, P η (u, v)) + d p p,η (v, P η (u, v)).
Proof. By [20, Corollary 4.14] and (3.1), we have

d p p,η (u, v) = d p p,η f (u -f, P η f (u -f, v -f )) + d p p,η f (v -f, P η f (u -f, v -f )).
The conclusion follows observing that

P η f (u -f, v -f ) = P η (u, v) -f .
The following results play a crucial role in the sequel. Proof. Observe that |ϕ ε -ψ ε | → |ϕ -ψ| almost everywhere on X (in fact this holds off a pluripolar set) and they are uniformly bounded:

|ϕ ε -ψ ε | ≤ sup X |f -g|.
Indeed, take a point x ∈ X such that ϕ(x) > -∞ and ψ(x) > -∞. Recall that ω ε := θ + εω ≥ θ and {ω ε } is increasing in ε. Therefore, ϕ ε decreases to a θ-psh function on X as ε → 0. The latter must be ϕ. We thus have that ϕ ε (x) → ϕ(x) and ψ ε (x) → ψ(x) as ε → 0. Also, ψ ε + sup X |f -g| is a candidate defining ϕ ε , hence the claimed bound follows. By Lemma 3.5 below and Lebesgue's dominated convergence theorem,

lim ε→0 X |ϕ ε -ψ ε | p (ω ε + dd c ϕ ε ) n = X |ϕ -ψ| p (θ + dd c ϕ) n .
Similarly, the other term in the definition of I p,ωε also converges to the desired limit.

Lemma 3.5. Let ϕ = P θ (f ) ∈ H θ . For ε > 0 we set ϕ ε = P ωε (f ) and write

(ω ε + dd c ϕ ε ) n = ρ ε ω n ; (θ + dd c ϕ) n = ρω n .
Then ε → ρ ε is increasing, uniformly bounded and ρ ε → ρ pointwise on X.

Proof. Define, for ε > 0,

D ε := {x ∈ X | ϕ ε (x) = f (x)}. Since {ϕ ε } is increasing and ϕ ε ≤ f , {D ε } is also increasing. We set D := ∩ ε>0 D ε . Then D = {x ∈ X | ϕ(x) = f (x)}.
For ε > ε > 0, it follows from Theorem 2.1 that

(ω ε + dd c ϕ ε ) n = 1 {ϕε=f } (ω ε + dd c f ) n ≤ 1 {ϕε=f } (ω ε + dd c f ) n ≤ (ω ε + dd c ϕ ε ) n .
Here we use the fact that 0 ≤ ω ε + dd c f ≤ ω ε + dd c f on D ε . This proves the first statement. The second statement follows from the bound dd c f ≤ Cω.

We now prove the last statement. If x ∈ D, using (θ + dd c f ) ≤ C ω we can write

ρ ε (x)ω n = (θ + εω + dd c f ) n ≤ (θ + dd c f ) n + O(ε)ω n = (ρ(x) + O(ε))ω n . Hence ρ ε (x) → ρ(x). If x / ∈ D then x / ∈ D ε for ε > 0 small enough, hence ρ ε (x) = 0 = ρ(x).
Lemma 3.6. Let ϕ j = P θ (f j ) ∈ H θ , for j = 0, 1. Let ϕ t (resp. ϕ t,ε ) be weak Mabuchi geodesics joining ϕ 0 and ϕ 1 (resp. ϕ 0,ε = P ωε (f 0 ) and ϕ 1,ε = P ωε (f 1 )). Then we have the following pointwise convergence

1 {ϕ 0,ε =f 0 } | φ0,ε | p → 1 {ϕ 0 =f 0 } | φ0 | p .
Proof. Since P ωε (f j ) ≥ P θ (f j ), j = 0, 1, it follows from the definition that ϕ t,ε ≥ ϕ t (the curve ϕ t is a candidate defining ϕ t,ε for any ε > 0). Set D ε = {ϕ 0,ε = f 0 } and D = {ϕ 0 = f 0 }. Then D ε is increasing and

∩ ε>0 D ε = D since ϕ 0 ≤ ϕ 0,ε ≤ f 0 . If x ∈ D then, for all small s > 0, φ0 (x) = lim t→0 ϕ t (x) -f 0 (x) t ≤ φ0,ε (x) ≤ ϕ s,ε (x) -ϕ 0,ε (x) s ,
where in the last inequality we use the convexity of the geodesic in t. Letting first ε → 0 and then s → 0 shows that φ0,ε (x) converges to φ0 (x). If x / ∈ D then x / ∈ D ε , for ε > 0 small enough. In this case the convergence we want to prove is trivial.

Theorem 3.7. Let ϕ 0 := P θ (f 0 ), ϕ 1 := P θ (f 1 ) ∈ H θ and ϕ i,ε = P ωε (f i ), i = 0, 1. Let d p,ε be the Mabuchi distance w.r.t. ω ε defined in (3.1). Then lim ε→0 d p p,ε (ϕ 0,ε , ϕ 1,ε ) = X | φ0 | p (θ + dd c ϕ 0 ) n = X | φ1 | p (θ + dd c ϕ 1 ) n ,
where ϕ t is the weak Mabuchi geodesic connecting ϕ 0 and ϕ 1 .

Compared to [START_REF] Di | Geometry and topology of the space of Kähler metrics on singular varieties[END_REF] our approach is slightly different. We also emphasize that by [START_REF] Nezza | Stability of Monge-Ampère energy classes[END_REF]Example 4.5], there are functions in E p (X, θ) which are not in E p (X, ω).

Proof. Let ϕ t,ε denote the ω ε -geodesic joining ϕ 0,ε and ϕ 1,ε . Set D ε = {ϕ 0,ε = f 0 } and D = {ϕ 0 = f 0 }. Combining (2.6) and Theorem 2.1 we obtain 

V ε d p p,ε (ϕ 0,ε , ϕ 1,ε ) = X | φ0,ε | p (ω ε + dd c ϕ 0,ε ) n = Dε | φ0,ε | p (ω ε + dd c f 0 ) n . Since |ϕ 0,ε -ϕ 1,ε | ≤ sup X |f 0 -f 1 | and f 0 -f 1 is bounded, (2.
d p p,ε (ϕ 0,ε , ϕ 1,ε ) = D | φ0 | p (θ + dd c f 0 ) n = X | φ0 | p (θ + dd c ϕ 0 ) n ,
where in the last equality we use Theorem 2.1. This shows the first equality in the statement. The second one is obtained by reversing the role of ϕ 0 and ϕ 1 .

Definition 3.8. Assume that ϕ 0 := P θ (f 0 ), ϕ 1 := P θ (f 1 ) ∈ H θ . Let d p,ε be the Mabuchi distance w.r.t. ω ε := θ + εω defined in (3.1). We define

d p (ϕ 0 , ϕ 1 ) := lim ε→0 d p,ε (ϕ 0,ε , ϕ 1,ε ),
where ϕ 0,ε := P ωε (f 0 ) and ϕ 1,ε := P ωε (f 1 ).

The limit exists and is independent of the choice of ω as shown in Theorem 3.7. Lemma 3.9. d p is a distance on H θ .

Proof. The triangle inequality immediately follows from the fact that d p,ε is a distance. From [START_REF] Darvas | The Mabuchi geometry of finite energy classes[END_REF]Theorem 5.5] we know that

d p p,ε (ϕ 0,ε , ϕ 1,ε ) ≥ 1 C I p,ωε (ϕ 0,ε , ϕ 1,ε ), C > 0.
Also, by Lemma 3.4 we have lim ε→0 I p,ωε (ϕ 0,ε , ϕ 1,ε ) = I p,θ (ϕ 0 , ϕ 1 ). It follows from the domination principe (see [START_REF] Darvas | On the singularity type of full mass currents in big cohomology classes[END_REF], [START_REF] Bloom | Pluripotential energy[END_REF]) that

I p,θ (ϕ 0 , ϕ 1 ) = 0 ⇔ ϕ 0 = ϕ 1 .
Hence, d p is non-degenerate. Proof. By Darvas [START_REF] Darvas | The Mabuchi geometry of finite energy classes[END_REF]Theorem 3] we know that 1 C I p,ωε (ϕ 0,ε , ϕ 1,ε ) ≤ d p p,ε (ϕ 0,ε , ϕ 1,ε ) ≤ CI p,ωε (ϕ 0,ε , ϕ 1,ε ).

Letting ε to zero and using Lemma 3.4 and Definition 3.8 we get (3.2). Now, let ϕ 0 , ϕ 1 ∈ E p (X, θ). Let {f i,j } be a sequence of smooth functions decreasing to ϕ i , i = 0, 1. We then clearly have that ϕ i,j := P θ (f i,j ) ∈ H θ and P θ (f i,j ) ϕ i .

Lemma 3.11. The sequence d p (ϕ 0,j , ϕ 1,j ) converges and the limit is independent of the choice of the approximants f i,j .

Proof. Set a j := d p (ϕ 0,j , ϕ 1,j ). By the triangle inequality and Proposition 3.10 we have

a j ≤ d p (ϕ 0,j , ϕ 0,k ) + d p (ϕ 0,k , ϕ 1,k ) + d p (ϕ 1,k , ϕ 1,j )
≤ a k + C I 1/p p (ϕ 0,j , ϕ 0,k ) + I 1/p p (ϕ 1,j , ϕ 1,k ) , where C > 0 depends only on n, p. Hence

|a j -a k | ≤ C I 1/p p (ϕ 0,j , ϕ 0,k ) + I 1/p p (ϕ 1,j , ϕ 1,k ) .
By [34, Theorem 1.6 and Proposition 1.9], it then follows that |a j -a k | → 0 as j, k → +∞. This proves that the sequence d p (ϕ 0,j , ϕ 1,j ) is Cauchy, hence it converges. Let φi,j = P θ ( fi,j ) be another sequence in H θ decreasing to ϕ i , i = 0, 1. Then applying the triangle inequality several times we get d p (ϕ 0,j , ϕ 1,j ) ≤ d p (ϕ 0,j , φ0,j ) + d p ( φ0,j , φ1,j ) + d p ( φ1,j , ϕ 1,j ), and thus |d p (ϕ 0,j , ϕ 1,j ) -d p ( φ0,j , φ1,j )| ≤ C I 1/p p (ϕ 0,j , φ0,j ) + I 1/p p (ϕ 1,j , φ1,j ) .

It then follows again from [34, Theorem 1.6 and Proposition 1.9] that the limit does not depend on the choice of the approximants.

Given ϕ 0 , ϕ 1 ∈ E p (X, θ), we then define

d p (ϕ 0 , ϕ 1 ) := lim j→+∞ d p (P θ (f 0,j ), P θ (f 1,j )).
Proposition 3.12. d p is a distance on E p (X, θ) and the inequalities comparing d p and I p on H θ (3.2) hold on E p (X, θ). Moreover, if u j ∈ E p (X, θ) decreases to u ∈ E p (X, θ) then d p (u j , u) → 0.

Proof. By definition of d p on E p (X, θ) we infer that the comparison between d p and I p in Proposition 3.10 holds on E p (X, θ). From this and the domination principle [START_REF] Darvas | On the singularity type of full mass currents in big cohomology classes[END_REF] we deduce that d p is non-degenerate. The last statement follows from (3.2) and [34, Proposition 1.9].

The next result was proved in [6, Lemma 3.4] for the Kähler case.

will be shown in Proposition 3.18 our definition of d 1 and the one in [START_REF] Darvas | L 1 metric geometry of big cohomology classes[END_REF] do coincide.

Proof. To prove the Pythagorean formula we first assume that u = P θ (f ), v = P θ (g) ∈ H θ . Set u ε := P ωε (f ), v ε := P ωε (g). It follows from Lemma 3.3 that

d p p,ε (u ε , v ε ) = d p p,ε (u ε , P ωε (u ε , v ε )) + d p p,ε (v ε , P ωε (u ε , v ε )) = d p p,ε (u ε , P ωε (min(f, g)) + d p p,ε (v ε , P ωε (min(f, g)),
where in the last identity we use that P ωε (u ε , v ε ) = P ωε (min(f, g)). It follows from Lemma 3.1 that dd c min(f, g) ≤ Cω. Applying Theorem 3.7 we obtain (i) for this case. To treat the general case, let u j = P θ (f j ), v j = P θ (g j ) be sequences in H θ decreasing to u, v. By Lemma 3.1, P θ (u j , v j ) = P θ (min(f j , g j )) ∈ H θ and it decreases to P θ (u, v). Then (i) follows from the first step and Proposition 3.12 since

|d p (u j , v j ) -d p (u, v)| ≤ d p (u j , u) + d p (v, v j ).
To prove the second statement, in view of Proposition 3.12, we can assume that u = P θ (f ), v = P θ (g) ∈ H θ . By Lemma 3.13 we have

d p p (u, max(u, v)) = X | u0 | p θ n u ,
where t → u t is the Mabuchi geodesic joining u 0 = u to u 1 = max(u, v). Let ϕ t be the Mabuchi geodesic joining ϕ 0 = P θ (u, v) to ϕ 1 = v. We note that 0 ≤ φ0 ≤ v -P (u, v). Indeed φ0 ≥ 0 since ϕ 0 ≤ ϕ 1 while the second inequality follows from the convexity in t of the geodesic. Using this observation and the fact that ϕ t ≤ u t we obtain 1 {P (u,v)=u} φ0 ≤ 1 {P (u,v)=u} u0 , and 1 {P (u,v)=v} φ0 = 0.

Since P θ (u, v) = P θ (min(f, g)) with dd c min(f, g) ≤ Cω, Theorem 2.1, Theorem 3. 3.3. Completeness of (E p (X, θ), d p ). In the sequel we fix a smooth volume form dV on X such that X dV = 1. Combining the above inequalities we get the conclusion.

Theorem 3.17. The space (E p (X, θ), d p ) is a complete geodesic metric space which is the completion of (H θ , d p ).

Proof. Let (ϕ j ) ∈ E p (X, θ) N be a Cauchy sequence for d p . Extracting and relabelling we can assume that there exists a subsequence (u j ) ⊆ (ϕ j ) such that d p (u j , u j+1 ) ≤ 2 -j . Define v j,k := P θ (u j , . . . , u j+k ) and observe that it is decreasing in k. Also, by Proposition 3.14 (i) and the triangle inequality, d p (u j , v j,k ) = d p (u j , P θ (u j , v j+1,k )) ≤ d p (u j , v j+1,k ) ≤ 2 -j + d p (u j+1 , v j+1,k ). Hence

d p (u j , v j,k ) ≤ k-1 =j 2 -≤ 2 -j+1 .
In particular I p (u j , v j,k ) is uniformly bounded from above. We then infer that v j,k decreases to v j ∈ PSH(X, θ) as k → +∞ and a combination of Proposition 3.12 and [34, Proposition 1.9] gives (3.3) d p (u j , v j ) ≤ 2 1-j , ∀j.

Let φ be the unique θ-psh function with minimal singularities such that sup X φ = 0 and θ n φ = dV . By Lemma 3.16, | sup It thus follows that v j increases a.e. to a θ-psh function v. By the triangle inequality we have d p (ϕ j , v) ≤ d p (ϕ j , u j ) + d p (u j , v j ) + d p (v j , v).

Lemma 3 . 4 .

 34 Let ϕ = P θ (f ), ψ = P θ (g) ∈ H θ . Set ϕ ε := P ωε (f ) and ψ ε = P ωε (g). Then lim ε→0 I p,ωε (ϕ ε , ψ ε ) = I p,θ (ϕ, ψ).

  5) ensures that φ0,ε is uniformly bounded. It follows from Lemma 3.5 and Lemma 3.6 that the functions 1 Dε | φ0,ε | p ρ ε and 1 D | φ0 | p ρ are uniformly bounded and 1 Dε | φ0,ε | p ρ ε converges pointwise to 1 D | φ0 | p ρ. We also observe that V ε decreases to Vol(θ) = 1. Lebesgue's dominated convergence theorem then yields lim ε→0

3. 2 .Proposition 3 . 10 .

 2310 Extension of d p to E p (X, θ). The following comparison between I p and d p was established in[START_REF] Darvas | The Mabuchi geometry of finite energy classes[END_REF] Theorem 3] in the Kähler case. Given ϕ 0 , ϕ 1 ∈ H θ there exists a constant C > 0 (depending only on n) such that (3.2) 1 C I p (ϕ 0 , ϕ 1 ) ≤ d p p (ϕ 0 , ϕ 1 ) ≤ CI p (ϕ 0 , ϕ 1 ).

Remark 3 . 15 .

 315 [START_REF] Berndtsson | A Brunn-Minkowski type inequality for Fano manifolds and some uniqueness theorems in Kähler geometry[END_REF][START_REF] Guedj | Plurisubharmonic envelopes and supersolutions[END_REF] Lemma 4.1] then yieldd p p (P θ (u, v), v) = X φp 0 (θ + dd c ϕ 0 ) n ≤ {P (u,v)=u} φp 0 (θ + dd c u) n ≤ {P (u,v)=u} up 0 (θ + dd c u) n ≤ d p p (u, max(u, v)). By Proposition 3.14 we have a "Pythagorean inequality" for max:d p p (u, max(u, v)) + d p p (v, max(u, v)) ≥ d p p (u, v), ∀u, v ∈ E p (X, θ).

Lemma 3 . 16 .≤

 316 Let u ∈ E p (X, θ) and let φ be a θ-psh function with minimal singularities, sup X φ = 0 satisfying θ n φ = dV . Then there exist uniform constantsC 1 = C 1 (n, θ) and C 2 = C 2 (n) > 0 such that | sup X u| ≤ C 1 + C 2 d p (u, φ).Proof. Using the Hölder inequality and [35, Proposition 2.7]) we obtain A + u -φ L p (dV ) + φ L p (dV ) . By Proposition 3.12, X |u -φ| p dV = X |u -φ| p θ n φ ≤ I p (u, φ) ≤ C(n)d p p (u, φ).

X

  v j | ≤ C 1 + C 2 d p (v j , φ) ≤ C 1 + C 2 (d p (v j , u 1 ) + d p (u 1 , φ)) ≤ C 1 + C 2 (d p (v j , u j ) + d p (u j , u 1 ) + d p (u 1 , φ)) ≤ C 1 + C 2 (4 + d p (u 1 , φ)).
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 Lemma 3.13. Let u t be the Mabuchi geodesic joining u 0 ∈ H θ and u 1 ∈ E p (X, θ). Then

Proof. We first assume that u 0 ≥ u 1 + 1. We approximate u 1 from above by u j 1 ∈ H θ such that u j 1 ≤ u 0 , for all j. Let u j t be the Mabuchi geodesic joining u 0 to u j 1 . Note that u j t ≥ u t and that uj t ≤ 0. By Theorem 3.7,

Also, uj 0 decreases to u0 , hence the monotone convergence theorem and Proposition 3.12 give

In particular | u0 | p ∈ L 1 (X, θ n u 0 ). For the general case we can find a constant C > 0 such that u 1 ≤ u 0 + C since u 0 has minimal singularities. Let w t be the Mabuchi geodesic joining u 0 and u

for a uniform constant C 1 > 0. In the second inequality above we use the fact that the Mabuchi geodesic u j t connecting u 0 to u j 1 is convex in t, while in the last inequality we use the fact that u 0 has minimal singularities.

The previous inequalities then yield

, where C 2 is a uniform constant. On the other hand by Theorem 3.7 we have

We claim that | uj 0 | p converges a.e. to | u0 | p . Indeed, the convergence is pointwise at points x such that u 1 (x) > -∞; but the set {u 1 = -∞} has Lebesgue measure zero. Also, the above estimate ensures that | uj 0 | p are uniformly bounded by 2 p-1 (-ẇ0

12 and Lebesgue's dominated convergence theorem then give the result.

We recall that from [24, Theorem 2.13] P θ (u, v) ∈ E p (X, θ). The identity in the first statement is known as the Pythagorean formula and it was established in the Kähler case by Darvas [START_REF] Darvas | The Mabuchi geometry of finite energy classes[END_REF]. The second statement was proved for p = 1 in [START_REF] Darvas | L 1 metric geometry of big cohomology classes[END_REF] using the differentiability of the Monge-Ampère energy. As Since (ϕ j ) is Cauchy, d p (ϕ j , u j ) → 0. By [34, Proposition 1.9] and Proposition 3.12 we have d p (v j , v) → 0. These facts together with (3.3) yield d p (ϕ j , v) → 0, hence (E p (X, θ), d p ) is a complete metric space.

Also, any u ∈ E p (X, θ) can be approximated from above by functions u j ∈ H θ such that d p (u j , u) → 0 (Proposition 3.12). It thus follows that (E p (X, θ), d p ) is the metric completion of H θ .

Let now u t be the Mabuchi geodesic joining u 0 , u 1 ∈ E p (X, θ). We are going to prove that, for all t ∈ [0, 1],

We claim that for all t ∈ [0, 1], (3.4) d p (u 0 , u t ) = td p (u 0 , u 1 ) and d p (u 1 , u t ) = (1 -t)d p (u 0 , u 1 ).

We first assume that u 0 , u 1 ∈ H θ . The Mabuchi geodesic joining u 0 to u t is given by w = u t , ∈ [0, 1]. Lemma 3.13 thus gives

proving the first equality in (3.4). The second one is proved similarly. We next prove the claim for u 0 , u 1 ∈ E p (X, θ). Let (u j i ), i = 0, 1, j ∈ N, be decreasing sequences of functions in H θ such that u j i ↓ u i , i = 0, 1. Let u j t be the Mabuchi geodesic joining u j 0 and u j 1 . Then u j t decreases to u t . By the triangle inequality we have |d p (u j 0 , u j t ) -d p (u 0 , u t )| ≤ d p (u j 0 , u 0 ) + d p (u t , u j t ). The claim thus follows from Proposition 3.12 and the previous step. Now, if 0 < t < s < 1 then applying twice (3.4) we get

We end this section by proving that the distance d 1 defined by approximation (see Definition 3.8) coincides with the one defined in [START_REF] Darvas | L 1 metric geometry of big cohomology classes[END_REF] using the Monge-Ampère energy.

Here the Monge-Ampère energy E is defined as

Proof. We first assume that u 0 , u 1 ∈ H θ and u 0 ≤ u 1 . Let [0, 1] t → u t be the Mabuchi geodesic joining u 0 and u 1 . By [24, Theorem 3.12], t → E(u t ) is affine, hence for all t ∈ [0, 1],

Since E is concave along affine curves (see [START_REF] Berman | A variational approach to complex Monge-Ampère equations[END_REF], [START_REF] Boucksom | Monge-Ampère equations in big cohomology classes[END_REF], [26, Theorem 2.1]) we thus have

Letting t → 0 in the first inequality and t → 1 in the second one we obtain

By Theorem 3.7 we then have

We next assume that u 0 , u 1 ∈ H θ but we remove the assumption that u 0 ≤ u 1 . By Lemma 3.1, P (u 0 , u 1 ) ∈ H θ . By the Pythagorean formula (Proposition 3.14) and the first step we have d 1 (u 0 , u 1 ) = d 1 (u 0 , P (u 0 , u 1 )) + d 1 (u 1 , P (u 0 , u 1 )) = E(u 0 ) -E(P (u 0 , u 1 )) + E(u 1 ) -E(P (u 0 , u 1 )).

We now treat the general case. Let (u j i ), i = 0, 1, j ∈ N be decreasing sequences of functions in H θ such that u j i ↓ u i , i = 0, 1. Then P (u j 0 , u j 1 ) ↓ P (u 0 , u 1 ). By [START_REF] Darvas | L 1 metric geometry of big cohomology classes[END_REF]Proposition 2.4], E(u j i ) → E(u i ), for i = 0, 1 and E(P (u j 0 , u j 1 )) → E(P (u 0 , u 1 )) as j → +∞. The result thus follows from Proposition 3.12, the triangle inequality and the previous step.