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Abstract

When using the boundary integral equation method to solve a boundary value problem, the
evaluation of the solution near the boundary is challenging to compute because the layer potentials
that represent the solution are nearly-singular integrals. To address this close evaluation problem,
we apply an asymptotic analysis of these nearly singular integrals and obtain an asymptotic ap-
proximation. We derive the asymptotic approximation for the case of the double-layer potential in
two and three dimensions, representing the solution of the interior Dirichlet problem for Laplace’s
equation. By doing so, we obtain an asymptotic approximation given by the Dirichlet data at the
boundary point nearest to the interior evaluation point plus a nonlocal correction. We present
numerical methods to compute this asymptotic approximation, and we demonstrate the efficiency
and accuracy of the asymptotic approximation through several examples. These examples show
that the asymptotic approximation is useful as it accurately approximates the close evaluation of
the double-layer potential while requiring only modest computational resources.

Keywords: Asymptotic approximation, close evaluation problem, potential theory, boundary
integral equations.

1 Introduction

The close evaluation problem refers to the non-uniform error produced by high-order quadrature rules
used in boundary integral equation methods. In particular, the close evaluation problem occurs when
evaluating layer potentials at evaluation points close to the boundary. These high-order quadrature
rules attain spectral accuracy when computing the solution, represented by layer potentials, far from
the boundary whereas they incur a very large error when computing the solution close to the boundary.
It is well understood that this growth in error is due to the fact that the integrand of the layer potentials
become increasingly peaked as the point of evaluation approaches the boundary. In fact, when the
distance between the evaluation point and its closest boundary point is smaller than the distance
between quadrature points on the boundary for a fixed-order quadrature rule, the quadrature points
do not adequately resolve the peak of the integrand and therefore produce an O(1) error.

Accurate evaluations of layer potentials close to the boundary of the domain are needed for a wide
range of applications, including the modeling of swimming micro-organisms, droplet suspensions, and
blood cells in Stokes flow [41, 8, 31, 22], and to predict accurate measurements of the electromagnetic
near-field in the field of plasmonics [30] for nano-antennas [3, 34] and sensors [33, 39].

Several computational methods have been developed to address this close evaluation problem.
Schwab and Wendland [40] have developed a boundary extraction method based on a Taylor series
expansion of the layer potentials. Beale and Lai [10] have developed a method that first regularizes
the nearly singular kernel of the layer potential and then adds corrections for both the discretization
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and the regularization. Beale et al. [11] have extended the regularization method to three-dimensional
problems. Helsing and Ojala [18] developed a method that combines a globally compensated quadrature
rule and interpolation to achieve very accurate results over all regions of the domain. Barnett [9] has
used surrogate local expansions with centers placed near, but not on, the boundary. Klöckner et al. [27]
introduced Quadrature By Expansion (QBX), which uses expansions about accurate evaluation points
far away from the boundary to compute accurate evaluations close to it. There have been several
subsequent studies of QBX [15, 1, 38, 43, 2] that have extended its use and characterized its behavior.

Recently, the authors have applied asymptotic analysis to study the close evaluation problem. For
two-dimensional problems, the authors developed a method that used matched asymptotic expansions
for the kernel of the layer potential [12]. In that method, the asymptotic expansion that captures the
peaked behavior of the kernel (namely, the peaked behavior of the integrand of the layer potential)
can be integrated exactly and the relatively smooth remainder is integrated numerically, resulting in a
highly accurate method. For three-dimensional problems, the authors have developed a simple, three-
step method for computing layer potentials [13]. This method involves first rotating the spherical
coordinate system used to compute the layer potential so that the boundary point at which the
integrand becomes singular is aligned with the north pole. By studying the asymptotic behavior of
the integral, they found that integration with respect to the azimuthal angle is a natural averaging
operation that regularizes the integral thereby allowing for a high-order quadrature rule to be used for
the integral with respect to the polar angle. This numerical method was shown to achieve an error
that decays quadratically with the distance to the boundary provided that the underlying boundary
integral equation for the density is sufficiently resolved.

In this work, we carry out a complete asymptotic analysis of the double-layer potential for the
interior Dirichlet problem for Laplace’s equation in two and three dimensions. By doing so, we derive
asymptotic approximations for the close evaluation of the double-layer potential. These asymptotic
approximations provide valuable insight into the inherent challenges of the close evaluation problem
and an explicit method to address it. We find that the leading-order asymptotic behavior of the double-
layer potential in the close evaluation limit is given by the Dirichlet data at the boundary point closest
to the evaluation point plus a nonlocal correction. It is the nonlocal correction that has made the close
evaluation problem challenging to address. Since this asymptotic analysis explicitly finds this nonlocal
correction, we are able to develop a simple and accurate numerical method to compute the double-layer
potential and thus, address the close evaluation problem systematically. We compute several numerical
examples using the asymptotic approximations to evaluate their efficacy and accuracy.

The asymptotic analysis used here to study the close evaluation problem also provides valuable
insight (and useful asymptotic approximations) for other problems. In particular there is an interesting
connection with forward-peaked scattering in radiative transfer, which is used to describe the multiple
scattering of light [14, 20]. Forward-peaked scattering is an important problem for several applications,
and is challenging to study. We draw this connection and apply the asymptotic analysis developed in
this paper to forward-peaked scattering in radiative transfer.

The remainder of this paper is as follows. We precisely define the close evaluation problem for
the double-layer potential in Section 2. We compute the leading-order asymptotic behavior of the
double-layer potential in two and three dimensions in Sections 3 and 4, respectively. We describe
numerical methods to evaluate the asymptotic approximations for the close evaluation of the double-
layer potential in Section 5. We give several examples demonstrating the accuracy of this numerical
method in Section 6. Section 7 describes the connection between the close evaluation problem and
forward-peaked scattering in radiative transfer. Section 8 gives our conclusions. The Appendix provides
details of the computations for the three-dimensional case: Appendix A gives details of how we rotate
spherical integrals and Appendix B gives a useful derivation of the spherical Laplacian.
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2 Close evaluation of the double-layer potential

Consider a simply connected, open set, denoted by D ⊂ Rn with n = 2, 3, with an analytic close
boundary, B, and let D̄ = D∪B. Given some smooth data f , we write the function u ∈ C2(D)∩C1(D̄)
satisfying the interior Dirichlet problem,

∆u = 0 in D, (2.1a)

u = f on B, (2.1b)

as the double-layer potential,

u(x) =
1

2n−1π

∫
B

νy · (x− y)

|x− y|n
µ(y)dσy, x ∈ D, n = 2, 3. (2.2)

Here, νy denotes the unit outward normal at y ∈ B, dσy denotes the boundary element, and µ, the
density, is a continuous function. This double-layer potential satisfies the following jump relation [17],

lim
x→y?∈B
x∈D

u(x) = u(y?)− 1

2
µ(y?). (2.3)

By requiring that u satisfies (2.1), we find that, in light of jump relation (2.3), µ must satisfy

1

2n−1π

∫
B

νy · (y? − y)

|y? − y|n
µ(y)dσy −

1

2
µ(y?) = f(y?), y? ∈ B, (2.4)

the boundary integral equation for µ.
Here, we seek to evaluate (2.2) at points close to the boundary. To define a close evaluation point

precisely, let 0 < ε� 1 denote a small, dimensionless parameter, and consider

x = y? − ε`ν?, (2.5)

with y? ∈ B denoting the closest point to x on the boundary, ν? denoting the unit, outward normal
at y?, and ` denoting a characteristic length of the problem such as the signed (2D) or mean (3D)
curvature at y? (see Fig. 1).

y?

x

ν?

B

D

εl

y?

x

ν?

B

D

εl

Figure 1: Sketch of the quantities introduced in (2.5) to study evaluation points close to the boundary
in 2D (left) and in 3D (right).

Because the solution of (2.1) continuously approaches its boundary data from within D, we write

u(x) = u(y? − ε`ν?) = f(y?) + εU(y?; ε). (2.6)
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To determine an expression for U , we substitute (2.2) evaluated at (2.5) for u(y?− ε`ν?) and (2.4) for
f(y?) into (2.6), and find that

U(y?; ε) = ε−1

[
1

2
µ(y?) +

1

2n−1π

∫
B

[
νy · (yd − ε`ν?)
|yd − ε`ν?|n

− νy · yd
|yd|n

]
µ(y)dσy

]
, (2.7)

where we have introduced the notation, yd = y? − y. Next, we make use of Gauss’ theorem [17]

1

2n−1π

∫
B

νy · (x− y)

|x− y|n
dσy =


−1 x ∈ D,
− 1

2 x ∈ B,
0 x 6∈ D̄,

(2.8)

to write
1

2
µ(y?) = − 1

2n−1π

∫
B

νy · (yd − ε`ν?)
|yd − ε`ν?|n

µ(y?)dσy +
1

2n−1π

∫
B

νy · yd
|yd|n

µ(y?)dσy. (2.9)

Substituting (2.9) into (2.7) yields

U(y?; ε) =
1

2n−1π

∫
B

ε−1

[
νy · (yd − ε`ν?)
|yd − ε`ν?|n

− νy · yd
|yd|n

]
[µ(y)− µ(y?)]dσy. (2.10)

We seek to determine the asymptotic expansion of U given in (2.10) in the limit as ε → 0+. To
determine this asymptotic expansion, we make use of explicit parametrizations for B. Therefore, we
consider the two and three-dimensional problems separately.

3 Asymptotic analysis in two dimensions

Suppose B is an analytic, closed curve on the plane. For that case, we introduce the parameter
t ∈ [−π, π] such that y = y(t) and y? = y(0). In terms of this parameterization, (2.10) is given by

U(y?; ε) =
1

2π

∫ π

−π
ε−1K(t; ε)[µ̃(t)− µ̃(0)]dt, (3.1)

with µ̃(t) = µ(y(t)), µ̃(0) = µ(y(0)) = µ(y?), and

K(t; ε) =

[
ν̃(t) · (yd(t)− ε`ν?)
|yd(t)− ε`ν?|2

− ν̃(t) · yd(t)
|yd(t)|2

]
J(t), (3.2)

with ν̃(t) = ν(y(t)), yd(t) = y(0)− y(t), and J(t) = |y′(t)|. Note that ν? = ν̃(0).
To determine the asymptotic expansion for U , we introduce the small parameter δ satisfying 0 <

ε� δ � 1, and write
U(y?; ε) = U in(y?; ε, δ) + Uout(y?; ε, δ). (3.3)

Here, the inner expansion, U in, is given by

U in(y?; ε, δ) =
1

2π

∫ δ/2

−δ/2
ε−1K(t; ε) [µ̃(t)− µ̃(0)] dt, (3.4)

and the outer expansion, Uout, is given by

Uout(y?; ε, δ) =
1

2π

∫ −δ/2
−π

ε−1K(t; ε) [µ̃(t)− µ̃(0)] dt +
1

2π

∫ π

δ/2

ε−1K(t; ε) [µ̃(t)− µ̃(0)] dt. (3.5)

The inner expansion involves integration over a small portion of the boundary about y?, whereas the
outer expansion involves integration over the remaining portion of the boundary.

We determine the leading-order asymptotic behaviors of U in and Uout in the sections below. Then,
we combine those results to obtain the asymptotic approximation for the double-layer potential in two
dimensions, and discuss higher-order asymptotic approximations. We have developed a Mathematica
notebook that contains the presented calculations, available in a GitHub repository [23].
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3.1 Inner expansion

To determine the leading-order asymptotic behavior of U in, we substitute t = εT into (3.4), and obtain

U in(y?; ε, δ) =
1

2π

∫ δ/2ε

−δ/2ε
K(εT ; ε) [µ̃(εT )− µ̃(0)] dT. (3.6)

Recognizing that ν̃(εT ) = ν? +O(ε) and yd(εT ) = −εTy′(0) +O(ε2) with ν? · y′(0) = 0, we find that
by expanding K(εT ; ε) about ε = 0 that

K(εT ; ε) = − ε−1`J(0)

T 2J2(0) + `2
+O(1). (3.7)

Using the fact that this leading-order behavior is even in T , and expanding µ̃ about ε = 0, we can
substitute into (3.6) to get, after expanding about δ = 0,

U in(y?; ε, δ) =
1

2π

∫ δ/2ε

−δ/2ε

[
− ε−1`J(0)

T 2J2(0) + `2
+O(1)

]
[µ̃(εT )− µ̃(0)] dT

=
1

2π

∫ δ/2ε

0

[
− ε−1`J(0)

T 2J2(0) + `2
+O(1)

]
[µ̃(εT ) + µ̃(−εT )− 2µ̃(0)] dT

=
1

2π

∫ δ/2ε

0

[
− ε−1`J(0)

T 2J2(0) + `2
+O(1)

] [
ε2T 2µ̃′′(0) +O(ε4)

]
dT

=
1

2π

∫ δ/2ε

0

[
− εT 2`J(0)

T 2J2(0) + `2
µ̃′′(0) +O(ε2)

]
dT

= − δ`

4πJ(0)
µ̃′′(0) +O(ε).

(3.8)

This result gives the leading-order asymptotic behavior of U in.

3.2 Outer expansion

To determine the leading-order asymptotic behavior of Uout, we expand K(t; ε) about ε = 0 and find
that K(t; ε) = [εK1(t) +O(ε2)]J(t), with

K1(t) = `
2(ν̃(t) · yd(t))(ν? · yd(t))− ν̃(t) · ν?|yd(t)|2

|yd(t)|4
. (3.9)

Substituting this expansion into (3.5), we find that

Uout(y?; ε, δ) =
1

2π

∫ −δ/2
−π

K1(t) [µ̃(t)− µ̃(0)] J(t)dt +
1

2π

∫ π

δ/2

K1(t) [µ̃(t)− µ̃(0)] J(t)dt + O(ε).

(3.10)

To eliminate δ from the integration limits, we rewrite (3.10) as

Uout(y?; ε, δ) =
1

2π

∫ π

−π
K1(t) [µ̃(t)− µ̃(0)] J(t)dt− V out(y?; ε, δ) +O(ε) (3.11)

with

V out(y?; ε, δ) =
1

2π

∫ δ/2

−δ/2
K1(t) [µ̃(t)− µ̃(0)] J(t)dt. (3.12)

5



To determine the leading-order behavior for V out, we proceed exactly as in section 3.1. We substitute
t = εT into (3.12) and obtain

V out(y?; ε, δ) =
1

2π

∫ δ/2ε

−δ/2ε
K1(εT ) [µ̃(εT )− µ̃(0)] J(εT )εdT (3.13)

Again, by recognizing that ν̃(εT ) = ν? +O(ε) and yd(εT ) = −εTy′(0) +O(ε2) with ν? · y′(0) = 0, we
find that

K1(εT ) = − ε−2`

T 2J2(0)
+O(ε−1). (3.14)

Using the fact that this leading-order behavior is even in T , and that J(εT ) = J(0) +O(ε), when we
substitute it into (3.13), we find, after expanding about δ = 0, that

V out(y?; ε, δ) =
1

2π

∫ δ/2ε

−δ/2ε

[
− ε−2`

T 2J2(0)
+O(ε−1)

]
[µ̃(εT )− µ̃(0)] J(εT )εdT

=
1

2π

∫ δ/2ε

0

[
− ε−2`

T 2J2(0)
+O(ε−1)

]
[µ̃(εT ) + µ̃(−εT )− 2µ̃(0)] [J(0) +O(ε)] εdT

=
1

2π

∫ δ/2ε

0

[
− ε−1`

T 2J(0)
+O(1)

] [
ε2T 2µ̃′′(0) +O(ε4)

]
dT

=
1

2π

∫ δ/2ε

0

[
− ε`

J(0)
µ̃′′(0) +O(ε2)

]
dT

= − δ`

4πJ(0)
µ̃′′(0) +O(ε).

(3.15)

Substituting this result into (3.11), we find that the leading-order asymptotic behavior for Uout is
given by

Uout(y?; ε, δ) =
1

2π

∫ π

−π
K1(t) [µ̃(t)− µ̃(0)] J(t)dt+

δ`

4πJ(0)
µ̃′′(0) +O(ε). (3.16)

3.3 Two-dimensional asymptotic approximation

We obtain an asymptotic approximation for U by summing the leading-order behaviors obtained for
U in and Uout given in (3.8) and (3.16), respectively. Substituting that result into (2.6), we obtain the
following asymptotic approximation,

u(y? − ε`ν?) = f(y?) + εL1[µ] +O(ε2), (3.17)

with

L1[µ] =
1

2π

∫ π

−π
K1(t) [µ̃(t)− µ̃(0)] J(t)dt, (3.18)

where K1 is given by (3.9). Naturally, the obtained asymptotic approximation doesn’t depend on the
arbitrary parameter δ.

Asymptotic approximation (3.17) gives an explicit approximation for the close evaluation of the
double-layer potential in two dimensions. According to the asymptotic analysis, the error of this
approximation is O(ε2). It gives the double-layer potential as the Dirichlet data at the boundary point
y? closest to the evaluation point x plus a nonlocal correction. This nonlocal correction is consistent
with the fact that solutions to elliptic partial differential equations have a global dependence on their
boundary data. The leading-order asymptotic expansion indicates that the nonlocal correction only
comes from the outer expansion, and the inner expansion doesn’t contribute to the lower order terms.
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3.4 Higher-order asymptotic approximations

By continuing on to higher order terms in the expansions for U in and Uout, we can obtain higher-order
asymptotic approximations. This process will not be demonstrated here, because the calculations
become unwieldy, details can be found in the developed Mathematica notebook [23]. The result from
these calculations is

u(y? − ε`ν?) = f(y?) + εL1[µ] + ε2

[
L2[µ]− `2y′(0) · y′′(0)

4J4(0)
µ̃′(0) +

`2

4J2(0)
µ̃′′(0)

]
+ O(ε3), (3.19)

with L1[µ] given in (3.18), and

L2[µ] =
1

2π

∫ π

−π
K2(t) [µ̃(t)− µ̃(0)] J(t)dt, (3.20)

where

K2(t) = `2
(ν · yd)

[
4(ν? · yd)2 − |yd|2

]
− 2|yd|2(ν · ν?)(ν? · yd)

|yd|6
. (3.21)

This asymptotic approximation has an error that is O(ε3). In addition to nonlocal terms, this approx-
imation includes local contributions made by first and second derivatives of the density, µ, evaluated
at the boundary point y?. The local contributions come from the inner expansion.

4 Asymptotic analysis in three dimensions

Suppose B is an analytic, closed, and oriented surface. We introduce the parameters s ∈ [0, π] and
t ∈ [−π, π] such that y = y(s, t) and y? = y(0, ·). In terms of this parameterization, (2.10) is given by

U(y?; ε) =
1

4π

∫ π

−π

∫ π

0

ε−1K(s, t; ε) [µ̃(s, t)− µ̃(0, ·)] sin(s)dsdt, (4.1)

with µ̃(s, t) = µ(y(s, t)), µ̃(0, ·) = µ(y(0, ·)), and

K(s, t; ε) =

[
ν̃(s, t) · (yd(s, t)− ε`ν?)
|yd(s, t)− ε`ν?|3

− ν̃(s, t) · yd(s, t)
|yd(s, t)|3

]
J(s, t), (4.2)

with ν̃(s, t) = νy, yd(s, t) = y(0, ·)− y(s, t), J(s, t) = |ys(s, t)× yt(s, t)|/ sin(s). Note that ν? = ν̃(0, ·).
Just as we have done for the two dimensional problem, we introduce the small parameter δ satisfying

0 < ε� δ � 1, and write
U(y?; ε) = U in(y?; ε, δ) + Uout(y?; ε, δ). (4.3)

Here, the inner expansion is given by

U in(y?; ε, δ) =
1

4π

∫ π

−π

∫ δ

0

ε−1K(s, t; ε) [µ̃(s, t)− µ̃(0, ·)] sin(s)dsdt, (4.4)

and the outer expansion is given by

Uout(y?; ε, δ) =
1

4π

∫ π

−π

∫ π

δ

ε−1K(s, t; ε) [µ̃(s, t)− µ̃(0, ·)] sin(s)dsdt. (4.5)

Again, we determine the leading-order asymptotic behaviors for U in and Uout separately. Then, we
combine those results to obtain an asymptotic approximation for the close evaluation of the double-
layer potential in three dimensions and discuss higher-order asymptotic approximations. Some details
can be found in the developed Mathematica notebook available on GitHub [23].
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4.1 Inner expansion

To find the leading-order asymptotic behavior of U in, we substitute s = εS into (4.4), and obtain

U in(y?; ε, δ) =
1

4π

∫ π

−π

∫ δ/ε

0

K(εS, t; ε) [µ̃(εS, t)− µ̃(0, ·)] sin(εS)dSdt. (4.6)

Recognizing that ν̃(εS, t) = ν? + O(ε), and yd(εS, t) = −εSys(0, ·) + O(ε2) with the vector ys(0, ·)
lying on the plane tangent to B at y?, we find by expanding K(εS, t; ε) about ε = 0 that

K(εS, t; ε) = − ε−2`J(0, ·)
(S2|ys(0, ·)|2 + `2)3/2

+O(ε−1). (4.7)

Since this leading-order asymptotic behavior for K(εS, t; ε) is independent of t, we write

U in(y?; ε, δ) =
1

4π

∫ π

0

∫ δ/ε

0

[
− ε−2`J(0, ·)

(S2|ys(0, ·)|2 + `2)3/2
+O(ε−1)

]
[µ̃(εS, t) + µ̃(εS, t+ π)− 2µ̃(0, ·)] sin(εS)dSdt. (4.8)

Next, we use the regularity of µ̃ over the north pole to substitute µ̃(εS, t+ π) = µ̃(−εS, t), so that

µ̃(εS, t) + µ̃(εS, t+ π)− 2µ̃(0, ·) = µ̃(εS, t) + µ̃(−εS, t)− 2µ̃(0, ·)
= ε2S2µ̃ss(0, ·) +O(ε4).

(4.9)

Thus, we find after substituting (4.9) and sin(εS) = εS +O(ε3) into (4.8) that

U in(y?; ε, δ) =
1

4π

∫ π

0

∫ δ/ε

0

[
− εS3`J(0, ·)

(S2|ys(0, ·)|2 + `2)3/2
µ̃ss(0, ·) +O(ε2)

]
dSdt

= −`J(0, ·)
8

∆S2µ(y?)

∫ δ/ε

0

[
εS3

(S2|ys(0, ·)|2 + `2)3/2
+O(ε2)

]
dS,

(4.10)

where we have used the fact that

1

π

∫ π

0

µ̃ss(0, ·)dt =
1

2
∆S2µ(y?), (4.11)

with ∆S2µ(y?) denoting the spherical Laplacian of µ evaluated at y? (see Appendix B). Furthermore,
when expanding about δ = 0 we have∫ δ/ε

0

[
εS3

(S2|ys(0, ·)|2 + `2)3/2
+O(ε2)

]
dS =

δ

|ys(0, ·)|3
+O(ε), (4.12)

we determine that

U in(y?; ε, δ) = − δ`J(0, ·)
8|ys(0, ·)|3

∆S2µ(y?) +O(ε). (4.13)

This result gives the leading-order asymptotic behavior of U in.

4.2 Outer expansion

To determine the leading-order asymptotic behavior of Uout, we expand K(s, t; ε) about ε = 0 and
find K(s, t; ε) =

[
εK1(s, t) +O(ε2)

]
J(s, t), with

K1(s, t) = `
3(ν̃(s, t) · yd(s, t))(ν? · yd(s, t))− |yd(s, t)|2ν̃(s, t) · ν?

|yd(s, t)|5
. (4.14)
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Substituting this expansion into (4.5), we obtain

Uout(y?; ε, δ) =
1

4π

∫ π

−π

∫ π

δ

K1(s, t) [µ̃(s, t)− µ̃(0, ·)] J(s, t) sin(s)dsdt+O(ε). (4.15)

To eliminate δ as a limit of integration in (4.15), we write

Uout(y?; ε, δ) =
1

4π

∫ π

−π

∫ π

0

K1(s, t) [µ̃(s, t)− µ̃(0, ·)] J(s, t) sin(s)dsdt−V out(y?; ε, δ)+O(ε), (4.16)

with

V out(y?; ε, δ) =
1

4π

∫ π

−π

∫ δ

0

K1(s, t) [µ̃(s, t)− µ̃(0, ·)] J(s, t) sin(s)dsdt. (4.17)

To determine the leading-order asymptotic behavior of V out(y?; ε, δ), we proceed as in section 4.1.
We substitute s = εS into (4.17), and obtain

V out(y?; ε, δ) =
1

4π

∫ π

−π

∫ δ/ε

0

K1(εS, t) [µ̃(εS, t)− µ̃(0, ·)] J(εS, t) sin(εS)εdSdt. (4.18)

Recognizing that ν̃(εS, t) = ν? + O(ε), and yd(εS, t) = −εSys(0, ·) + O(ε2) with the vector ys(0, ·)
lying on the plane tangent to B at y?, we find by expanding K1(εS, t) about ε = 0 that

K1(εS, t) = − ε−3`

S3|ys(0, ·)|3
+O(ε−2). (4.19)

Since the leading-order behavior of K1 is independent of t, we use (4.9), plus knowing that J(εS, t) =
J(0, ·) +O(ε) and sin(εS) = εS +O(ε3) to obtain, after expanding about δ = 0

V out(y?; ε, δ) =
1

4π

∫ π

0

∫ δ/ε

0

[
− ε`J(0, ·)
|ys(0, ·)|3

µ̃ss(0, ·) +O(ε2)

]
dSdt

= − δ`J(0, ·)
8|ys(0, ·)|3

∆S2µ(y?) +O(ε).

(4.20)

Note that we have used (4.11) in the last step. Substituting this result into (4.16), we find that

Uout(y?; ε, δ) =
1

4π

∫ π

−π

∫ π

0

K1(s, t) [µ̃(s, t)− µ̃(0, ·)] J(s, t) sin(s)dsdt+δ
`J(0, ·)

8|ys(0, ·)|3
∆S2µ(y?)+O(ε).

(4.21)

This result gives the leading-order asymptotic behavior of Uout.

4.3 Three-dimensional asymptotic approximation

We obtain an asymptotic approximation for U by summing the leading-order behaviors obtained for
U in and Uout given in (4.13) and (4.21), respectively. Substituting that result into (2.6), we obtain
the following asymptotic approximation

u(y? − ε`ν?) = f(y?) + εL1[µ] +O(ε2), (4.22)

with

L1[µ] =
1

4π

∫ π

−π

∫ π

0

K1(s, t) [µ̃(s, t)− µ̃(0, ·)] J(s, t) sin(s)dsdt. (4.23)

The structure of this asymptotic approximation for the close evaluation of the double-layer potential in
three dimensions is exactly the same as what we found for the two-dimensional case: the leading-order
asymptotic approximation is composed of the Dirichlet data and a non-local term coming from the
outer expansion. Similarly, high-order asymptotic approximations could be obtained by continuing on
to higher order terms in the expansions U in and Uout after cumbersome calculations.
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5 Numerical methods

Numerical methods to compute the asymptotic approximations for the close evaluation of the double-
layer potential must be sufficiently accurate in comparison to O(ε). Otherwise, the error made by the
numerical method will dominate over the error of the asymptotic approximation. On the other hand, if
the numerical method requires restrictively high resolution to compute the asymptotic approximation
to sufficient accuracy, the numerical method suffers from the very issue of the close evaluation problem.
In what follows, we describe numerical methods to compute the asymptotic approximations derived
above at high accuracy with modest resolution requirements.

5.1 Two dimensions

Suppose we have parameterized B by y = y(ϕ) with −π ≤ ϕ ≤ π with y? = y(ϕ?). For that case, we
need to compute

U1(y?) =
1

2π

∫ π

−π
F1(ϕ;ϕ?)dϕ, (5.1)

with
F1(ϕ;ϕ?) = K1(ϕ)J(ϕ) [µ̃(ϕ)− µ̃(ϕ?)] , (5.2)

where K1 is given in (3.9). The function, K1, is singular at ϕ = ϕ?. Consequently, applying a high
order accurate numerical quadrature rule to compute U1 will be limited in its accuracy even though F1

vanishes identically at ϕ = ϕ? due to the factor of µ̃(ϕ)−µ̃(ϕ?). To improve the accuracy of a numerical
evaluation of (5.1), we revisit the asymptotic expansion obtained for V out(y?; ε, δ) in (3.13)-(3.15). By
rewriting that result for the present context, we find

1

2π

∫ δ/2

−δ/2
F1(ϕ;ϕ?)dϕ = − δ

4π

`µ̃′′(ϕ?)

J(ϕ?)
+O(ε). (5.3)

This result suggests the following method to compute U1(y?) numerically using theN -point periodic
trapezoid rule (PTR). Suppose we are given the grid function, µ̃(ϕj) for j = 1, · · · , N with ϕj =
−π+ 2π(j − 1)/N , and suppose ϕ? = ϕk is one of the quadrature points. We introduce the numerical
approximation

U1(y?) ≈ UN1 (y?) =
1

N

∑
j 6=k

F1(ϕj ;ϕk)− `µ̃′′(ϕk)

2NJ(ϕk)
. (5.4)

where we have replaced the quadrature around ϕ? with (5.3) where δ = 2π/N . We compute µ̃′′(ϕk)
with spectral accuracy using Fast Fourier transform methods. Using this numerical approximation, we
compute the O(ε2) asymptotic approximation for the close evaluation of the double-layer potential in
two dimensions through evaluation of

u(y? − ε`ν?) ≈ f(y?) + εUN1 (y?) +O(ε2). (5.5)

To compute the O(ε3) asymptotic approximation, in addition to U1, we need to compute

U2(y?) =
1

2π

∫ π

−π
F2(ϕ;ϕ?)dϕ (5.6)

where
F2(ϕ;ϕ?) = K2(ϕ)J(ϕ) [µ̃(ϕ)− µ̃(ϕ?)] , (5.7)

and K2 given in (3.21). By using the higher-order asymptotic expansion for V out (computed on the
Mathematica notebook available on the GitHub repository [23]), we apply the same method used for
U1(y?) and arrive at

U2(y?) ≈ UN2 =
1

N

∑
j 6=k

F2(ϕj ;ϕk)− `2κ?µ̃′′(ϕk)

4NJ(ϕk)
, (5.8)
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with κ? denoting the signed curvature at y?. Using this numerical approximation, we compute the
O(ε3) asymptotic approximation for the close evaluation of the double-layer potential in two dimensions
through evaluation of

u(y? − ε`ν?) ≈ f(y?) + εUN1 (y?) + ε2

[
UN2 (y?)− `2y′(ϕ?) · y′′(ϕ?)

4J4(ϕ?)
µ̃′(ϕ?) +

`2µ̃′′(ϕ?)

4J2(ϕ?)

]
+ O(ε3).

(5.9)

Since the boundary is given, we are able to compute y′(ϕ) and y′′(ϕ), explicitly. We use Fast Fourier
transform methods to compute µ̃′(ϕ) and µ̃′′(ϕ) with spectral accuracy.

5.2 Three dimensions

Suppose we have parameterized B by y = y(θ, ϕ) with θ ∈ [0, π] and ϕ ∈ [−π, π] with y? = y(θ?, ϕ?).
For that case, we seek to compute

U1(y?) =
1

4π

∫ π

−π

∫ π

0

F1(θ, ϕ; θ?, ϕ?) sin(θ)dθdϕ, (5.10)

with
F1(θ, ϕ; θ?, ϕ?) = K1(θ, ϕ)J(θ, ϕ) [µ̃(θ, ϕ)− µ̃(θ?, ϕ?)] , (5.11)

where K1 is given in (4.14). Just as with the two-dimensional case, the function K1 is singular at
(θ, ϕ) = (θ?, ϕ?), so any attempt to apply a quadrature rule to compute U1 will be limited in its
accuracy even though F1 vanishes identically at (θ?, ϕ?) due to the factor of µ̃(θ, ϕ)− µ̃(θ?, ϕ?).

To numerically evaluate (5.10), we apply a three-step method developed by the authors [13]. This
method has been shown to be effective for computing the modified double-layer potential in three
dimensions resulting from the subtraction method. We first rotate this integral to another spherical
coordinate system in which y? is aligned with the north pole. The details of this rotation are given in
Appendix A and lead to θ = θ(s, t) and ϕ = ϕ(s, t) with s ∈ [0, π] and t ∈ [−π, π] where θ? = θ(0, ·)
and ϕ? = ϕ(0, ·). We apply this rotation and find that

U1(y?) =
1

4π

∫ π

−π

∫ π

0

F̃ (s, t) sin(s)dsdt, (5.12)

with F̃ (s, t) = F1(θ(s, t), ϕ(s, t); θ?, ϕ?). Now K̃1(θ(s, t), ϕ(s, t)) is singular at the north pole of this
rotated coordinate system corresponding to s = 0. To improve the accuracy of a numerical evaluation
of (5.12), we revisit the asymptotic expansion obtained for V out(y?; ε, δ) in (4.20). By rewriting that
result for the present context, we find

1

2

∫ δ

0

[
1

2π

∫ π

−π
F̃ (s, t)dt

]
sin(s)ds =

∫ δ

0

[
− `J(0, ·)

8|ys(0, ·)|3
∆S2µ(y?)

]
ds+O(ε). (5.13)

Suppose we compute

F̄ (s) =
1

2π

∫ π

−π
F̃ (s, t)dt. (5.14)

The result in (5.13) suggests that F̄ (s) smoothly limits to a finite value as s→ 0. Although we could
use this result to evaluate F̄ (s) in a numerical quadrature scheme, it will suffice to consider an open
quadrature rule for s that does not include the point s = 0 such as the Gauss-Legendre quadrature.
This result suggests the following three-step method to compute U1(y?) numerically.

Let tk = −π+π(k−1)/N for k = 1, · · · , 2N , and let zj and wj for j = 1, · · · , N denote the N -point
Gauss-Legendre quadrature abscissas and weights such that∫ 1

−1

f(x)dx ≈
N∑
j=1

f(zj)wj . (5.15)
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We perform the mapping: sj = π(zj + 1)/2 for j = 1, · · · , N , and make appropriate adjustments to
the weights as will be shown below. For the first step, we rotate the spherical coordinate system so
that y? is aligned with its north pole as described in Appendix A. For the second step, we compute

F̄ (sj) ≈ F̄Nj =
1

2N

2N∑
k=1

F̃ (sj , tk), j = 1, · · · , N. (5.16)

For the third step, we compute the numerical approximation

U1(y?) ≈ UN1 (y?) =
π

4

N∑
j=1

F̄Nj wj . (5.17)

In (5.17), a factor of π/2 is introduced to scale the quadrature weights due to the mapping from zj to
sj , and a factor of 1/2 remains from the factor of 1/4π in (5.10).

Using the numerical approximation UN1 , we compute the O(ε2) asymptotic approximation for the
close evaluation of the double-layer potential in three dimensions through evaluation of

u(y? − ε`ν?) ≈ f(y?) + εUN1 (y?) +O(ε2). (5.18)

6 Numerical results

We present results that show the accuracy and efficiency of the asymptotic approximation and the
corresponding numerical method for the close evaluation of the double-layer potential. For all of the
examples shown, we prescribe Dirichlet data corresponding to a particular harmonic function. With
that Dirichlet data, we solve the boundary integral equation (2.4) numerically to obtain the density, µ.
We use that density to compute the double-layer potential using different methods, for comparison. The
results below show the error made in computing the harmonic function at close evaluation points. The
Matlab codes used to compute all of the following examples are available in a GitHub repository [23].

6.1 Two dimensions

For the two-dimensional examples, we use the harmonic function,

u(x) = − 1

2π
log |x− x0|, (6.1)

with x0 ∈ R2\D̄ and prescribe Dirichlet data by evaluating this function on the boundary. We solve the
boundary integral equation (2.4) using the Nyström method with the N -point Periodic Trapezoid Rule
(PTR) resulting in the numerical approximation for the density, µ̃j ≈ µ̃(ϕj) with ϕj = −π+2(j−1)π/N
for j = 1, · · · , N .

We compute the close evaluation of the double-layer potential at points, x = y? − εν?, using the
following four methods:

1. PTR method – Compute the double-layer potential,

u(y? − εν?) =
1

2π

∫ π

−π

νy · (y? − εν? − y)

|y? − εν? − y|2
µ(y)dσy,

using the same N -point PTR used to solve (2.4) .

2. Subtraction method – Compute the modified double-layer potential,

u(y? − εν?) = −µ(y?) +
1

2π

∫ π

−π

νy · (y? − εν? − y)

|y? − εν? − y|2
[µ(y)− µ(y?)] dσy,

using the same N -point PTR used to solve (2.4) and as in the first method.
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3. O(ε2) asymptotic approximation – Compute the O(ε2) asymptotic approximation given by
(3.17) using the new numerical method given in (5.5) using the same N -point PTR used to solve
(2.4).

4. O(ε3) asymptotic approximation – Compute the O(ε3) asymptotic approximation given by
(3.19) using the new numerical method given in (5.9) using the same N -point PTR used to solve
(2.4).

We consider two different domains:

• A kite domain whose boundary is given by

y(t) = (cos t+ 0.65 cos 2t− 0.65, 1.5 sin t), −π ≤ t ≤ π. (6.2)

• A star domain whose boundary is given by

y(t) = r(t)(cos t, sin t), r(t) = 1 + 0.3 cos 5t, −π ≤ t ≤ π. (6.3)

For both examples we pick x0 = (1.85, 1.65) which lies outside the domains. We consider N fixed, here
N = 128, and study the dependence of the error on ε as ε→ 0.

In Fig. 2 we show results for the kite domain. The error, using a log scale, is presented for each
of the four methods described above. The results show that the PTR method exhibits an O(1) error
as ε→ 0. The subtraction method and the asymptotic approximations all show substantially smaller
errors.

To compare the four methods more quantitatively, in Fig. 3 we plot the errors made by the four
methods at yA − ενA (left) and yB − ενB (right) with 10−6 ≤ ε ≤ 10−1 where νA and νB are the unit
outward normals at yA = (−1.3571,−1.0607), and yB = (0.0571, 1.0607), respectively. The points yA
and yB are shown in each plot of Fig. 2. From the results in Fig. 3 we observe that, the error when
using the PTR method increases as ε→ 0+, while the error in the other three methods decreases. The
errors made by the asymptotic approximations are monotonically decreasing as ε → 0+. However,
the error made by the subtraction method presents a different behavior: it reaches a maximum at
ε ≈ 10−2 after which it decreases as ε increases. For larger values of ε, the double-layer potential
is no longer nearly singular, so the N -point PTR (and therefore methods 1 and 2) become more
accurate. The error is at a maximum for the subtraction method when ε = O(1/N), which is why
we observe the maximum error occuring at ε ≈ 10−2. The results in Fig. 3 show a clear difference in
the rate at which the errors vanish as ε → 0+ between the subtraction method and the asymptotic
approximation methods. The O(ε3) asymptotic approximation decays the fastest, followed by the
O(ε2) asymptotic approximation, and then the subtraction method. For ε < 10−4, the error incurred
by the O(ε3) asymptotic approximation levels out at machine precision. We estimate the rate at which
the subtraction method and the asymptotic approximation methods decay with respect to ε from the
slope of the best fit line through the log− log plot of the error versus ε in Fig. 4. We compute the slope
for each evaluation point y(tj)− εν̃(tj) where tj = −π+ 2(j− 1)π/N for j = 1, · · · , N , and we vary ε.
For the subtraction method, we consider ε values such that 10−6 ≤ ε ≤ 10−2, and for the O(ε2) and
O(ε3) asymptotic approximation methods, we consider the same range but only include values where
the error is greater than 10−15. The results shown in Fig. 4 indicate that the subtraction method
decays linearly with ε, and the rates of the asymptotic approximations are consistent with the theory
presented in Section 3.

For the second example of computing the double-layer potential in the star domain, Figures 5, 6,
and 7 are analogous to Figures 2, 3, and 4 for the kite domain. The characteristics of the errors for
this second domain are exactly the same as described for the kite domain.

Summary of the results

In the case of two dimensional-problems, the subtraction method yields a method whose error decays
linearly with the distance away from the boundary. The O(ε2) and O(ε3) asymptotic approximations
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Figure 2: Plots of log10 of the error for the evaluation of the double-layer potential in the kite domain
defined by (6.2) using four methods: the PTR method (upper left), the subtraction method (upper
right), the O(ε2) asymptotic approximation method (lower left), and the O(ε3) asymptotic approxi-
mation method (lower right). In each of these plots, boundary points yA = (−1.3571,−1.0607) and
yB = (0.0571, 1.0607) are plotted as red ×’s.
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Figure 3: Log-log plots of the errors made in computing the double-layer potential by the four methods
shown in Fig. 2 at yA − ενA (left) and at yB − ενB (right) for 10−6 ≤ ε ≤ 10−1.

methods are much more accurate for close evaluation points. Moreover, only relatively modest reso-
lution is required for these asymptotic approximations to be effective. However, the error for these
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Figure 4: Estimated order of accuracy in computing the double-layer potential in the kite domain
when using the subtraction method (blue ◦), the O(ε2) asymptotic approximation method (red ×),
and the O(ε3) asymptotic approximation method (yellow +) for varying values of t.

asymptotic approximations are monotonically increasing with the distance to the boundary, so they
are not accurate for points further away from the boundary. The error estimates provided by the
asymptotic theory provide guidance on where to apply these asymptotic approximations effectively.
For all of these reasons, we find that the asymptotic approximations and corresponding numerical
methods are quite useful for two-dimensional problems.

6.2 Three dimensions

Let (x1, x2, x3) denote an ordered triple in a Cartesian coordinate system. To study the computation
of the double-layer potential in three dimensions, we consider the harmonic function,

u(x1, x2, x3) =
1√

(x1 − 5)2 + (x2 − 4)2 + (x3 − 3)2
(6.4)

in the domain whose boundary is given by

y(θ, ϕ) = R(θ)(sin θ cosϕ, 2 sin θ sinϕ, cos θ), 0 ≤ θ ≤ π, −π ≤ ϕ ≤ π, (6.5)

with

R(θ) = 2− 1

1 + 100(1− cos θ)2
. (6.6)

This boundary surface is shown in Fig. 8 (left) along with its intersection with the vertical x1x3-plane
(center) and the horizontal x1x2-plane (right).

We solve boundary integral equation (2.4) using the Galerkin method [4, 5, 6, 7]. The Galerkin
method approximates the density according to

µ̃(θ, ϕ) ≈ µ̃N (θ, ϕ) =

N−1∑
n=0

n∑
m=−n

µ̂nmYnm(θ, ϕ), (6.7)

with {Ynm} denoting the orthonormal set of spherical harmonics. For these results, we have set N = 48.
We have computed the close evaluation of the double-layer potential at points x = y?− εν?, using the
following two different methods for comparison.
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Figure 5: Plots of log10 of the error for the evaluation of the double-layer potential in the star domain
defined by (6.3) using four methods: the PTR method (upper left), the subtraction method (upper
right), the O(ε2) asymptotic approximation method (lower left), and the O(ε3) asymptotic approxi-
mation method (lower right). In each of these plots, boundary points yA = (−1.3571,−1.0607) and
yB = (0.0571, 1.0607) are plotted as red ×’s.
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Figure 6: Log-log plots of the errors made in computing the double-layer potential by the four methods
shown in Fig. 5 at yA − ενA (left) and at yB − ενB (right) for 10−6 ≤ ε ≤ 10−1.

1. Numerical approximation – Compute the modified double-layer potential,

u(y? − εν?) = −µ(y?) +
1

4π

∫
B

νy · (y? − εν? − y)

|y? − εν? − y|3
[µ(y)− µ(y?)] dσy,

16



-4 -3 -2 -1 0 1 2 3 4

0

0.5

1

1.5

2

2.5

3

3.5

4

Figure 7: Estimated order of accuracy in computing the double-layer potential in the star domain
when using the subtraction method (blue ◦), the O(ε2) asymptotic approximation method (red ×),
and the O(ε3) asymptotic approximation method (yellow ∗) for varying values of t.
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Figure 8: The boundary surface defined by (6.5)-(6.6) that is used to exemplify the evaluation of
the double layer potential in three dimensions (left), and the intersections of this boundary with the
x1x3-plane (center), and x1x2-plane (right).

using the three-step numerical method given by Carvalho et al. [13]. For the first step, the
modified double-layer potential is written as a spherical integral that has been rotated so that
y? is aligned with the north pole. For the second step, the 2N -point PTR is used to compute
the integral in the azimuthal angle. For the third step, the N -point Gauss-Legendre quadrature
rule mapped to [0, π] is used to compute the integral in the polar angle.

2. O(ε2) Asymptotic approximation – Compute the asymptotic approximation given by (4.22)
using the method given in (5.18) (with N = 48).

The error of the numerical method has been shown to decay quadratically with ε when ε� 1/N [13].
This quadratic error decay occurs because, in the rotated coordinate system, the azimuthal integration
acts as an averaging operation yielding a smooth function of the polar angle that is computed to high
order using Gaussian quadrature. However, this asymptotic error estimate is valid only when the
numerical approximation of the density is sufficiently resolved. If N in (6.7) is not sufficiently large
that |µ̂nm| for n > N is negligibly small, then the truncation error associated with (6.7) may interrupt
this quadratic error decay. For the domain here, with N = 48, we find that the estimated truncation
error for (6.7) is approximately 10−8. While this error is relatively small, it is not small enough to
observe the error’s quadratic rate of decay. We would have to consider a much larger value of N to
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observe that decay rate. However, computing the numerical solution of boundary integral equation
(2.4) with N > 48 becomes restrictively large. Hence, we evaluate below what the subtraction method
and the O(ε2) asymptotic approximation do in this limited resolution situation.

Error results for the computation of the double-layer potential in this domain for each of the
two methods described above appear in Fig. 9. The top row shows the error on the slice of the
domain through the vertical x1x3-plane for the numerical method (left) and the O(ε2) asymptotic
approximation method (right).The point yA = (1.7830, 0, 0.8390) is plotted as a red × symbol in both
plots. The bottom row shows the errors of the same methods (left for the numerical method, right for
the O(ε2) asymptotic approximation) on the slice of the domain through the horizontal x1x2-plane.
The point yB = (1.7439, 1.19175, 0) is plotted as a red × symbol in both plots.

In Fig. 10, we show the errors computed at yA − ενA (left) and yB − ενB (right) for varying ε,
where νA and νB are the unit outward normals at yA, and yB , respectively. In contrast to the two-
dimensional results, we find that the error for the numerical method is approximately 10−8 for all
values of ε. This error is due to the truncation error made by the Galerkin method. Because the
truncation error dominates at this resolution, we are not able to see its quadratic decay as ε → 0+.
If a higher resolution computation was used to solve the boundary integral equation, the error of the
numerical method would exhibit a similar behavior to that made by the subtraction method for the
two-dimensional examples. In particular, the error would have a maximum at ε = O(1/N) about
which the error decays. We observe that the O(ε2) asymptotic method decays monotonically with ε
even when N = 48.

We estimate the order of accuracy in Fig. 11. The results for the esimated order of accuracy over
the points intersecting the vertical x1x3-plane are shown in the left plot of Fig. 11. For those results we
determine the estimated order of accuracy by determining the best fit line through the log− log plot
of the error versus ε for several values of the extended polar angle, s0 ∈ [0, 2π]. This extended polar
angle parameterizes the circle on the unit sphere lying on the x1x3-plane that starts and ends at the
north pole. The results for the esimated order of accuracy over the points intersecting the horizontal
x1x2-plane are shown in the right plot of Fig. 11. For those results we determine the estimated order
of accuracy by determining the best fit line through the log− log plot of the error versus ε for several
values of the azimuthal angle, t0 ∈ [0, 2π]. Because of the resolution limitation in the Galerkin method,
we are not able to see that the order of accuracy for the numerical method is two. In fact, the error is
nearly uniform with respect to ε because it is the truncation error of (6.7) that is dominating. Despite
the resolution limitation in the Galerkin method, we find that the O(ε2) asymptotic approximation
has an order accuracy of nearly two.

Summary of the results

For three-dimensional problems, the subtraction method is more effective when computed in an ap-
propriate rotated coordinate system than for two-dimensional problems. The subtraction method is
more effective in three dimensions because in this rotated coordinate system, integration with respect
to the azimuthal angle is a natural averaging operation that regularizes the integral thereby allowing
for the use of a high-order quadrature rules for integration with respect to the polar angle. Provided
that the density is sufficiently resolved, the subtraction method has been shown to decay quadratically
with the distance away from the boundary [13]. The O(ε2) asymptotic approximation also decays
quadratically. However, it is not as sensitive to the accuracy of the density. For this reason, we find
that the asymptotic approximation is still useful for three-dimensional problems, especially when the
density is not highly resolved.

7 Extension to forward-peaked scattering in radiative transfer

The asymptotic approximations developed here for the close evaluation of the double-layer potential
can be extended to other problems. In particular, there is an interesting connection between the close
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Figure 9: Plots of log10 of the error made in computing the double-layer potential by the numerical ap-
proximation (left column) and the O(ε2) asymptotic approximation (right column) in the domain whose
boundary is shown in Fig. 8. The top row of plots show the error on the x1x3-plane, and the bottom
row of plots show the error on the x1x2-plane. In the top row of plots, the point yA = (1.7830, 0, 0.8390)
is plotted as a red ×, and in the bottom row of plots, the point yB = (1.7439, 1.19175, 0) is plotted as
a red ×.
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Figure 10: Log-log plots of the errors made by the two methods shown in Fig. 9 at yA− ενA (left) and
at yB − ενB (right) for 10−6 ≤ ε ≤ 0.5.

evaluation problem in potential theory and forward-peaked scattering in radiative transfer. We first
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Figure 11: Estimated order of accuracy for the numerical approximation (blue ◦), and the O(ε2)
asymptotic approximation (red ×) on the x1x3-plane (left plot) and on the x1x2-plane (right plot).
Results on the x1x3-plane are given in terms of the extended polar angle, s0 ∈ [0, 2π], which param-
eterizes the circle on the unit sphere lying on the x1x3-plane that starts and ends at the north pole.
Results on the x1x2-plane are given in terms of the azimuthal angle, t0 ∈ [0, 2π].

establish this connection and then, we apply the asymptotic analysis used above to this problem.
Radiative transfer describes the multiple scattering of light [14, 20]. This theory has several appli-

cations for light propagation and scattering in geophysical media [32, 42], biological tissues [44], and
computer graphics [21], among others. Let ψ : S2×R3× (0, T )→ R+ ≥ 0 denote the specific intensity.
The specific intensity gives the flow of power in direction Ω ∈ S2, at position r ∈ R3, at time t ∈ [0, T ].
The radiative transfer equation,

c−1ψt + Ω · ∇ψ + µaψ − µsLψ = Q, (7.1)

governs ψ in a medium that absorbs, scatters, and emits light. Here, c denotes the speed of light in
the background medium, µa ≥ 0, µs ≥ 0 denote absorption and scattering coefficients, respectively,
and Q denotes a source. The scattering operator, L, is defined by

Lψ(Ω, r, t) =
1

4π

∫
S2

p(Ω · Ω′) [ψ(Ω′, r, t)− ψ(Ω, r, t)] dσΩ′ , (7.2)

where p denotes the scattering phase function which gives the fraction of light incident in direction Ω′

that is scattered in direction Ω.
In forward-peaked scattering media, p is sharply peaked about Ω = Ω′ so that most of the scattering

occurs in a small angular cone about the incident direction. This problem is important for several
applications, especially light propagation in biological tissues [24]. Mathematically, forward-peaked
scattering corresponds to the case in which (7.2) is a nearly singular integral.

There have been several studies on the asymptotic behavior of (7.1) with forward-peaked scat-
tering leading to the Fokker-Planck approximation [35] and its generalizations [37, 29]. Solving the
radiative transfer equation (7.1) with these approximate scattering operators has led to useful physical
insight [25, 26, 16]. However, for most scattering models used for applications, the Fokker-Planck
approximation is inaccurate. The error made by the Fokker-Planck approximation is due to neglecting
the tail away from the sharply peaked behavior of the kernel p, corresponding to large-angle scattering.
That tail typically decays too slowly to make a local approximation appropriate. In fact, it has been
shown that for several specific scattering kernels, the leading order behavior is nonlocal and given by
a pseudo-differential operator [36, 28].

We study forward-peaked scattering using the same asymptotic analysis used to study the close
evaluation of layer potentials discussed above. For this study, we consider the specific choice of the
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Henyey-Greenstein scattering phase function [19],

pHG(Ω · Ω′) =
1− g2

(1 + g2 − 2gΩ · Ω′)3/2
, −1 ≤ g ≤ 1, (7.3)

as the kernel. The Henyey-Greenstein scattering phase function is extensively used in applications
since it provides a simple model with enough sophistication to study multiple scattering of light. The
anisotropy factor, g, is the mean cosine of the scattering angle. It sets the amount of scattering that
is forward peaked. When g = 0, scattering is istropic, and when g = ±1, scattering is restricted to
only the forward/backward direction. Forward-peaked scattering corresponds to the asymptotic limit
as g → 1.

Henyey-Greenstein scattering is directly related to Poisson’s formula for the unit sphere,

u(x) =
1

4π

∫
S2

1− |x|2

|x− y|3
f(y)dσy, |x| < 1, (7.4)

which gives the solution of the boundary value problem for Laplace’s equation:

∆u = 0 in |x| < 1, (7.5a)

u = f on |x| = 1. (7.5b)

For the close evaluation point x = (1− ε)y? with |y?| = 1 and 0 < ε� 1, we find that

u((1− ε)y?) =
1

4π

∫
S2

1− (1− ε)2

[1 + (1− ε)2 − 2(1− ε)y? · y]
3/2

f(y)dσy. (7.6)

Notice that the kernel in (7.6) is the same as (7.3) with g = 1− ε. Consequently, the asymptotic limit
of forward-peaked Henyey-Greenstein scattering is closely related to the close evaluation of Poisson’s
formula for the unit sphere.

To evaluate L given in (7.2) using (7.3) as the scattering phase function, we use a spherical coordi-
nate system with Ω defining its north pole. In this coordinate system, θ denotes the polar angle and
φ denotes the azimuthal angle. For that case, we have

Lψ(Ω) =
1

2

∫ π

0

pHG(cos θ; ε)ψ̃(θ) sin θdθ (7.7)

with Ω · Ω′ = cos θ, g = 1− ε,

pHG(cos θ; ε) =
1− (1− ε)2

[1 + (1− ε)2 − 2(1− ε) cos θ]3/2
, (7.8)

and

ψ̃(θ) =
1

2π

∫ π

−π
[ψ(θ, ϕ)− ψ(0, ·)] dϕ. (7.9)

Due to the regularity of the solution at the north pole, we have ψ(θ, ϕ + π) = ψ(−θ, ϕ). As a result,
we write

ψ̃(θ) =
1

2π

∫ π

0

[ψ(θ, ϕ) + ψ(−θ, ϕ)− 2ψ(0, ·)] dϕ. (7.10)

Note here ψ(0, ·) = ψ(Ω). To study forward-peaked scattering we study the asymptotic limit corre-
sponding to ε→ 0+.

We let
Lψ(Ω) = Linψ(Ω) + Loutψ(Ω), (7.11)

where

Linψ(Ω) =
1

2

∫ δ

0

pHG(cos θ; ε)ψ̃(θ) sin θdθ, (7.12)
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is the inner expansion, and

Loutψ(Ω) =
1

2

∫ π

δ

pHG(cos θ; ε)ψ̃(θ) sin θdθ, (7.13)

is the outer expansion. Just as we have done for the double-layer potential, we consider the asymptotic
limit in which 0 < ε � δ � 1. Details of the calculations below can be found in a developed
Mathematica notebook available on GitHub [23].

To find the leading-order behavior for Lin, we substitute (7.8) into (7.12) and make the substitution
θ = εΘ,

Linψ(Ω) =

∫ δ/ε

0

1

2

1− (1− ε)2

[1 + (1− ε)2 − 2(1− ε) cos εΘ]3/2
ψ̃(εΘ) sin εΘεdΘ

=

∫ δ/ε

0

[
Θ

(1 + Θ2)3/2
− ε

2

Θ− 2Θ3

(1 + Θ2)5/2
+O(ε2)

]
ψ̃(εΘ)dΘ.

(7.14)

Next, we compute the expansion

ψ̃(εΘ) =
1

2π

∫ π

0

[ψ(εΘ, ϕ) + ψ(−εΘ, ϕ)− 2ψ(0, ·)] dϕ

=
ε2Θ2

2π

∫ π

0

ψθθ(0, ·)dϕ+O(ε4).

(7.15)

Substituting (4.11) (see Appendix B) into this result, we find that

ψ̃(εΘ) =
ε2Θ2

2π

∫ π

0

ψθθ(0, ·)dϕ+O(ε4) =
ε2Θ2

4
∆S2ψ(Ω) +O(ε4), (7.16)

Substituting (7.16) into (7.14), we determine by integrating and then expanding about ε = 0 that

Linψ(Ω) = ∆S2ψ(Ω)

∫ δ/ε

0

[
ε2Θ3

4(1 + Θ2)3/2
− ε3

8

Θ3 − 2Θ5

(1 + Θ2)5/2
+O(ε4)

]
dΘ,

=

[
εδ

4
− ε2

2
+
ε2δ

4

]
∆S2ψ(Ω) +O(ε3).

(7.17)

To compute the outer expansion, we expand (7.8) about ε = 0 then substitute the result into (7.13),
and obtain

Loutψ(Ω) =

∫ π

δ

ε+ ε2

2
√

2(1− cos θ)3/2
ψ̃(θ) sin θdθ +O(ε3). (7.18)

To remove δ from the lower limit of integration, we write

Loutψ(Ω) =

∫ π

0

ε+ ε2

2
√

2(1− cos θ)3/2
ψ̃(θ) sin θdθ −

∫ δ

0

ε+ ε2

2
√

2(1− cos θ)3/2
ψ̃(θ) sin θdθ + O(ε3). (7.19)

For the second term in (7.19), we substitute θ = εΘ and find that∫ δ/ε

0

ε+ ε2

2
√

2(1− cos εΘ)3/2
ψ̃(εΘ) sin εΘεdΘ

=

∫ δ/ε

0

[
1 + ε

Θ2
+O(ε2)

]
ψ̃(εΘ)dΘ

= ∆S2ψ(Ω)

∫ δ/ε

0

[
ε2 + ε3

4
+O(ε4)

]
dΘ

=

[
εδ

4
+
ε2δ

4

]
∆S2ψ(Ω) +O(ε3),

(7.20)
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where we have made use of (7.16) Thus, the leading-order asymptotic behavior for Loutψ(Ω) is given
by

Loutψ(Ω) =
ε+ ε2

2
√

2

∫ π

0

ψ̃(θ)

(1− cos θ)3/2
sin θdθ −

[
εδ

4
+
ε2δ

4

]
∆S2ψ(Ω) +O(ε3). (7.21)

By summing (7.17) and (7.21), and substituting (7.10), we find that

Lψ(Ω) =
(
ε+ ε2

)
L3/2ψ(Ω)− ε2

2
∆S2ψ(Ω) +O(ε3). (7.22)

where

L3/2ψ(Ω) =
1

4
√

2π

∫ π

0

∫ π

0

ψ(θ, ϕ) + ψ(−θ, ϕ)− 2ψ(0, ·)
(1− cos θ)3/2

sin θdθdϕ. (7.23)

The integral in (7.23) appears to be singular, but since

1

4
√

2π

∫ π

0

ψ(θ, ϕ) + ψ(−θ, ϕ)− 2ψ(0, ·)
(1− cos θ)3/2

sin θdϕ =
1

4
∆S2ψ(Ω) +O(θ2), (7.24)

L3/2ψ(Ω) is well defined.
The leading-order asymptotic behavior of L given in (7.22) is equivalent to a result by Larsen [28,

Eq. 31] who derived an asymptotic approximation for L using a spectral analysis. In contrast to that
asymptotic approximation, the asymptotic analysis given above directly addresses the balance between
the forward peak given by the inner expansion, and the long tail given by the outer expansion of the
scattering operator with the Henyey-Greenstein scattering kernel.

8 Conclusion

We have computed the leading-order asymptotic behavior for the close evaluation of the double-layer
potential in two and three dimensions. By developing numerical methods to evaluate these asymptotic
approximations, we obtain effective methods for computing double-layer potentials at close evaluation
points. Our numerical examples demonstrate the effectiveness of these asymptotic approximations and
corresponding numerical methods.

The key to this asymptotic analysis is the insight it provides. The leading-order asymptotic behavior
of the close evaluation of the double-layer potential is given by its local Dirichlet data plus a correction
that is nonlocal. It is this nonlocal term that makes the close evaluation problem challenging to
address using only numerical methods. It is consistent with the fact that solutions of boundary value
problems for elliptic partial differential equations have a global dependence on their boundary data.
By explicitly computing this correction using asymptotic analysis, we have been able to develop an
effective numerical method for it. Moreover, the asymptotic error estimates provide guidance on
where to apply these approximations, namely, for evaluation points closer to the boundary than the
boundary mesh spacing. The result of this work is an accurate and efficient method for computing the
close evaluation of the double-layer potential.

The asymptotic approximation method can be extended to other layer potentials and other bound-
ary value problems. In this paper, we show how these methods discover valuable insight for forward-
peaked scattering in radiative transfer theory. Future work will entail of extending these methods to
applications of Stokes flow and plasmonics.

A Rotations on the sphere

We give the explicit rotation formulas over the sphere used in the numerical method for the asymptotic
approximation in three dimensions. Consider y, y? ∈ S2. We introduce the parameters θ ∈ [0, π] and
ϕ ∈ [−π, π] and write

y = y(θ, ϕ) = sin θ cosϕ ı̂ + sin θ sinϕ ̂ + cos θ k̂. (A.1)
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The parameter values, θ? and ϕ?, are set such that that y? = y(θ?, ϕ?).
We would like to work in the rotated, uvw-coordinate system in which

û = cos θ? cosϕ? ı̂ + cos θ? sinϕ? ̂− sin θ? k̂,

v̂ = − sinϕ? ı̂ + cosϕ? ̂,

ŵ = sin θ? cosϕ? ı̂ + sin θ? sinϕ? ̂ + cos θ? k̂.

(A.2)

Notice that ŵ = y?. For this rotated coordinate system, we introduce the parameters s ∈ [0, π] and
t ∈ [−π, π] such that

y = y(s, t) = sin s cos t û + sin s sin t v̂ + cos s ŵ. (A.3)

It follows that y? = y(0, ·). By equating (A.1) and (A.3) and substituting (A.2) into that result, we
obtain sin θ cosϕ

sin θ sinϕ
cos θ

 =

cos θ? cosϕ? − sinϕ? sin θ? cosϕ?

cos θ? sinϕ? cosϕ? sin θ? sinϕ?

− sin θ? 0 cos θ?

sin s cos t
sin s sin t

cos s

 . (A.4)

We rewrite (A.4) compactly as ŷ(θ, ϕ) = R(θ?, ϕ?)ŷ(s, t) with R(θ?, ϕ?) denoting the 3× 3 orthogonal
rotation matrix.

We now seek to write θ = θ(s, t) and ϕ = ϕ(s, t). To do so, we introduce

ξ(s, t; θ?, ϕ?) = cos θ? cosϕ? sin s cos t− sinϕ? sin s sin t+ sin θ? cosϕ? cos s, (A.5)

η(s, t, θ?, ϕ?) = cos θ? sinϕ? sin s cos t+ cosϕ? sin s sin t+ sin θ? sinϕ? cos s, (A.6)

ζ(s, t, θ?, ϕ?) = − sin θ? sin s cos t+ cos θ? cos s. (A.7)

From (A.4), we find that

θ = arctan

(√
ξ2 + η2

ζ

)
, (A.8)

and

ϕ = arctan

(
η

ξ

)
. (A.9)

With these formulas, we can write θ = θ(s, t) and ϕ = ϕ(s, t).

B Spherical Laplacian

In this Appendix, we establish the result given in (4.11). We first seek an expression for ∂2
s [·]|s=0 in

terms of θ and ϕ. By the chain rule, we find that

∂2

∂s2
[·]
∣∣∣∣
s=0

=

[(
∂θ

∂s

)2
∂2

∂θ2
+

(
∂ϕ

∂s

)2
∂2

∂ϕ2
+ 2

∂θ

∂s

∂ϕ

∂s

∂2

∂θ∂ϕ
+
∂2θ

∂s2

∂

∂θ
+
∂2ϕ

∂s2

∂

∂ϕ

] ∣∣∣∣
s=0

. (B.1)

Using θ defined in (A.8) and ϕ defined in (A.9), we find that

∂θ(s, t)

∂s

∣∣∣∣
s=0

= cos t, (B.2)

∂2θ(s, t)

∂s2

∣∣∣∣
s=0

=
cos θ?

sin θ?
sin2 t, (B.3)

∂ϕ(s, t)

∂s

∣∣∣∣
s=0

=
sin t

sin θ?
, (B.4)

∂2ϕ(s, t)

∂s2

∣∣∣∣
s=0

= − cos θ?

sin2 θ?
sin 2t. (B.5)
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Note that at s = 0, we have θ? = θ.
Substituting (B.2) – (B.5) into (B.1) and replacing θ? by θ, we obtain

∂2

∂s2
[·]
∣∣∣∣
s=0

= cos2 t
∂2

∂θ2
+ sin2 t

1

sin2 θ

∂2

∂ϕ2
+ 2 cos t sin t

1

sin θ

∂2

∂θ∂ϕ

+ sin2 t
cos θ

sin θ

∂

∂θ
− sin 2t

cos θ

sin2 θ

∂

∂ϕ
, (B.6)

from which it follows that

1

π

∫ π

0

∂2

∂s2
[·]
∣∣∣∣
s=0

dt =
1

2

[
∂2

∂θ2
+

cos θ

sin θ

∂

∂θ
+

1

sin2 θ

∂2

∂ϕ2

]
=

1

2
∆S2 . (B.7)
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