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Control strategies for off-line testing of timed systems

Partial observability and controllability are two well-known issues in test-case synthesis for interactive systems. We address the problem of partial control in the synthesis of test cases from timed-automata specifications. Building on the tioco timed testing framework, we extend a previous game interpretation of the test-synthesis problem from the untimed to the timed setting. This extension requires a deep reworking of the models, game interpretation and test-synthesis algorithms. We exhibit strategies of a game that tries to minimize both control losses and distance to the satisfaction of a test purpose, and prove they are winning under some fairness assumptions. This entails that when turning those strategies into test cases, we get properties such as soundness and exhaustiveness of the test synthesis method.

Introduction

Real-time interactive systems are systems interacting with their environment and subject to timing constraints. Such systems are encountered in many contexts, in particular in critical applications such as transportation, control of manufacturing systems, etc. Their correctness is then of prime importance, but it is also very challenging due to multiple factors: combination of discrete and continuous behaviours, concurrency aspects in distributed systems, limited observability of behaviours, or partial controllability of systems.

One of the most-used validation techniques in this context is testing, with variations depending on the design phases. Conformance testing is one of those variations, consisting in checking whether a real system correctly implements its specification. Those real systems are considered as black boxes, thereby offering only partial observability, for various reasons (e.g. because sensors cannot observe all actions, or because the system is composed of communicating components whose communications cannot be all observed, or again because of intellectual property of peer software). Controllability is another issue when the system makes its own choices upon which the environment, and thus the tester, have a limited control. One of the most-challenging activities in this context is the design of test cases that, when executed on the real system, should produce meaningful information about the conformance of the system at hand with respect to its specification. Formal models and methods are a good candidate to help this test-case synthesis [START_REF] Tretmans | Conformance testing with labelled transition systems: Implementation relations and test generation[END_REF]. Timed Automata (TA) [START_REF] Alur | A theory of timed automata[END_REF] form a class of model for the specification of timed reactive systems. It consists of automata equipped with real-valued clocks where transitions between locations carry actions, are guarded by constraints on clock values, and can reset clocks. TAs are also equipped with invariants that constrain the sojourn time in locations. TAs are popular in particular because reachability of a location is decidable using symbolic representations of sets of configurations by zones. In the context of testing, it is adequate to refine TAs by explicitly distinguishing (controllable) inputs and (uncontrollable) outputs, giving rise to TAIOs (Timed Automata with Inputs and Outputs). In the following, this model will be used for most testing artifacts, namely specifications, implementations, and test cases. Since completeness of testing is hopeless in practice, it is helpful to rely on test purposes that describe those behaviours that need to be tested because they are subject to errors. In our formal testing framework, an extension of TAIOs called Open TAIOs (or OTAIOs) is used to formally specify those behaviors. OTAIOs play the role of observers of actions and clocks of the specification: they synchronize on actions and clock resets of the specification (called observed clocks), and control their proper clocks. The formal testing framework also requires to formally define conformance as a relation between specifications and their possible implementations. In the timed setting, the classical tioco relation [START_REF] Krichen | Conformance testing for real-time systems[END_REF] states that, after a timed observable trace of the specification, the outputs and delays of the implementation should be specified.

Test-case synthesis from TAs has been extensively studied during the last 20 years (see [COG98,CKL98,SVD01,ENDK02,NS03,BB04,LMN04,KT09], to cite a few). As already mentioned, one of the difficulties is partial observation. In offline testing, where the test cases are first computed, stored, and later executed on the implementation, the tester should anticipate all specified outputs after a trace. In the untimed framework, this is tackled by determinization of the specification. Unfortunately, this is not feasible for TAIO specifications since determinization is not possible in general [START_REF] Alur | A theory of timed automata[END_REF][START_REF] Finkel | Undecidable problems about timed automata[END_REF]. The solution was then either to perform online testing where subset construction is made on the current execution trace, or to restrict to determinizable sub-classes. More recently, some advances were obtained in this context [START_REF] Bertrand | Offline test selection with test purposes for non-deterministic timed automata[END_REF] by the use of an approximate determinization using a game approach [START_REF] Bertrand | A game approach to determinize timed automata[END_REF] that preserves tioco conformance. Partial observation is also dealt with by [DLL + 10] with a variant of the TA model where observations are described by observation predicates composed of a set of locations together with clock constraints. Test cases are then synthesized as winning strategies, if they exist, of a game between the specification and its environment that tries to guide the system to satisfy the test purpose.

The problem of test synthesis is often informally presented as a game between the environment and the system (see e.g. [START_REF] Yannakakis | Testing, optimization, and games[END_REF]). But very few papers effectively take into account the controllability of the system. In the context of testing for timed-automata models [START_REF] David | A gametheoretic approach to real-time system testing[END_REF], proposes a game approach where test cases are winning strategies of a reachability game. But this is restricted to deterministic models and controllability is not really taken into account. In fact, like in [DLL + 10], the game is abandonned when control is lost, and it is suggested to modify the test purpose in this case. This is mitigated in [START_REF] David | Cooperative testing of timed systems[END_REF] with cooperative strategies, which rely on the cooperation of the system under test to win the game. A more convincing approach to the control problem is the one of [START_REF] Ramangalahi | Strategies for comformance testing[END_REF] in the untimed setting, unfortunately a quite little-known work. The game problem consists in satisfying the test purpose (a simple sub-sequence), while trying to avoid control losses occurring when outputs offered by the system leave this behaviour. The computed strategy is based on a rank that measures both the distance to the goal and the controls losses.

The current paper adapts the approach proposed in [START_REF] Ramangalahi | Strategies for comformance testing[END_REF] to the timed context using the framework developed in [START_REF] Bertrand | Offline test selection with test purposes for non-deterministic timed automata[END_REF]. Compared to [START_REF] Ramangalahi | Strategies for comformance testing[END_REF], the model of TA is much more complex than transition systems, the test purposes are also much more powerful than simple sub-sequences, thus even if the approach is similar, the game has to be completely revised. Compared to [DLL + 10], our model is a bit different since we do not rely on observation predicates, but partial observation comes from internal actions and choices. We do not completely tackle non-determinism since we assume determinizable models at some point. In comparison, [DLL + 10] avoids determinizing TAs, relying on the determinization of a finite state model, thanks to a projection on a finite set of observable predicates. Cooperative strategies of [START_REF] David | Cooperative testing of timed systems[END_REF] have similarities with our fairness assumptions, but their models are assumed deterministic. Our approach takes controllability into account in a more complete and practical way with the reachability game and rank-lowering strategies.

The paper is organized as follows. Chapter 2 introduces basic models: TAs, TAIOs and their open counterparts OTAs, OTAIOs, and then timed game automata (TGA). Chapter 3 is dedicated to the testing framework with hypothesis on models of testing artifacts, the conformance relation and the construction of the objective-centered tester that denotes both non-conformant traces and the goal to reach according to a test purpose. Chapter 4 constitutes the core of the paper. The test synthesis problem is interpreted as a game on the objectivecentered tester. Rank-lowering strategies are proposed as candidate test cases, and a fairness assumption is introduced to make such strategies win. Finally properties of test cases with respect to conformance are proved.

Timed automata and timed games

In this section, we introduce our models for timed systems and for concurrent games on these objects, along with some useful notions and operations.

Timed automata with inputs and outputs

Timed automata (TAs) [START_REF] Alur | A theory of timed automata[END_REF] are one of the most widely-used classes of models for reasoning about computer systems subject to real-time constraints. Timed automata are finite-state automata augmented with real-valued variables (called clocks) to constrain the occurrence of transitions along executions. In order to adapt these models to the testing framework, we consider TAs with inputs and outputs (TAIOs), in which the alphabet is split between input, output and internal actions (the latter being used to model partial observation). We present the open TAs (and open TAIOs) [START_REF] Bertrand | Offline test selection with test purposes for non-deterministic timed automata[END_REF], which allow the models to observe and synchronize with a set of non-controlled clocks.

Given a finite set of clocks X, a clock valuation over X is a function v : X → R ≥0 . We note 0 X (and often omit to mention X when clear from the context) for the valuation assigning 0 to all clocks in X. Let v be a clock valuation, for any t ∈ R ≥0 , we denote with v + t the valuation mapping each clock x ∈ X to v(x) + t, and for a subset X ⊆ X, we write v [X ←0] for the valuation mapping all clocks in X to 0, and all clocks in X \ X to their values in v.

A clock constraint is a finite conjunction of atomic constraints of the form x ∼ n where x ∈ X, n ∈ N, and ∼ ∈ {<, ≤, =, ≥, >}. That a valuation v satisfies a clock constraint g, written v |= g, is defined in the obvious way. We write C(X) for the set of clock constraints over X.

Definition 1. An open timed automaton (OTA) is a tuple 1 A = (L A , l A 0 , Σ A , X A p X A o , I A , E A ) where: -L A is a finite set of locations, with l A 0 ∈ L A the initial location, -Σ A is a finite alphabet, -X A = X A p X A
o is a finite set of clocks, partitionned into proper clocks X A p and observed clocks X A o ; only proper clocks may be reset along transitions.

-I A : L A → C(X A ) assigns invariant constraints to locations. -E A ⊆ L A × C(X A ) × Σ A × 2 X A
p × L A is a finite set of transitions. For e = (l, g, a, X , l ) ∈ E A , we write act(e) = a.

An Open Timed Automaton with Inputs and Outputs (OTAIO) is an OTA in which

Σ A = Σ A ? Σ A ! Σ A
τ is the disjoint union of input actions in Σ A ? (noted ?a, ?b, ...), output actions in Σ A ! (noted !a, !b, ...), and internal actions in Σ A τ (noted τ 1 , τ 2 , ...) We write Σ obs = Σ ? Σ ! for the alphabet of observable actions. Finally, a Timed Automaton (TA) (resp. a Timed Automaton with Inputs and Outputs (TAIO)) is an OTA (resp. an OTAIO) with no observed clocks.

TAIOs will be sufficient to model most objects, but the ability of OTAIOs to observe other clocks will be essential for test purposes (see Section 3.1), which need to synchronize with the specification. Let A = (L, l 0 , Σ, X p X o , I, E) be an OTA. Its semantics is defined as an infinite-state transition system T A = (S A , s A 0 , Γ A , → A ) where: An OTA has no control over its observed clocks, the intention being to synchronize them later in a product (see Def. 2). Hence, when a discrete transition is taken, any set X o of observed clocks may be reset. When dealing with plain TAs, where X o is empty, we may write (l, v) e -→ (l , v ) in place of (l, v)

-S A = {(l, v) ∈ L × R X ≥0 | v |= I(l)} is the (infinite) set of configurations, with initial configuration s A 0 = (l 0 , 0 X ). -Γ A = R ≥0 (E × 2 Xo ) is the set of transitions labels. -→ A ⊆ S A × Γ A × S A
(e,∅) ---→ (l , v ).
A partial run of A is a (finite or infinite) sequence of transitions in T A ρ = ((s i , γ i , s i+1 )) 1≤i<n , with n ∈ N ∪ {+∞}. We write first(ρ) for s 1 and, when n ∈ N, last(ρ) for s n . A run is a partial run starting in the initial configuration s A 0 . The duration of ρ is dur(ρ) = γi∈R ≥0 γ i . In the sequel, we only consider TAs in which any infinite run has infinite duration. We note Ex(A) for the set of runs of A and pEx(A) the subset of partial runs.

State s is reachable from state s when there exists a partial run from s to s. We write Reach(A, S ) for the set of states that are reachable from some state in S , and Reach(A) for Reach(A, {s A 0 }). The (partial) sequence associated with a (partial) run ρ = ((s i , γ i , s i )) i is seq(ρ) = (proj(γ i )) i , where proj(γ) = γ if γ ∈ R ≥0 , and proj(γ) = (a, X p ∪ X o ) if γ = ((l, g, a, X p , l ), X o ). We write pSeq(A) = proj(pEx(A)) and Seq(A) = proj(Ex(A)) for the sets of (partial) sequences of A. We write s µ -→ s when there exists a (partial) finite run ρ such that µ = proj(ρ), first(ρ) = s and last(ρ) = s , and write dur(µ) for dur(ρ). We write s µ -→ when s µ -→ s for some s. If A is a TAIO, the trace of a (partial) sequence corresponds to what can be observed by the environment, namely delays and observable actions. The trace of a sequence is the limit of the following inductive definition, for δ i ∈ R ≥0 , a ∈ Σ obs , τ ∈ Σ τ , X ⊆ X, and a partial sequence µ:

Trace(δ 1 ...δ k ) = k i=1 δ i (in particular Trace( ) = 0) Trace(δ 1 ...δ k .(τ, X ).µ) = ( k i=1 δ i ) • Trace(µ) Trace(δ 1 ...δ k .(a, X ).µ) = ( k i=1 δ i ) • a • Trace(µ)
We note Traces(A) = Trace(Seq(A)) the set of traces corresponding to runs of A and pTraces(A) the subset of traces corresponding to partial runs. Two OTAIOs are said to be trace-equivalent if they have the same sets of traces. We furthermore define, for an OTAIO A, a trace σ and a configuration s:

-A after σ = {s ∈ S | ∃µ ∈ Seq(A), s 0 µ -→ s ∧ Trace(µ) = σ}
is the set of all configurations that can be reached when σ has been observed from

s A 0 . -enab(s) = {e ∈ E A | s e -→} is the set of transitions enabled in s. -elapse(s) = {t ∈ R ≥0 | ∃µ ∈ (R ≥0 ∪ (Σ τ × 2 X )) * , s µ -→ ∧dur(µ) = t}
is the set of delays that can be observed from location s without any observation. -out(s) = {a ∈ Σ ! | ∃e ∈ enab(s), act(e) = a} ∪ elapse(s) is the set of possible outputs and delays that can be observed from s. For S ⊆ S, we note out(S ) = s∈S out(s). -in(s) = {a ∈ Σ ! | ∃e ∈ enab(s), act(e) = a} is the set of possible inputs that can be proposed when arriving in s. For S ⊆ S, we note in(S ) = s∈S in(s).

We now define some useful sub-classes of OTAIOs. An OTAIO A is said deterministic if for all σ ∈ T races(A), A after σ is a singleton; determinizable if there exists a trace-equivalence deterministic OTAIO; complete if S = L×R X ≥0 (i.e., all invariants are always true) and for any s ∈ S and any a ∈ Σ, it holds s a,X ---→ for some X ⊆ X; input-complete if for any s ∈ Reach(A), in(s) = Σ ? ; non-blocking if for any s ∈ Reach(A) and any non-negative real t, there is a partial run ρ from s involving no input actions (i.e., proj(ρ

) is a sequence over R ≥0 ∪ (Σ ! ∪ Σ τ ) × 2 X
) and such that dur(ρ) = t; repeatedly observable if for any s ∈ Reach(A), there exists a partial run ρ from s such that Trace(ρ) / ∈ R ≥0 .

The product of two OTAIOs extends the classical product of TAs.

Definition 2. Given two OTAIOs

A = (L A , l A 0 , Σ ? Σ ! Σ τ , X A p X A o , I A , E A ) and B = (L B , l B 0 , Σ ? Σ ! Σ τ , X B p X B o , I B , E B ) over the same alphabets, their product is the OTAIO A × B = (L A × L B , (l A 0 , l B 0 ), Σ ? Σ ! Σ τ , (X A p ∪ X B p ) ((X A o ∪ X B o ) \ (X A p ∪ X B p )), I, E) where I : (l 1 , l 2 ) → I A (l 1 ) ∧ I B (l 2 ) and E is the (smallest) set such that for each (l 1 , g 1 , a, X 1 p , l 1 ) ∈ E A and (l 2 , g 2 , a, X 2 p , l 2 ) ∈ E B , E contains ((l 1 , l 2 ), g 1 ∧ g 2 , a, X 1 p ∪ X 2 p , (l 1 , l 2 )).
The product of two OTAIOs corresponds to the intersection of the sequences of the orginal OTAIOs, i.e.

Seq(A × B) = Seq(A) ∩ Seq(B) [BSJK15].

Timed games

We introduce timed game automata [START_REF] Asarin | Controller synthesis for timed automata[END_REF], which we later use to turn the test artifacts into games between the tester (controlling the environment) and the implementation, on an arena constructed from the specification.

Definition 3. A timed game automaton (TGA) is a timed automaton G = (L, l 0 , Σ c Σ u , X, I, E) where Σ = Σ c Σ u is partitioned into actions that are controllable (Σ c
) and uncontrollable (Σ u ) by the player.

All the notions of runs and sequences defined previously for TAs are extended to TGAs, with the interpretation of Σ c as inputs and Σ u as outputs.

Definition 4. Let G = (L, l 0 , Σ c Σ u , X, I, E) be a TGA. A strategy for the player is a partial function f :

Ex(G) → R ≥0 × (Σ c ∪ {⊥}) \ {(0, ⊥)} such that for any finite run ρ, letting f (ρ) = (δ, a), δ ∈ elapse(last(ρ)
) is a possible delay from last(ρ), and there is an a-transition available from the resulting configuration (unless a = ⊥).

Strategies give rise to sets of runs of G, defined as follows:

Definition 5. Let G = (L, l 0 , Σ, X, I, E) be a TGA, f be a strategy over G, and s be a configuration. The set of outcomes of f from s, noted Outcome(s, f ), is the smallest subset of partial runs starting from s containing the empty partial run from s (whose last configuration is s), and s.t. for any ρ ∈ Outcome(s, f ), letting f (ρ) = (δ, a) and last(ρ) = (l, v), we have

-ρ•((l, v), δ, (l, v +δ ))•((l, v +δ ), e, (l , v )) ∈ Outcome(s, f ) for any 0 ≤ δ ≤ δ and act(e) ∈ Σ u such that ((l, v + δ ), e, (l , v )) ∈ pEx(A); -and • either a = ⊥, and ρ • ((l, v), δ, (l, v + δ)) ∈ Outcome(s, f ); • or a ∈ Σ c , and ρ • ((l, v), δ, (l, v + δ)) • ((l, v + δ), e, (l , v )) ∈ Outcome(s, f ) with act(e) = a;
An infinite partial run is in Outcome(s, f ) if infinitely many of its finite prefixes are.

In this paper, we will be interested in reachability winning conditions (under particular conditions). In the classical setting, the set of winning configurations can be computed iteratively, starting from the target location and computing controllable predecessors in a backward manner. The computation can be performed on regions, so that it terminates (in exponential time) [AMPS98,CDF + 05]. We extend this approach to our test-generation framework in Section 4.

Testing framework

We now present the testing framework, defining (i) the main testing artifacts i.e. specifications, implementations, test purposes, and test cases, along with the assumptions on them; (ii) a conformance relation relating implementations and specifications. The combination of the test purposes and the specification and the construction of an approximate deterministic tester is afterward explained.

Test context

We use TAIOs as models for specifications, implementations and test cases, and OTAIOs for test purposes. This allows to define liberal test purposes, and on a technical side, gives a unity to the manipulated objects.

In order to enforce the occurrence of conclusive verdicts, we equip specifications with restart transitions, corresponding to a system shutdown and restart, and assume that from any (reachable) configuration, a restart is always reachable. Definition 6. A specification with restarts (or simply specification) on (Σ ? , Σ ! , Σ τ ) is a non-blocking, repeatedly-observable TAIO S = (L S , l S 0 , (Σ ? ∪ {ζ}) Σ ! Σ τ , X S p , I S , E S ) where ζ / ∈ Σ ? is the restart action. We let

Restart S = E S ∩ (L S × G M S (X S ) × {ζ} × {X S p } × {l S 0 }
) be the set of ζ-transitions, and it is assumed that from any reachable configuration, there exists a finite partial execution containing ζ, i.e. for any s ∈ Reach(S), there exists µ s.t.

s µ•ζ --→ s S 0 .
The non-blocking hypothesis rules out "faulty" specifications having no conformant physically-possible implementation. Repeated-observability will be useful for technical reasons, when analyzing the exhaustiveness property of test cases. Our assumption on ζ-transitions entails: Proposition 7. Let S be a specification with restarts. Then Reach(T S ) is stronglyconnected.

Example 1. Figure 1 is an example of specification for a conveyor belt. After a maximum time of 2 units (depending for example on their weight), packages reach a sorting point where they are automatically sorted between packages to reject and packages to ship. Packages to reject go to waste, while packages to ship are sent to a boarding platform, where an operator can send them to two different destinations. If the operator takes more than 3 units of time to select a destination, the package goes past the boarding platform and restarts the process. In practice, test purposes are used to describe the intention of test cases, typically behaviours one wants because they must be correct and/or an error is suspected. In our formal testing framework, we describe them with OTAIOs that observe the specification together with accepting locations.

Definition 8. Given a specifica- tion S = (L S , l S 0 , (Σ ? ∪ {ζ}) Σ ! Σ τ , X S p , I S , E S
Restart), a test purpose for S is a pair (T P, Accept T P ) where T P = (L T P , l T P 0 , Σ ? ∪{ζ} Σ ! Σ τ , X T P p X S p , I T P , E T P ) is a complete OTAIO together with a subset Accept T P ⊆ L T P of accepting locations, and such that transitions carrying restart actions ζ reset all proper clocks and return to the initial state (i.e., for any ζ-transition (l, g, ζ, X , l ) ∈ E, it must be X = X T P p and l = l T P 0 ).

In the following, we may simply write T P in place of (T P, Accept T P ). We force test purposes to be complete because they should never constrain the runs of the specification they observe, but should only label the accepted behaviours to be tested. Test purposes observe exactly the clocks of the specification in order to synchronize with them, but cannot reset them.

Example 2. Figure 2 is a test purpose for our conveyor-belt example. We want to be sure that it is possible to ship a package to destination 2 in less than 5 time units, while avoiding to go in waste. The Accept set is limited to a location, named Accept. We note oth the set of transitions that reset no clocks, and is enabled for an action other than ζ when no other transition is possible for this action. This set serves to complete the test purpose. The test purpose has a proper clock y. In practice, conformance testing links a mathematical model, the specification, and a blackbox implementation, that is a real-life physical object observed by its interactions with the environment. In order to formally reason about conformance, one needs to bridge the gap between the mathematical world and the physical world. We then assume that the implementation corresponds to an unknown TAIO.

Definition 9. Let S = (L S , l S 0 , (Σ ? ∪ {ζ}) Σ ! Σ τ , X S p , I S , E S ∪ Restart) be a specification TAIO. An implementation of S is an input-complete and nonblocking TAIO I = (L I , l I 0 , (Σ ? ∪ {ζ}) Σ ! Σ I τ , X I p , I I , E I ). We note I(S) the set of possible implementations of S.

The hypotheses made on implementations are not restrictions, but model real-world contingencies: the environment might always provide any input and the system cannot alter the course of time.

Having defined the necessary objects, it is now possible to introduce the timed input-output conformance (tioco) relation [START_REF] Krichen | Conformance testing for real-time systems[END_REF]. Intuitively, it can be understood as "after any specified behaviour, outputs and delays of the implementation should be specified".

Definition 10. Let S be a specification and I ∈ I(S). We say that I conforms to S for tioco, and write I tioco S when: ∀σ ∈ Traces(S), out(I after σ) ⊆ out(S after σ) Note that it is not assumed that restarts are well implemented: if they are not, it is significant only if it induces non-conformant behaviours.

Combining specifications and test purposes

Now that the main objects are defined, we explain how the behaviours targeted by the test purpose T P are characterized on the specification S by the construction of the product OTAIO P = S × T P. Since S is a TAIO and the observed clocks of T P are exactly the clocks of S, the product P is actually a TAIO. Furthermore, since T P is complete, Seq(P) = Seq(S). This entails that I tioco S is equivalent to I tioco P. Note in particular that ζ of S synchronize with ζ of T P, which are available everywhere.

By defining accepting locations in the product by Accept P = L S × Accept T P , we get that sequences accepted in P are exactly sequences of S accepted by T P. We make one final hypothesis: we consider only pairs of specifications S and test purposes T P whose product P can be exactly determinized by the determinization game presented in [START_REF] Bertrand | A game approach to determinize timed automata[END_REF]. This restriction is necessary for technical reasons: if the determinization is approximated, we cannot ensure that restarts are still reachable in general. Notice that it is satisfied in several classes of automata, such as strongly non-zeno automata, integer-reset automata, or event-recording automata.

Given the product P = S × T P, let DP be its exact determinization. In this case, Traces(DP) = Traces(P), hence the reachability of ζ transitions is preserved. Moreover the traces leading to Accept DP and Accept P are the same. 

Accounting for failure

At this stage of the process, we dispose of a deterministic and fully-observable TAIO DP having exactly the same traces as the original specification, and having a subset of its localities labelled as accepting for the test purpose. From this TAIO, we aim to build a tester, that can be able to monitor the implementation, feeding it with inputs and selecting verdicts from the returned outputs.

DP models the accepted traces with Accept DP . In order to also explicitely model faulty behaviours (unspecified outputs after a specified trace), we now complete DP with respect to its output alphabet, by adding an explicit Fail location. We call this completed TAIO the objective-centered tester.

Definition 11. Given a deterministic TAIO DP = (L DP , l DP 0 , Σ ? Σ ! Σ τ , X DP p , I DP , E DP ), we construct its objective-centered tester OT = (L DP ∪ {Fail}, l DP 0 , Σ ? Σ ! Σ τ , X DP p , I OT , E OT ) where I OT (l) = true. The set of transitions E OT is defined from E DP by:

E OT = E DP ∪ l∈L DP a∈Σ DP ! {(l, g, a, ∅, Fail) | g ∈ G a,l } ∪ {(Fail, true, a, ∅, Fail) | a ∈ Σ DP }
where for each a and l, G a,l is a set of guards complementing the set of all valuations v for which an a-transition is available from (l, v) (notice that G a,l generally is non-convex, so that it cannot be represented by a single guard).

Verdicts are defined on the configurations of OT as follows:

-Pass = l∈Accept DP ({l} × I DP (l)),

-Fail = {Fail} × R ≥0 ∪ l∈L DP {l} × R Xp ≥0 \ I DP (l) .
Notice that we do not define the usual Inconclusive verdicts (i.e. configurations in which we cannot conclude to non-conformance, nor accept the run with respect to the test purpose) as we will enforce the apparition of Pass or Fail . Pass corresponds to behaviours accepted by the test purpose, while Fail corresponds to non-conformant behaviours. Note that OT inherits the interesting structural properties of DP. More importantly, ζ is always reachable as long as no verdict has been emited, and OT is repeatedly-observable out of Fail .

It remains to say that OT and DP model the same behaviours. Obviously, their sets of traces differ, but the traces added in OT precisely correspond to runs reaching Fail . We now define a specific subset of runs, sequences and traces corresponding to traces that are meant to be accepted by the specification. Definition 12. A run ρ of an objective-centered tester OT is said conformant if it does not reach Fail. We note Ex conf (OT ) the set of conformant runs of OT , and Seq conf (OT ) (resp. Traces conf (OT )) the corresponding sequences (resp. traces). We note Ex fail (OT ) = Ex(OT ) \ Ex conf (OT ) and similarly for the sequences and traces.

The conformant traces are exactly those specified by DP, i.e. Traces(DP) = Traces conf (OT ) and correspond to executions tioco-conformant with the specification, while Ex fail are runs where a non-conformance is detected.

Translating objectives into games

In this section, we interpret objective-centered tester into games between the tester and the implementation and propose strategies that try to avoid control losses. We then introduce a scope in which the tester always has a winning strategy, and discuss the properties of the resulting test cases (i.e. game structure and built strategy).

We want to enforce conclusive verdicts when running test cases, i.e. either the implementation does not conform to its specification (Fail verdict) or the awaited behaviour appears (Pass verdict). We thus say that an execution ρ is winning for the tester if it reaches a Fail or Pass configuration and note Win(G) the set of such executions. In the following, we consider the TGA G OT = (L OT , l OT 0 , Σ OT ? Σ OT ! , X p , I OT , E OT ) where the controllable actions are the inputs Σ c = Σ OT ? and the uncontrollable actions are the outputs Σ u = Σ OT ! .

Rank-lowering strategy

In this part, we restrict our discussion to TGAs where Pass configurations are reachable (when seen as plain TAs). Indeed, if none can be reached, and we will discuss the fact that the proposed method can detect this fact, trying to construct a strategy seeking a Pass verdict is hopeless. This is a natural restriction, as it only rules out unsatisfiable test purposes.

The tester cannot force the occurrence of a non-conformance (as he does not control outputs and delays), and hence cannot push the system into a Fail configuration. A strategy for the tester should thus target the Pass set in a partially controlable way, while monitoring Fail . For that purpose, we define a hierarchy of configurations, depending on their "distance" to Pass. This uses a backward algorithm, for which we define the predecessors of a configuration.

Given a set of configurations S ⊆ S of G OT , we define three kinds of predecessors, letting V denote the complement of V :

discrete predecessors by a sub-alphabet Σ ⊆ Σ:

Pred Σ (S ) = {(l, v) | ∃a ∈ Σ , ∃(l, a, g, X , l ) ∈ E, v |= g∧(l , v [X ←0] ) ∈ S }
timed predecessors, while avoiding a set V of configurations:

tPred(S , V ) = {(l, v) | ∃δ ∈ R ≥0 , (l, v+δ) ∈ S ∧∀ 0 ≤ δ ≤ δ. (l, v+δ ) / ∈ V }
We furthermore note tPred(S ) = tPred(S , ∅). final timed predecessors are defined for convenience (see below):

ftPred(S ) = tPred(Fail , Pred Σu (S )) ∪ tPred(Pred Σ (S ))
The final timed predecessors correspond to situations where the system is 'cornered', having the choice between taking an uncontrollable transition to S (as no uncontrollable transition to S will be available) or reach Fail . Such situations are not considered as control losses, as the system can only take a beneficial transition for the tester (either by going to S or to Fail ). Note that tPred and ftPred need not return convex sets, but are efficiently computable using Pred and simple set constructions [CDF + 05]. Now, using these notions of predecessors, a hierarchy of configurations based on the 'distance' to Pass is defined.

Definition 13. The sequence (W j i ) j,i of sets of configurations is defined as:

-W 0 0 = Pass -W j i+1 = π(W j i ) with π(S ) = tPred S ∪ Pred Σc (S ), Pred Σu (S ) ∪ ftPred(S ) -W j+1 0 = tPred(W j ∞ ∪ Pred Σ (W j ∞ )
) with W j ∞ the limit2 of the sequence (W j i ) i . In this hierarchy, j corresponds to the minimal number of control losses the tester has to go through (in the worst case) in order to reach Pass, and i corresponds to the minimal number of steps before the next control loss (or to Pass). The W j+1 0 are considered 'control losses' as the implementation might take an output transition leading to an undesirable configuration (higher on the hierarchy). On the other hand, in the construction of W j i the tester keep a full control, as it is not possible to reach such bad configuration with an incontrolable transition. Notice that the sequence (W j i ) is an increasing sequence of regions, and hence can be computed in time exponential in X OT and linear in L OT .

We then have the following property: Proposition 14. There exists i, j ∈ N such that Reach(G OT ) \ Fail ⊆ W j i .

As explained above, this property is based on the assumption that the Pass verdict is reachable. Nevertheless, if it is not it will be detected during the hierarchy construction that will converge to a fixpoint not including s G 0 . As all the configurations in which we want to define a strategy are covered by the hierarchy, we can use it to define a partial order.

Definition 15. Let s ∈ Reach(G OT ) \ Fail. The rank of s is:

r(s) = (j s = arg min j∈N (s ∈ W j ∞ ), i s = arg min i∈N (s ∈ W js i ))
For r(s) = (j, i); j is the minimal number of control losses before reaching an accepting state, and i is the minimal number of steps in the strategy before the next control loss. We note s s when r(s) ≤ N 2 r(s ), where ≤ N 2 is the lexical order on N 2 .

Proposition 16. is a partial order on Reach(G OT ) \ Fail.

We dispose of a partial order on configurations, with Pass being the minimal elements. We use it to define a strategy trying to decrease the rank during the execution. For any s ∈ S, we write r -(s) for the largest rank such that r -(s) < N 2 r(s), and W -(s) for the associated set in (W j i ) j,i . We (partially) order pairs (δ, a) ∈ R ≥0 × Σ according to δ. Definition 17. A strategy f for the tester is rank-lowering if, for any finite run ρ with last(ρ) = s = (l, v), it selects the lesser delay satisfying one of the following constraints: 

-if s ∈ tPred(Pred Σc (W -(s))),then f (ρ) = (δ,
-if s ∈ tPred(W -(s)),then f (ρ) = (δ, ⊥) such that s δ -→ t with t ∈ W -(s)
, and δ is minimal in the same sense as above; otherwise f (ρ) = (δ, ⊥) where δ is maximal in the same sense as above (maximal delay-successor region).

The two first cases follow the construction of the W j i and propose the shortest behaviour leading to W -. The third case corresponds, either to a configuration of Pass, where W -is undefined, or to a ftPred. Notice that (possibly several) rank-lowering strategies always exist. Example 5. An example of a rank-lowering strategy on the automaton of Fig. 4 is: in (D 2 , A), play ⊥ (as W 0 0 has been reached); in St, play (0, ship 2 ?); in any other state, play (0, ζ). Note that Fig. 4 has not been completed in a objective-centered tester. This does not impact the strategies, as the transition to the failstates lead to a victory, but are not targeted by the strategies.

It is worth noting that even in a more general setup where the models are not equipped with ζ-transitions, as in [START_REF] Bertrand | A game approach to determinize timed automata[END_REF], rank-lowering strategies may still be useful: as they are defined on the co-reachable set of Accept, they can still constitute test cases, and the configurations where they are not defined are exactly the configurations corresponding to a Fail verdict or to an Inconclusive verdict, i.e., no conclusions can be made since an accepting configuration cannot be reached.

Making rank-lowering strategies win

A rank-lowering strategy is generally not a winning strategy: it relies on the implementation fairly exploring its different possibilities and not repeatedly avoiding an enabled transition. In this section, fair runs are introduced, and the rank-lowering strategies are shown to be winning in this subset of the runs.

Lemma 18. If OT is repeatedly-observable, then for all ρ = ((s i , γ i , s i+1 )) i∈N ∈ Ex(G) ending with an infinite sequence of delays, we have

3 ρ ∈ Ex fail (G) ∨ ∃e ∈ E G , ∞ ∃ i ∈ N, e ∈ enab(s i ).
This lemma ensures that we cannot end in a situation where no transitions can be taken, forcing the system to delay indefinitely. It will be used with the support of fairness. In order to introduce our notion of fairness, we define the infinite support of a run. Definition 19. Let ρ be an infinite run, its infinite support Inf(ρ) is the set of regions appearing infinitely often in ρ.

Inf((s

i , γ i , s i+1 ) i∈N ) = {r | ∞ ∃ i ∈ N, s i ∈ r ∨ (γ i ∈ R ≥0 ∧ ∃s i ∈ r, ∃δ i < γ i , s i δi -→ s i )}
The notion of enabled transitions and delay transitions are extended to regions as follows: for a region r, we let enab(r) = enab(s) for any s in r, and write r t -→ r for all time-successor region r of r.

Definition 20. An infinite run ρ in a TGA G = (L, l 0 , Σ u Σ c , X, I, E) (with timed transitions system T = (S, s 0 , Γ, → T )) is said to be fair when:

∀e ∈ E, (act(e) ∈ Σ u ⇒ (∃r ∈ Inf(ρ), r e -→ r ⇒ r ∈ Inf(ρ))) ∧ ∀r ∈ Inf(ρ), ∃γ ∈ (enab(r) ∩ {e | act(e) ∈ Σ c }) ∪ {t}), r γ -→ r ∧ r ∈ Inf(ρ)
We note Fair(G) the set of fair runs of G.

3 In this expression, ∞ ∃ i ∈ N, φ(i) means that φ(i) is true for infinitely many integers.

Fair runs model restrictions on the system runs corresponding to strategies of the system. The first part of the definition assures that any infinitely-enabled action of the implementation will be taken infinitely many times, while the second part ensures that the implementation will infinitely often let the tester play, by ensuring that a delay or controlable action will be performed. It matches the "strong fairness" notion used in model checking. Restricting to fair runs is sufficient to ensure a winning execution when the tester uses a rank-lowering strategy. Intuitively, combined with Lemma 18 and the repeated-observability assumption, it assures that the system will keep providing outputs until a verdict is reached, and allows to show the following property.

Proposition 21. Rank-lowering strategies are winning on Fair(G) (i.e., all fair outcomes are winning).

Under the hypothesis of a fair implementation, we thus have identified a test-case generation method, starting from the specification with restarts and the test purpose, and constructing a test case as a winning strategy on the game created from the objective-centered tester. The complexity of this method is exponential in the size of DP. More precisely: Proposition 22. Given a deterministic product DP, OT can be linearly computed from DP, and the construction of a strategy relies on the construction of the W j i and is hence exponential in X DP and linear in L DP . Note that if DP is obtained from P by the game presented in [START_REF] Bertrand | A game approach to determinize timed automata[END_REF], then L DP is doubly exponential in the size of X S X T P X DP (notice that in the setting of [START_REF] Bertrand | A game approach to determinize timed automata[END_REF], X DP is a parameter of the algorithm).

Properties of the test cases

Having constructed strategies for the tester, and identified a scope of implementation behaviours that allows these strategies to enforce a conclusive verdict, we now study the properties obtained by the test generation method presented above. We call test case a pair (G, f ) where G is the game corresponding to the objectivecentered tester OT , and f is a rank-lowering strategy on G. We note T C(S, T P) the set of possibles test cases generated from a specification S and a test purpose T P, and T C(S) the test cases for any test purpose. Recall that it is assumed that the test purposes associated with a specification are restricted to those leading to a determnizable product. Behaviours are defined as the possible outcomes of a test case combined with an implementation, and model their parallel composition.

Definition 23. Given a test case (G, f ) and an implementation I, their behaviours are the runs ((s i , s i ), (e i , e i ), (s i+1 , s i+1 )) i such that ((s i , e i , s i+1 )) i is an outcome of (G, f ), ((s i , e i , s i+1 )) i is a run of I, and for all i, either e i = e i if e i ∈ R ≥0 or act(e i ) = act(e i ) otherwise. We write Behaviour(G, f, I) for the set of behaviours of the test case (G, f ) and of the implementation I.

We say that an implementation I fails a test case (G, f ), and note I fails (G, f ), when there exists a run in Behaviour(G, f, I) that reaches Fail . Our method is sound, that is, a conformant implementation cannot be detected as faulty.

Proposition 24. The test-case generation method is sound: for any specification S, it holds ∀I ∈ I(S), ∀(G, f ) ∈ T C(S), (I fails (G, f ) ⇒ ¬(I tioco S)).

The proofs of this property and the following one are based on the exact correspondance between Fail and the faulty behaviours of S, and use the trace equivalence of the different models (DP, P and S) to conclude. As they exploit mainly the game structure, fairness is not used.

We define the notion of outputs after a trace in a behaviour, allowing to extend tioco to these objects and to state a strictness property. Intuitively, when a non-conformance appears it should be detected.

Definition 25. Given a test case (G, f ) and an implementation I, for a trace σ: Proposition 27. The test case generation method is precise: for any specification S and test purpose T P it can be stated that ∀(G, f ) ∈ T C(S, T P), ∀σ ∈ Traces(Outcome(s G 0 , f )), G after σ ∈ Pass ⇔ (σ ∈ Traces(S) ∧ T P after σ ∩ Accept T P = ∅) Lastly, this method is exhaustive in the sense that for any non-conformance, there exist a test case that allows to detect it, under fairness assumption.

out(Behaviour(G, f, I) after σ) = {a ∈ Σ ! ∪ R ≥0 | ∃ρ ∈ Behaviour(G, f, I), Trace(ρ) = σ • a}
Proposition 28. The test generation method is exhaustive: for any exactly determinizable specification S and any implementation I ∈ I(S) making fair runs ¬(I tioco S) ⇒ ∃(G, f ) ∈ T C(S), I fails (G, f ).

To demonstrate this property, a test purpose is tailored to detect a given non-conformance, by targeting a related conformant trace.

Conclusion

This paper proposes a game approach to the controllability problem for conformance testing from timed automata (TA) specifications. It defines a test synthesis method that produces test cases whose aim is to maximize their control upon the implementation under test, while detecting non-conformance. Test cases are defined as strategies of a game between the tester and the implementation, based on the distance to the satisfaction of a test purpose, both in terms of number of transitions and potential control losses. Fairness assumptions are used to make those strategies winning and are proved sufficient to obtain the exhaustiveness of the test synthesis method, together with soundness, strictness and precision.

This paper opens numerous directions for future work. First, we intend to tackle partial observation in a more complete and practical way. One direction consists in finding weaker conditions under which approximate determinization [START_REF] Bertrand | A game approach to determinize timed automata[END_REF] preserves strong connectivity, a condition for the existence of winning strategies. One could also consider a mixture of our model and the model of [DLL + 10] whose observer predicates are clearly adequate in some contexts. Quantitative aspects could also better meet practical needs. The distance to the goal could also include the time distance or costs of transitions, in particular to avoid restarts when they induce heavy costs but longer and cheaper paths are possible. The fairness assumption could also be refined. For now it is assumed on both the specification and the implementation. If the implementation does not implement some outputs, a tester could detect it with a bounded fairness assumption [START_REF] Ramangalahi | Strategies for comformance testing[END_REF], adapted to the timed context (after sufficiently many experiments traversing some region all outputs have been observed), thus allowing a stronger conformance relation with egality of output sets. A natural extension could also be to complete the approach in a stochastic view. Finally, we plan to implement the results of this work in an open tool for the analysis of timed automata, experiment on real examples and check the scalability of the method.

Proof. The proof is the same as the one of Prop. 7, using Lemma A.6. Lemma A.8. For a repeatedly-observable specification S, Reach(OT ) \ Fail is repeatedly-observable.

Proof. We know that Traces(S) = Traces(P), hence for all σ ∈ Traces(P), out(P after σ) = out(S after σ). As Traces(DP) = Traces(P) by assumption, we also know that for all σ ∈ Traces(DP), out(P after σ) ⊆ out(DP after σ). 

B Games

In this part the previous propositions are used to ensure that the sequence (W j i ) i,j defines a partial order, and covers the reachable part of our game. Proposition 14. There exists i, j ∈ N such that Reach(G OT ) \ Fail ⊆ W j i .

Proof. Let s ∈ Reach(G) \ Fail be a reachable configuration. Since i) Pass is reachable from s T 0 (by hypothesis); ii) there is a path from s back to the initial configuration (Corollary A.7), then Pass is reachable from s. Moreover, there is such a path with length bounded by the number of regions.

For each s ∈ Reach(G) \ Fail , we fix a finite path to Pass, and reason by induction on the length n of this path in order to prove that s ∈ W n 0 :

-Case n = 0: in this case s ∈ Pass = W 0 0 -Inductive case: we assume that the result holds for n, and take s with a path to Pass of length n + 1. Then s e -→ s for some e with act(e) ∈ Γ , and there is a path from s to Pass of length at most n, so that s ∈ W n 0 . Hence in the worst case s ∈ W n+1 0 . This proves our result.

Proposition 16.

is a partial order on Reach(G OT ) \ Fail.

Proof. is an order because it directly inherits the properties of ≤ N 2 . It is not total because several configurations can have the same rank.

The following lemma is the key allowing to ensure that rank-lowering strategies are winning on fair executions. Suppose there exists an infinite run ρ ∈ Outcome(s 0 , f ) ∩ Fair(G) such that ρ / ∈ Win(G). We denote r min the minimal rank obtained in Inf(ρ) and reg ∈ Inf(ρ) such that r(reg) = r min . For each prefix ν of ρ ending in a configuration s = (l, v) ∈ reg, we let (δ ν , a ν ) = f (ν). We consider three cases, following the definition of rank-lowering strategies:

-Assume last(ν) ∈ tPred(Pred Σc (W -(last(ν)))) and a ν ∈ Σ c . By Lemma B.9, there exists reg ∈ Inf(ρ) such that ν δν -→ s ν and s ν ∈ reg . Hence there exists a transition e such that act(e) = a ν . The system cannot delay more by definition of Outcome(s 0 , f ) and by fairness, reg e -→ reg and reg ∈ W -(last(ν))∩Inf(ρ), which contradicts the minimality of r min .

-Assume last(ν) ∈ tPred(W -(last(ν))) and a ν = ⊥. By Lemma B.9, there exists reg ∈ Inf(ρ) such that ν δν -→ s ν and s ν ∈ reg . By definition of the case, reg ∈ W -(last(ν)), thus the minimality of r min is contradicted.

-We finally consider the last case: as the duration in this one is maximal, we have last(ν) / ∈ tPred(W -(last(ν)) ∪ Pred Σc (W -(last(ν)))) and there are two cases to consider:

• if (W -(last(ν)) is undefined, then r(last(ρ)) = (0, 0) and ρ is winning, which is a contradiction; • otherwise, by Proposition 14, last(ν) ∈ tPred(Pred Σu (W -(last(ν)))) (this corresponds either to ftPred or to a W j+1 0

). Furthermore a ν = ⊥ and δ ν leads to the maximal delay successor region, which we call reg . By Lemma B.9, reg ∈ Inf(ρ). Hence, by definition of Inf, all regions between reg and reg are in Inf(ρ). In particular, a region reg ∈ Inf(ρ) such that reg e -→ reg ∈ W -(last(ρ)) and act(e) ∈ Σ u exists by definition of the case. Hence by fairness, reg ∈ Inf(ρ) and the minimality of r min is contradicted.

C Test case properties

Proposition 24. The test-case generation method is sound: for any specification S, it holds

∀I ∈ I(S), ∀(G, f ) ∈ T C(S), (I fails (G, f ) ⇒ ¬(I tioco S)).
Proof. Let S be a specification, I ∈ I(S) and (G, f ) ∈ T C(S). Suppose that I fails (G, f ), we will prove that ¬(I tioco S).

Since I fails (G, f ), there is a finite run ρ of Behaviour(G, f, I) such that last(ρ) ∈ Fail × S I and it is the first configuration of ρ in this set. Let σ = Trace(ρ). By construction of Fail , either σ = σ • δ (if the configuration of Fail reached corresponds to a faulty invariant) or σ = σ • a with a ∈ Σ ! (and Fail is reached). In both cases out(I after σ ) out(DP after σ ), and by definition ¬(I tioco DP).

As Traces(P) = Traces(DP) by exact-determinizability hypothesis, ¬(I tioco P). Finally, as Traces(P) = Traces(S), we have ¬(I tioco S), which concludes the proof.

Remark 1. Note that this proof is more general than the property, as it does not rely on the strategy. It hence proves the property for any strategy f and not only for rank-lowering ones. The key reason lies in fact in the structure of G, and ensures that any run reaching Fail has the correct form. Note that once again, the properties of the strategy are not used.

Proposition 27. The test case generation method is precise: for any specification S and test purpose T P it can be stated that ∀(G, f ) ∈ T C(S, T P), ∀σ ∈ Traces(Outcome(s G 0 , f )), G after σ ∈ Pass ⇔ (σ ∈ Traces(S) ∧ T P after σ ∩ Accept T P = ∅)

Proof. Let σ be in Traces(Outcome(s G 0 , f )). Then G after σ ∈ Pass if, and only if, the run ρ such that Trace(ρ) = σ (which is unique by determinism of G outside Fail ) is such that last(ρ) ∈ Pass, i.e. ρ ∈ Ex(DP) and last(ρ) ∈ Accept DP . Hence DP after σ ∈ Accept DP and as the determinization is exact, σ ∈ Traces(P) and P after σ ∈ Accept P , which gives by definition σ ∈ Traces(S) ∧ T P after σ ∩ Accept T P = ∅.

The proof uses only properties of the game, and once more does not rely on the precise strategy used. Proof. Let S be a specification, and I ∈ I(S) a non-conformant implementation. By definition of ¬(I tioco S), there exists σ ∈ Traces(S) and a ∈ R ≥0 ∪ Σ ! such that a ∈ out(I after σ) and a / ∈ out(S after σ). As S is repeatedly-observable, there exists δ ∈ R ≥0 and b ∈ Σ S obs such that σ • δ • b ∈ Traces(S). Because S is also non-blocking, if a is a delay, we can take b ∈ Σ S ! . Indeed, otherwise there would be no trace controlled by the implementation for any finite time (say, for time a).

It is possible to build a test purpose T P that accepts exactly the trace σ • δ • b. It suffices to send every transition that is not part of this trace to a sink location. As σ • δ • b ∈ Traces(S) it is also a trace of the product P = S × T P. As S is exactly determinizable and T P is deterministic, P is exactly determinizable by allowing enough resources to DP. 

  is the transition relation. It is defined as the union of • the set of transitions corresponding to time elapses: it contains all triples ((l, v), δ, (l , v )) ∈ S A × R ≥0 × S A for which l = l and v = v + δ. By definition of S A , both v and v satisfy the invariant I(l). • the set of transitions corresponding to discrete moves: it contains all triples ((l, v), (e, X o ), (l , v )) ∈ S A × (E × 2 Xo ) × S A such that, writing e = (m, g, a, X p , m ), it holds m = l, m = l , v |= g, and v = v [X p ∪X o ←0] . Again, by definition, v |= I(l) and v |= I(l ).

Fig. 1 .

 1 Fig. 1. A conveyor belt specification.

y

  Fig. 2. A test purpose for the conveyor belt.

Example 3 .Fig. 3 .

 33 Fig. 3. Product of the conveyor belt specification and the presented test purpose.

Example 4 .

 4 Fig. 4. A deterministic approximation of the product.

  a) with a ∈ Σ c s.t. there exists e ∈ E with act(e) = a and s δ -→ e -→ t with t ∈ W -(s), and δ is minimal in the following sense: if s δ -→ e -→ t with t ∈ W -(s) and δ ≤ δ, then v + δ and v + δ belong to the same region;

Proposition 26 .

 26 The test generation method is strict: given a specification S,∀I ∈ I(S), ∀(G, f ) ∈ T C(S), ¬(Behaviour(G, f, I) tioco S) ⇒ I fails (G, f )This method also enjoys a precision property: traces leading the test case to Pass are exactly traces conforming to the specification and accepted by the test purpose. The proof of this property uses the exact encoding of the Accept states and the definition of Pass. As the previous two, it then propagates the property through the different test artifacts.

  It comes ∀σ ∈ Traces(OT ), out(S after σ) ⊆ out(OT after σ) as OT only adds traces to DP. Hence for all s ∈ Reach(S OT ) \ Fail , there exists µ ∈ Seq(OT ) s.t. s µ -→ ∧Trace(µ) / ∈ R ≥0 . Indeed, there exists σ ∈ Traces conf (OT ) such that s = OT after σ (as OT is deterministic outside of Fail ) and for s ∈ S after σ, there exists µ such that s µ -→ ∧Trace(µ ) / ∈ R ≥0 . It suffices to take µ ∈ pSeq(OT ) such that Trace(µ) = Trace(µ ), and by the previous trace-inclusion property, such a trace exists.

Proposition 26 .

 26 The test generation method is strict: given a specification S, ∀I ∈ I(S), ∀(G, f ) ∈ T C(S), ¬(Behaviour(G, f, I) tioco S) ⇒ I fails (G, f ) Proof. Let S be a specification, I ∈ I(S) and (G, f ) ∈ T C(S). Suppose that ¬(Behaviour(G, f, I) tioco S). We want to show that I fails (G, f ). By definition of ¬(Behaviour(G, f, I) tioco S), there exist σ ∈ Traces(S) and a ∈ out(Behaviour(G, f, I) after σ) \ out(S after σ) Since DP is an exact determinization of P we have the following equalities: Traces(S) = Traces(P) = Traces(DP) = Traces conf (OT ). Since a ∈ R ≥0 ∪ Σ ! , σ • a ∈ Traces(OT ) as invariants have been removed, and the automaton has been completed on Σ ! with transitions to Fail). Hence σ • a ∈ Traces(Ex fail (OT )). Thus, for ρ ∈ Behaviour(G, f, I) such that Trace(ρ) = σ • a, last(ρ) ∈ Fail and I fails (G, f ).

Proposition 28 .

 28 The test generation method is exhaustive: for any exactly determinizable specification S and any implementation I ∈ I(S) making fair runs ¬(I tioco S) ⇒ ∃(G, f ) ∈ T C(S), I fails (G, f ).

  We thus obtain Traces(DP) = Traces(P) and σ • δ • b ∈ Traces(DP). Hence, the minimal elements of Pass are OT after σ • δ • b.From OT a test case (G, f ) can be built, with f a rank-lowering strategy. By assumption, the implementation is playing fair runs, hence f is winning. So there exists ρ ∈ Outcome(s G 0 , f ) such that Trace(ρ) = σ • δ • b, and thus there exists ρ ∈ Outcome(s G 0 , f ) such that Trace(ρ ) = σ. By assumption, σ • a ∈ Traces(I), and depending on the nature of a:-If a ∈ Σ ! then σ • a ∈ Outcome(s G 0 , f ) as G is complete on Σ ! . Hence σ • a ∈ Behaviour(G,f, I) and as σ • a / ∈ Traces(S) and the determinization is exact, σ • a / ∈ Traces conf (OT ) and G after σ • a ∈ Fail . Hence I fails (G, f ). -If a is a delay, then a > δ, and b ∈ Σ ! . As b is controlled by the implementation, and there is no invariant in G, σ • a ∈ Outcome(s G 0 , f ). Hence σ • a ∈ Behaviour(G, f, I) and as σ • a / ∈ Traces(S) and the determinization is exact, σ • a / ∈ Traces conf (OT ) and G after σ • a ∈ Fail . Hence I fails (G, f ).

For this and the following definitions, we may omit to mention superscripts when the corresponding automaton is clear from the context.

The sequence (W j i )i is non-decreasing, and can be computed in terms of clock regions; hence the limit exists and is reached in a finite number of iterations [CDF + 05].

Appendix

We conduct here the proofs of the different claims. They are separated according to the corresponding parts of the article: testing framework, games, and test-case properties.

A Test framework

First, we prove the claim on the strong-connectivity of the reachable part of a specification semantics. This property is made quite intuitive by the introduction of always-reachable ζ-transitions. As it grounds our approach, we still provide a formal proof.

Proposition 7. Let S be a specification with restarts. Then Reach(T S ) is stronglyconnected.

Proof. Let s be a configuration of T S reachable from s S 0 . By hypothesis, there exists a finite partial execution starting in s which trace contains ζ. This trace leads to the configuration s S 0 hence any reachable configuration of T S is reachable from s, and we conclude that the reachable part of T S is strongly-connected.

We now prove some properties of the product between specifications and test purposes.

Proposition A.1. Let S be a specification and T P a test purpose on this specification. Then Seq(S × T P) = Seq(S)

Proof. It suffices to note that the set of sequences of the product of two OTAIOs is the intersection of the sequences of the two original OTAIOs [START_REF] Bertrand | A game approach to determinize timed automata[END_REF], so that Seq(S × T P) = Seq(S) ∩ Seq(T P); we also note that T P is complete, and hence it accepts any sequence. By projection on traces, we immediately get:

Corollary A.2. Let S be a specification, and T P a test purpose. S and S × T P are trace-equivalent.

Corollary A.3. Let S be a specification, T P a test purpose and T S×T P its associated timed transition system. The reachable part of T S×T P is stronglyconnected.

Proof. This proof is derived from the proof of Prop. 7. Although they are really close, we have to do it again as the product does not ensure any relation on the semantics. Let ((l 1 , l 2 ), v) be a reachable configuration of T S×T P . There exists a finite partial execution starting in (l 1 , v) whose trace contains ζ, and thus by Corollary A.2 there exists a finite partial execution starting in ((l 1 , l 2 ), v) whose trace contains ζ. Hence this transition leads to the configuration s 0 = (l S×T P 0 , 0). It comes that there exists a finite partial execution from ((l 1 , l 2 ), v) to s 0 . Hence any reachable configuration of T S×T P is reachable from ((l 1 , l 2 ), v). It can then be concluded that the reachable part of T S is strongly-connected.

The following properties concern the objective-centered tester. They mainly amount to proving that the objective-centered tester keeps the interesting properties of the product, and that its traces are related to those of the previous automata.

Proposition A.4. Let DP be the exact determinization of the product P between a specification and a test purpose, and OT its associated objective-centered tester. Then Traces(DP) = Traces conf (OT ).

Proof. An execution is in Ex conf (OT ) if it avoids the verdict Fail . This amounts to avoiding the location Fail and respecting the invariants of DP. By construction of OT , this corresponds exactly to the runs of DP.

Lemma A.5. Given an objective-centered tester OT , we have

Proof. Let ρ ∈ Ex fail (OT ). Consider the longest prefix ρ of ρ that does not reach Fail , and let e be the transition taken after ρ in ρ. Two cases should be considered:

-If e is a delay transition, then it violates the invariant of the location in DP.

By determinism of DP, DP after Trace(ρ ) is a singleton. Hence the same delay is not available after ρ in DP.

-If act(e) ∈ Σ ! then this output is not specified in the current location of DP.

By determinism of DP, DP after Trace(ρ ) is a singleton. Hence transition e is not possible after ρ in DP.

In both cases Trace(ρ) / ∈ Traces conf (OT ). As this holds for any run of Ex fail (OT ) we have the desired property.

Lemma A.6. Let OT be an objective-centered tester. For any location l in L OT \ {Fail} there exists a finite partial execution ρ ∈ pEx(OT ) starting in l and containing a ζ.

Proof. The same result holds from any state in S, and Traces(S) = Traces(S ×T P). The result follows by exact determinizability of the product S × T P.

This lemma is the reason why our method assumes exact determinizability, as we can't ensure in general that the restart will remain reachable: if determinization is approximated, some traces might be lost.

Corollary A.7. Let OT be an objective-centered tester and T OT its associated timed transition system. Then Reach(T OT ) \ Fail is strongly-connected.

Lemma 18. If OT is repeatedly-observable, then for all ρ = ((s i , γ i , s i+1 )) i∈N ∈ Ex(G) ending with an infinite sequence of delays, we have

Proof. We show this lemma by contradiction. Assume that for some ρ ∈ Ex(G), we have

Let ρ max be the shortest prefix such that no transition is enabled after this prefix along ρ (it exists because E is finite and there is only a finite number of these prefixes per element of E). Consider any prefix ρ of ρ strictly containing ρ max ; there is no partial sequence µ such that last(ρ ) µ -→ and Trace(µ) / ∈ R ≥0 , as there is no time successor of last(ρ ) with an enabled transition. This contradicts the repeated-observability of OT out of Fail (as G and OT are the same automaton).

Proposition 21. Rank-lowering strategies are winning on Fair(G) (i.e., all fair outcomes are winning).

In order to make this proof, we reason on regions. For this purpose we extend to regions the notions of executions and enabled transitions. We furthermore note that a region is included in any W j i it intersects. We first prove the following lemma: Lemma B.9. Let ρ ∈ Fair(G) be a fair execution and reg ∈ Inf(ρ). For any prefix ν of ρ ending in reg, and any rank-lowering strategy f , noting f (ν) = (δ, a), we have ν δ -→ s ∈ reg and reg ∈ Inf(ρ).

Proof. By definition of a rank-lowering strategy, δ is a possible delay after last(ν). Hence there exists s and reg such that ν δ -→ s ∈ reg . By definition of rank-lowering strategies, it is always the same reg for each ν. If reg = reg then we have our result. Otherwise, by definition of outcomes, there is no transition labelled with a controllable transition leaving reg, and by our fairness assumption, there exists a (strict) time successor reg t -→ reg of reg such that reg ∈ Inf(ρ). If reg = reg we have our result; otherwise, by defintion of outcomes, reg is a time predecessor of reg , and applying the same arguments to reg will create an induction (as by definition of rank-lowering strategies, the strategy after going from ν to reg is to delay to reg ). As there is only finitely-many regions between reg and reg , we have our result by the induction principle.

With this lemma, the proof of the main proposition is made easier.

Proof (of Prop. 21). Let T = (S, s 0 , Γ, → T ) be the timed transition system associated with G = (L, l 0 , Σ u Σ c , X, I, E). Let f be a rank-lowering strategy. We want to prove that Outcome(s 0 , f ) ∩ Fair(G) ⊆ Win(G). We proceed by contradiction.