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Introduction

It is well known, as said by many people, that for over a century mathematicians have been trying to prove the so-called Riemann Hypothesis, RH for short, a conjecture claimed by Riemann [who was professor at University of Gottingen in Germany], near 1859 in a 8page paper "On the number of primes less than a given magnitude" shown at Berlin Academy, and dated/published in 1859; it is well known, as well, that RH is related to set of all the Prime Numbers.

Figure 1 From the original B. Riemann manuscript Before B. Riemann, Euler had devised a function "Euler product" (see figure 1) of prime numbers and of real numbers x>1.

Riemann extended the function in the complex field, with Re[z]=x>1, by the absolute convergent series C, named Riemann zeta function: (z), where z is a complex number z=x+iy and i is the "positive" imaginary unit such that i 2 =-1.
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Then he extended, by analytic continuation, in the whole complex plane C, with the exception of z=1 [harmonic series]:

 (z) is a meromorphic function with only a simple pole at z=1=(1+i0) [with residue 1]  moreover (z)0 for all z  C with Re(z)=x>1;

 in particular (1+ iy)0, for any y0;  (z) has zeros at the negative even integers -2, -4, -6, ….., named trivial zeros;  all the nontrivial zeros lie inside the region, named Critical Strip, 0  Re(z)  1 and are symmetric about both the vertical line, named Critical Line, Re(z)=1/2 and the real axis Im(z)=0:
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, as consequence of the functional equation ( 2) [which was proved by Riemann for all complex z (Riemann 1859).]
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Riemann conjectured the so-called Riemann Hypothesis (RH): the RH states that All the nontrivial zeros of (z) have real part x equal to 1/2 .

We will take advantage of the analytic continuation, convergent for Re(z) > 0,  in particular of the  which has no pole,  is convergent for Re(z) > 0 and  have the same zeros of (z) in the Critical Strip.

In section 3 we will use the "eta" function (z) to prove the RH.

Many great mathematicians tackled this problem; we do not mention them, because they can be found in many books and papers.

If RH would be related to Physics, it would be considered a "universal law": up to 2004, 10 13 zeros have been computed, all on the Critical Line.

If RH would be related to Statistics, <<the hypothesis H 0 : "the nontrivial zeros are on the Critical Line">>, would be confirmed with a Confidence Level (CL) > 0.9999999999: the evidence of 10 13 zeros computed, all on the Critical Line (as to 2004) supports H 0 with that "high" CL [if we could assume that the zeros are a "random sample"].

But Mathematics asks much more than Statistics and Physics… Also a theorem of G. Hardy [Hardy's Theorem, 1914] who proved that "There are infinitely many zeros of (z) on the Critical Line" is not enough because the theorem leave the possibility that other infinite zeros be in the Critical Strip and not on the Critical Line.

ALL the nontrivial zeros must be on the Critical Line, if one wants to prove RH.

The author is aware that he has been affording a very important problem that great mathematicians have failed to prove.

Since the proof of the RH, that he shows here, is very simple, he is worried very much that he could have made an error himself. Let's hope not…

Some concepts on "inner product spaces" and on Hilbert spaces

We have to ask the reader to refer to some Mathematics books for the ideas on "inner product spaces" and on Hilbert spaces. We remind here only that if W is an l 2 Hilbert space (on the field C of complex numbers) any vector w= w 1 , w 2 , ..., w n ,…………….. has the property that the series of the absolute squared components For the normed spaces we have the Schwarz inequality, that using the inner product, is written

The vectorial space with the inner product is named pre-Hilbert space.

IF (a,b)=0 [and (b,a)=0] then the two vectors are orthogonal, and indicated with the symbol ab.

In any "inner product space" (pre-Hilbert space) and in any Hilbert space H it is defined the "functional" (a,b), inner] product of the vectors a and b, as the following series We recall now that the Riemann zeta function is given the absolute convergent series, for x>1,
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and then extended analytically to the whole complex plane C, where  is a meromorphic function with only a simple pole at z=1 [with residue 1] (x= real part of z, y imaginary part of z).

From 3) and 6) we derive the following: when y=0 (and x0, in the Critical Strip) we have (7) while, when x=0.5 (and y0, in the Critical Strip), we have and in general ( 8)
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where The set of (infinite) vectors, with unit norm , defined by the infinite coordinate  k,j of e j (where  k,j is the Dirac symbol:  k,j =0 if kj and  k,j =1 if k=j) e j = 0,j ,  1,j  2,j , ...,  j,j ,  j+1,j ,  j+2,j , ...... are a set of infinite mutually orthogonal vectors (e k ,e j )= k,j which form a basis of the space l 2 . This basis is orthonormal. With these notations any vector can be written in the following way and the inner product of two vectors a and b is given by the formula (5).

(x)=1/1 x , -1/2 x , 1/3 x , -1/4 x ,..., (-1) n-1 /n x ,……=  1 ,  2 , ...,  n ,……… (9) Moreover, if x > 0.5  2x > 1 and if y0,             1 2 2 1 2 1 ) 2 ( 1 ) 1 ( n iy x n iy x n x n n  (8b) that is the norm ||(x+iy)||=
Taking advantage of the above ideas we see that the Dirichlet eta function (z) [the alternating zeta function], which has no pole, is convergent for Re(z) > 0 and have the same zeros of (z) in the Critical Strip, can be considered as an inner product of suitable chosen vectors [with d=x-0.5]  (9b) and ( 10) so that (11) Since the zeros of the Riemann zeta function (z) are the same as the zeros of the "eta" function (z) that has no pole and is convergent for 0 < Re(z) < 1; the zeros of the are given by the vectors orthogonal in the l 2 space, such that (12) Taking advantage of the functional equation and the fact that (z) is analytic, we have
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From ( 12) and ( 13) we can search for the zeros, in the Critical Strip, by finding the "vectors" (d) and (iy) satisfying
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that is the vectors orthogonal (d) and (iy), for suitable values d and y,

The proof of Riemann Hypothesis

To prove that Riemann Hypothesis is true, we assume the hypothesis that RH is false, that is there are at least two points (zeros) and , not on the critical line, but symmetric to it. Actually there are 4 zeros, symmetric to the Critical Line and to the real axis, in the Critical Strip: , , , . Let z=+iC be a "zero of the Riemann zeta function (z) in the Critical Strip" (with d<1) and x=1/1 +0.5+i , 1/2 +0.5+i , 1/3 +0.5+i ,..., 1/n +0.5+i ,….. y d =1/1 d , -1/2 d , 1/3 d ,..., (-1) n-1 /n d ,….. two chosen vectors; since >0, in the "upper" C half-plane, and   , the norm ||x|| is <; moreover ||y d || is <.

From Hardy's Theorem, 1914, we know (proved) that "There are infinitely many zeros of (z) on the Critical Line"; this is not enough because the theorem leave the possibility that other infinite zeros be in the Critical Strip and not on the Critical Line.

ALL the nontrivial zeros must be on the Critical Line, if one wants to prove RH. Hardy's Theorem, is important it states that there are infinite vectors x and y d , with d=0, orthogonal . Now assume that there are (at least) two zeros symmetric to the Critical Line, with = 0 and =d+0.5 and =+0.5-d.

We have two inner products

The two vectors y d and y -d are both orthogonal to x and then they are  either coincident  or they intersect Since one can prove Theorem 1:

IF y and x0 are two vectors and C THEN one can find a unique vector y- 0 x orthogonal to x. See the appendix for the proof. From the Theorem we get then that the two vectors y d and y -d are the same vector: y d =y -d and d=0, so that that is, the two assumed zeros are actually "one" zero on the Critical Line: =1/2, which contradicts our previous hypothesis that RH was false.

Since it was proved (Titchmarsh 1986) that there are infinite zeros of the Riemann zeta function (z) in the Critical Strip, there are infinite values z k = k +i k such that

(z k )=0=(z k ), [0 <  k < 1].
For any  k such that (z k )=0, either there is only one zero with  k =1/2 (on the Critical Line) or two zeros, symmetric to the critical line, with different real parts  k and 1- k , that we proved, above, impossible for a particular value  k such that (z k )=0=(z k ).

Since we can repeat the same argument for any couple of zeros assumed symmetric [for any  k such that (z k )=0, for any nontrivial zero z k ] to the Critical Line:

any zero has =1/2 therefore RH is true

Conclusion

The zeros of the Riemann zeta function (z) are the same as the zeros of the "eta" function (z) that has no pole and is convergent for 0 < Re(z) < 1.

Using the concept of inner product in Hilbert spaces, we were able to show that the zeros of the "eta" function (z) are given by suitable vectors orthogonal in the l 2 space.

Then taking advantage of Theorem 1 [IF y and x0 are two vectors and C, THEN one can find a unique vector y- 0 x orthogonal to x], we proved that for any  k such that (z k )=0=(z k ), [0 <  k < 1], related to two symmetric zeros, the two vectors y d =y -d are actually the same vector so proving that z k = k +i k =0.5+i k : the Riemann Hypothesis is

The space X is named Hilbert space when it is complete with the defined distance.

Another interesting consequence is that [Theorem 2:] the vector y- 0 x is, among all the vectors y-x, the unique with the minimum norm.

In fact, let's put z  =y-x and z 0 =y- 0 x being z 0 x; putting = 0 + we have z  = z 0 -x; then The set of vectors, with unit norm , e j =0, 0, 0,..., 1, 0, 0...... are a set of infinite mutually orthogonal vectors, (e k ,e j )= k,j , which form a basis of the space l 2 .

named

  Dirichlet eta function (z) [sometimes also called the alternating zeta function],

  originated by the introduction of scalar (or inner) product in a vectorial space X [over a numeric field, supposed here the complex field C] Let a and b any two vectors (or points)  X. The scalar (or inner) product, indicated as (a,b), is complex functional [defined for any couple of points (vectors)] with the following properties 1. (a 1 +a 2 ,b)=(a 1 ,b)+(a 2 ,b) and (a,b)=(a,b) [with C]: linearity about the 1 st factor 2. [being the complex conjugate of (a,b)]: pseudo-commutativity 3. (a,a)0 and (a,a)=0  a=0 Due to 3, the inner product (a,a) is a real number. From the previous properties we derive that (a,b 1 +b 2 )=(a,b 1 )+(a,b 2 ) and (a,b)= (a,b) [with C]: pseudo-linearity about the 2 nd factor The function is real and has the properties of a norm; therefore we put With this position the vector space X becomes a normed space.

  a  H and b  H [or l 2 ] are the points [vectors] and a k and b k [ C] are the components of the vectors and [ C] is the complex conjugate of b k [ C]. According to the definition (5), the inner product (a,b) of two vectors a and b is a complex number. When (a,b)=0 the vectors a and b are orthogonal.

  )=1/1 x+iy , 1/2 x+iy , 1/3 x+iy , 1/4 x+iy ,…., 1/n x+iy ,…= 1 ,  2 , ...,  n ,…….. (10) It is easily seen that (x)  l 2 , because 2x1 and the series for (2x) is absolutely convergent, and (x+iy)  l 2 , because the series for (2x+i2y) is absolutely convergent, as well. When 0 < x < 0.5 the norms ||(x)|| and ||(x+iy)|| are related to (x+iy)  l 2 for 0< x<0.5, as well. When 0.5 < x < 1 the norms ||(x)|| and ||(x+iy)|| are related to (x)  l 2 and (x+iy)  l 2 for 0.5< x<1, as well.

  Let X the space of the vectors x= 1 ,  2 ,...,  n ,..... with  k C and 1k such that The inner product of any two vectors x= 1 ,  2 ,...,  n ,..... and y= 1 ,  2 ,...,  n ,..... in such space is Defining the norm and the distance the space l 2 is a complete Banach space.

APPENDIX

We prove here the following Theorem 1:

If y and x0 are two vectors and C one can find a unique vector y- 0 x orthogonal to x. and after the Theorem 2, with some basic ideas on Hilbert spaces.

Proof of Theorem 1

Let's consider the all vectors y-x, C, and look for vectors y-xx; for them the inner product is (y-x, x)=0; then (y, x)+(-x, x)=0, that is (y, x)=(x, x); this equation has the solution .

Therefore, for any x0, the vector is the unique orthogonal to x. As matter of fact, we have and and that is and finally

From the theorem we can derive the relationship with unique; when the two vectors x and y are orthogonal.

We can introduce the distance so making metric the vectorial space X