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Abstract. In this paper, we propose a novel framework for the synthesis
of robust and optimal energy-aware controllers. The framework is based on
energy timed automata, allowing for easy expression of timing constraints
and variable energy rates. We prove decidability of the energy-constrained
infinite-run problem in settings with both certainty and uncertainty of the
energy rates. We also consider the optimization problem of identifying the
minimal upper bound that will permit existence of energy-constrained
infinite runs. Our algorithms are based on quantifier elimination for
linear real arithmetic. Using Mathematica and Mjollnir, we illustrate our
framework through a real industrial example of a hydraulic oil pump.
Compared with previous approaches our method is completely automated
and provides improved results.

1 Introduction

Design of controllers for embedded systems is a difficult engineering task. Con-
trollers must ensure a variety of safety properties as well as optimality with
respect to given performance properties. Also, for several systems, e.g. [8,25,23],
the properties involve non-functional aspects such as time and energy.

We provide a novel framework for automatic synthesis of safe and optimal con-
trollers for resource-aware systems based on energy timed automata. Synthesis of
controllers is obtained by solving time- and energy-constrained infinite run prob-
lems. Energy timed automata [11] extend timed automata [2] with a continuous
energy variable that evolves with varying rates and discrete updates during the be-
haviour of the model. Closing an open problem from [11], we prove decidability of
the infinite run problem in settings, where rates and updates may be both positive
and negative and possibly subject to uncertainty. Additionally, the accumulated
energy may be subject to lower and upper bounds reflecting constraints on ca-
pacity. Also we consider the optimization problems of identifying minimal upper
bounds that will permit the existence of infinite energy-constrained runs. Our deci-
sion and optimization algorithms for the energy-constrained infinite run problems
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(d) Cycle of the Machine

Fig. 2. Hybrid Automaton Model of the System

– (R2): a large amount of oil in the accumulator implies a high pressure of gas in the
accumulator. This requires more energy from the pump to fill in the accumulator
and also speeds up the wear of the machine. This is why the level of oil should be
kept minimal during operation, in the sense that

∫ t=T

t=0
v(t)dt, that is Vacc(T ), is

minimal for a given operation period T .

While (R1) is a safety requirement and so must never be violated by any controller, (R2)
is an optimality requirement and will be used to compare different controllers.

Note that as the power of the pump is not always larger than the demand of the ma-
chine during one period of consumption (see Fig. 2(d) between 10and 12), some extra
amount of oil must be present in the accumulator before that period of consumption to
ensure that the minimal amount of oil constraint (requirement R1) is not violated1.

Additional Requirements on the Controller. When designing a controller, we must de-
cide what are the possible actions that the controller can take. Here are some consid-
erations about that. First, as the consumptions are subject to noise, it is necessary to
allow the controller to check periodically the level of oil in the accumulator (as it is not
predictable in the long run). Second, as the consumption of the machine has a cyclic
behavior, the controller should use this information to optimize the level of oil. So, it is
natural to allow the controller to take control decisions at predefined instants during the
cycle. Finally, we want a robust solution in the sense that if the controller has to turn
on (or off) the pump at time t, it can do it a little before or after, that is at time t ± ∆

1 It might be too late to switch the pump on when the volume reaches Vmin.

(b) Cycle of the Machine

Fig. 1: Overview of the HYDAC system

are based on reductions to quantifier elimination (QE) for linear real arithmetic,
for which we combine Mathematica [26] and Mjollnir [22] into a tool chain.

To demonstrate the applicability of our framework, we revisit an industrial
case study provided by the HYDAC company in the context of the European
project Quasimodo [24]. It consists in an on/off control system (see Fig. 1a)
composed of (i) a machine that consumes oil according to a cyclic pattern of
20 s (see Fig. 1b), (ii) an accumulator containing oil and a fixed amount of gas in
order to put the oil under pressure, and (iii) a controllable pump which can pump
oil into the accumulator with rate 2.2 l/s. The control objective for switching the
pump on and off is twofold: first the level of oil in the accumulator (and so the
gas pressure) shall be maintained within a safe interval; second, the controller
should try to minimize the (maximum and average) level of oil such that the
pressure in the system is kept minimal. We show how to model this system, with
varying constraints on pump operation, as energy timed automata. Thus our
tool chain may automatically synthesize guaranteed safe and optimal control
strategies.

The HYDAC case was first considered in [14] as a timed game using the tool
Uppaal-Tiga [13,5] for synthesis. Discretization of oil-level (and time) was used
to make synthesis feasible. Besides limiting the opportunity of optimality, the
discretization also necessitated posterior verification using PHAVER [18] to rule
out possible resulting incorrectness. Also, identification of safety and minimal oil
levels were done by manual and laborious search. In [21] the timed game models
of [14] (rephrased as Timed Discrete Event Systems) are reused, but BDDs
are applied for compact representation of the discrete oil-levels and time-points
encountered during synthesis. [19] provides a framework for learning optimal
switching strategies by a combination of off-the-shelf numerical optimization
and generalization by learning. The HYDAC case is one of the considered cases.
The method offers no absolute guarantees of hard constraints on energy-level,
but rather attempts to enforce these through the use of high penalties. [27]
focuses exclusively on the HYDAC case using a direct encoding of the safety- and
optimality-constraints as QE problems. This gives—like in our case—absolute
guarantees. However, we are additionally offering a complete and decidable
framework based on energy timed automata, which extends to several other
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systems. Moreover, the controllers we obtain perform significantly better than
those of [14] and [27] (respectively up to 22% and 16% better) and are obtained
automatically by our tool chain combining Mjollnir and Mathematica. This
combination permits quantifier elimination and formula simplification to be
done in a compositional manner, resulting in performance surpassing each tool
individually. We believe that this shows that our framework has a level of maturity
that meets the complexity of several relevant industrial control problems.

Our work is related to controllability of (constrained) piecewise affine (PWA) [7]
and hybrid systems [1]. In particular, the energy-constrained infinite-run problem
is related to the so called stability problem for PWAs. Blondel and Tsitsiklis [10]
have shown that verifying stability of autonomous piecewise-linear (PWL) sys-
tems is NP-hard, even in the simple case of two-component subsystems; several
global properties (e.g. global convergence, asymptotic stability and mortality) of
PWA systems have been shown undecidable in [9].

2 Energy Timed Automata

Definitions. Given a finite set X of clocks, the set of closed clock constraints
over X, denoted C(X), is the set of formulas built using g ::= x ∼ n | g∧g, where
x ranges over X, ∼ ranges over {≤,≥} and n ranges over Q≥0. That a clock
valuation v : X → R≥0 satisfies a clock constraint g, denoted v |= g, is defined in
the natural way. For a clock valuation v, a real t ∈ R≥0, and a subset R ⊆ X,
we write v + t for the valuation mapping each clock x ∈ X to v(x) + t, and
v[R → 0] for the valuation mapping clocks in R to zero and clocks not in R
to their value in v. Finally we write 0X (or simply 0) for the clock valuation
assigning 0 to every x ∈ X.

For E ⊆ R, we let I(E) be the set of closed intervals of R with bounds
in E ∩Q. Notice that any interval in I(E) is bounded, for any E ⊆ R.

Definition 1. An energy timed automaton ( ETA for short; a.k.a. priced or
weighted timed automaton [3,6]) is a tuple A = (S, S0, X, I, r, T ) where S is a
finite set of states, S0 ⊆ S is the set of initial states, X is a finite set of clocks,
I : S → C(X) assigns invariants to states, r : S → Q assigns rates to states, and
T ⊆ S × C(X)×Q× 2X × S is a finite set of transitions.

An energy timed path ( ETP, a.k.a. linear energy timed automaton) is an
energy timed automaton for which S can be written as {si | 0 ≤ i ≤ n} in such a
way that S0 = {s0}, and T = {(si, gi, ui, zi, si+1) | 0 ≤ i < n}. We additionally
require that all clocks are reset on the last transition, i.e., zn−1 = X.

Let A = (S, S0, X, I, r, T ) be an ETA. A configuration of A is a triple
(`, v, w) ∈ S × (R≥0)X × R, where v is a clock valuation, and w is the en-
ergy level. Let τ = (ti)0≤i<n be a finite sequence of transitions, with ti =
(si, gi, ui, zi, si+1) for every i. A finite run in A on τ is a sequence of configura-
tions ρ = (`j , vj , wj)0≤j≤2n such that there exists a sequence of delays (di)0≤i<n

for which the following requirements hold:
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Fig. 2: An energy timed path P, and a run ρ of P with initial energy level 3.

– for all 0 ≤ j < n, `2j = `2j+1 = sj , and `2n = sn;
– for all 0 ≤ j < n, v2j+1 = v2j + dj and v2j+2 = v2j+1[zj → 0];
– for all 0 ≤ j < n, v2j |= I(sj) and v2j+1 |= I(sj) ∧ gj ;
– for all 0 ≤ j < n, w2j+1 = w2j + dj · r(sj) and w2j+2 = w2j+1 + uj .

We will by extension speak of runs read on ETPs (those runs will then end with
clock valuation 0). The notion of infinite run is defined similarly. Given E ∈ I(Q),
such a run is said to satisfy energy constraint E if wj ∈ E for all j.

Example 1. Fig. 2 displays an example of an ETP P and one of its runs ρ. Since
no time will be spent in s2, we did not indicate the invariant and rate of that
state. The sequence ρ is a run of P. Spending 0.6 time units in s0, the value of
clock x reaches 0.6, and the energy level grows to 3 + 0.6× 2 = 4.2; it equals
4.2− 3 = 1.2 when entering s1. Then ρ satisfies energy constraint [0; 5]. /

Definition 2. A segmented energy timed automaton ( SETA for short) is a
tuple A = (S, T, P ) where (S, T ) is a finite graph (whose states and transitions
are called macro-states and macro-transitions), S0 is a set of initial macro-states,
and P associates with each macro-transition t = (s, s′) of A an ETP with initial
state s and final state s′. We require that for any two different transitions t and t′

of A, the state spaces of P (t) and P (t′) are disjoint and contain no macro-states,
except (for both conditions) for their first and last states.

A SETA is flat if the underlying graph (S, T ) is (i.e., for any s ∈ S, there
is at most one non-empty path in the graph (S, T ) from s to itself [15,12]). It is
called depth-1 whenever the graph (S, T ) is tree-like, with only loops at leaves.

A (finite or infinite) execution of a SETA is a (finite or infinite) sequence of
runs ρ = (ρi)i such that for all i, writing ρi = (`ij , v

i
j , w

i
j)0≤j≤2ni

, it holds:

– `i0 and `i2ni
are macro-states of A, and ρi is a run of the ETP P (`i0, `

i
2ni

);

– `i+1
0 = `i2ni

and wi+1
0 = wi

2ni
.

Hence a run in a SETA should be seen as the concatenation of paths ρi between
macro-states. Notice also that each ρi starts and ends with all clock values zero,
since all clocks are reset at the end of each ETP, when a main state is entered. Fi-
nally, given an interval E ∈ I(Q), an execution (ρi)i satisfies energy constraint E
whenever all individual runs ρi do.
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Fig. 3: A SETAA = (S, T, P ) with implicit global invariant y ≤ 1; omitted discrete
updates are assumed to be zero. The map P associates with each (si, sj) ∈ T
the ETP Pi,j . The infinite sequence ρ1 · (ρ2 · ρ3)ω is an infinite execution of A
with initial energy level 3 satisfying the energy constraint E = [0; 5].

Remark 1. In contrast with ETAs, the class of SETAs is not closed under parallel
composition. Intuitively, the ETA resulting from the parallel composition of two
SETAs may not be “segmented” into a graph of energy timed-paths because the
requirement that all clocks are reset on the last transition may not be satisfied.
Furthermore, parallel composition does not preserve flatness because it may
introduce nested loops.

Example 2. Figure 3 displays a SETA A with two macro-states s0 and s2, and
two macro-transitions. The macro-self-loop on s2 is associated with the energy
timed path of Fig. 2. The execution ρ = ρ1 · (ρ2 · ρ3)ω is an ultimately-periodic
execution of A. This infinite execution satisfies the energy constraint E = [0; 5]
(as well as the (tight) energy constraint [1; 4.6]). /

In this paper, we consider the following energy-constrained infinite-run prob-
lem [11]: given an energy timed automaton A and a designated state s0, an
energy constraint E ∈ I(Q) and an initial energy level w0 ∈ E, does there exist
an infinite execution in A starting from (s0,0, w0) that satisfies E?

In the general case, the energy-constrained infinite-run problem is undecidable,
even when considering ETA with only two clocks [20]. In this paper, we prove:

Theorem 3. The energy-constrained infinite-run problem is decidable for flat
SETA.

Theorem 4. Given a fixed lower bound L, the existence of an upper bound U ,
such that there is a solution to the energy-constrained infinite-run problem for
energy constraint E = [L;U ], is decidable for flat SETA. If such a U exists, then
for depth-1 flat SETA, we can compute the least one.

We only sketch a proof of the former result, and refer to [4] for the full proof.



6 G. Bacci, P. Bouyer, U. Fahrenberg, K.G. Larsen, N. Markey, P.A. Reynier

Binary energy relations. Let P = ({si | 0 ≤ i ≤ n}, {s0}, X, I, r, T ) be an
ETP from s0 to sn. Let E ⊆ I(Q) be an energy constraint. The binary energy
relation RE

P ⊆ E ×E for P under energy constraint E relates all pairs (w0, w1)
for which there is a finite run of P from (s0,0, w0) to (sn,0, w1) satisfying energy
constraint E. This relation is characterized by the following first-order formula:

RE
P(w0, w1) ⇐⇒ ∃(di)0≤i<n. Φtiming ∧ Φenergy ∧ w1 = w0 +

n−1∑

k=0

(dk · r(sk) + uk)

where Φtiming encodes all the timing constraints that the sequence (di)0≤i<n

has to fulfill (derived from guards and invariants, by expressing the values of
the clocks in terms of (di)0≤i<n), while Φenergy encodes the energy constraints
(in each state, the accumulated energy must be in E).

w0

w1

0
0

1

1

2

2

3

3

4

4

5

5

It is easily shown that RE
P is a closed, convex subset

of E × E (remember that we consider closed clock
constraints); thus it can be described as a conjunction
of a finite set of linear constraints over w0 and w1 (with
non-strict inequalities), using quantifier elimination of
variables (di)0≤i<n.

Example 3. We illustrate this computation on the ETP
of Fig. 2. For energy constraint [0; 5], the energy relation
(after removing redundant constraints) reads as

RE
P(w0, w1) ⇐⇒ ∃d0, d1. d0 ∈ [0.25; 1] ∧ d1 ∈ [0; 1] ∧ d0 + d1 = 1 ∧

w0 ∈ [0; 5] ∧ w0 + 2d0 ∈ [0; 5] ∧ w0 + 2d0 − 3 ∈ [0; 5] ∧
w1 = w0 + 2d0 + 4d1 − 3 ∧ w1 ∈ [0; 5].

This simplifies to (w1 + 2 ≤ 2w0 ≤ w1 + 4) ∧ (w1 − 0.5 ≤ w0 ≤ w1 + 1).
The corresponding polyhedron is depicted above. /

Energy functions. We now focus on properties of energy relations. First notice
that for any interval E ∈ I(Q), the partially-ordered set (I(E),⊇) is ω-complete,
meaning that for any chain (Ij)j∈N, with Ij ⊇ Ij+1 for all j, the limit

⋂
j∈N Ij

also belongs to I(E). By Cantor’s Intersection Theorem, if additionally each
interval Ij is non-empty, then so is the limit

⋂
j∈N Ij .

With an energy relation RE
P , we associate an energy function (also denoted

with RE
P , or simply R, as long as no ambiguity may arise), defined for any closed

sub-interval I ∈ I(E) as R(I) = {w1 ∈ E | ∃w0 ∈ I. R(w0, w1)}. Symmetrically:

R−1(I) = {w0 ∈ E | ∃w1 ∈ I. R(w0, w1)}.
Observe that R(I) and R−1(I) also belong to I(E) (because the relation R is
closed and convex). Moreover,R andR−1 are non-decreasing: for any two intervals
I and J in I(E) such that I ⊆ J , it holds R(I) ⊆ R(J) and R−1(I) ⊆ R−1(J).
Energy function R−1 also satisfies the following continuity property:

Lemma 5. Let (Ij)j∈N be a chain of intervals of I(E), such that Ij ⊇ Ij+1 for
all j ∈ N. Then R−1(

⋂
j∈N Ij) =

⋂
j∈NR−1(Ij).
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Composition and fixpoints of energy functions. Consider a finite sequence
of paths (Pi)1≤i≤k. Clearly, the energy relation for this sequence can be obtained
as the composition of the individual energy relations RE

Pk
◦· · ·◦RE

P1
; the resulting

energy relation still is a closed convex subset of E ×E that can be described as
the conjunction of finitely many linear constraints over w0 and w1. As a special
case, we write (RE

P)k for the composition of k copies of the same relations RE
P .

Now, using Lemma 5, we easily prove that the greatest fixpoint νR−1 of R−1

in the complete lattice (I(E),⊇) exists and equals:

νR−1 =
⋂

i∈N
(R−1)i(E).

Moreover νR−1 is a closed (possibly empty) interval. Note that νR−1 is the
maximum subset SR of E such that, starting with any w0 ∈ SR, it is possible to
iterate R infinitely many times (that is, for any w0 ∈ SR, there exists w1 ∈ SR
such that R(w0, w1)—any such set S is a post-fixpoint of R−1, i.e. S ⊆ R−1(S)).

If R is the energy relation of a cycle C in the flat SETA, then νR−1 precisely
describes the set of initial energy levels allowing infinite runs through C satisfying
the energy constraint E. If R is described as the conjunction φC of a finite set
of linear constraints, then we can characterize those intervals [a, b] ⊆ E that
constitute a post-fixpoint for R−1 by the following first-order formula:

a ≤ b ∧ a ∈ E ∧ b ∈ E ∧ ∀w0 ∈ [a; b]. ∃w1 ∈ [a; b]. φC(w0, w1). (1)

Applying quantifier elimination (to w0 and w1), the above formula may be
transformed into a direct constraint on a and b, characterizing all post-fixpoints
of R−1. We get a characterization of νR−1 by computing the values of a and b
that satisfy these constraint and maximize b− a.

Example 4. We again consider the flat SETA of Fig. 3, and consider the energy
constraint E = [0; 5]. We first focus on the cycle C on the macro-state s2: using the
energy relation computed in Example 3, our first-order formula for the fixpoint
then reads as follows:

0 ≤ a ≤ b ≤ 5 ∧ ∀w0 ∈ [a; b]. ∃w1 ∈ [a; b].
(
(w1 + 2 ≤ 2w0 ≤ w1 + 4) ∧ (w1 − 0.5 ≤ w0 ≤ w1 + 1)

)
.

Applying quantifier elimination, we end up with 2 ≤ a ≤ b ≤ 4. The maximal
fixpoint then is [2; 4]. Similarly, for the path P from s0 to s2:

RE
P(w0, w1) ⇐⇒ ∃d0, d1. 0 ≤ d0 ≤ 1 ∧ 0 ≤ d1 ≤ 1 ∧ d0 + d1 ≥ 1 ∧

0 ≤ w0 ≤ 5 ∧ 0 ≤ w0 + 1 ≤ 5 ∧ w1 = w1 + 1− d1 ∧ 0 ≤ w1 ≤ 5

which reduces to 0 ≤ w0 ≤ 4 ∧ w0 ≤ w1 ≤ w0 + 1. Finally, the initial energy
levels w0 for which there is an infinite-run in the whole SETA are characterized
by ∃w1. (0 ≤ w0 ≤ 4 ∧ w0 ≤ w1 ≤ w0 + 1) ∧ (2 ≤ w1 ≤ 4), which reduces to
1 ≤ w0 ≤ 4. /



8 G. Bacci, P. Bouyer, U. Fahrenberg, K.G. Larsen, N. Markey, P.A. Reynier

Input: A flat SETA A = (S, T, P ); initial state m0 ∈ S; energy interval I0
1. W ← {(m0, I0, c)} / initialize the waiting list
2. while W 6= ∅ do
3. pick (m, I,flag) ∈W / pick an element from the waiting list
4. W ←W \ (m, I,flag) / remove the element from the waiting list
5. if flag = c̄ then / the node m shall be explored without following a cycle
6. for each (m,m′) ∈ T that is not part of a simple cycle of (S, T ) do
7. W ←W ∪ {(m′,RE

P (m,m′)(I), c)} / add this new task to the waiting list
8. else / the node m shall be explored by following a cycle
9. if m belongs to a cycle of (S, T ) then

10. let C = (m1,m2) · · · (mk,mk+1) be the simple cycle s.t. m = m1 = mk+1

11. let RC = RP (mk,mk+1) ◦ · · · ◦ RP (m1,m2) / energy relation of the cycle

12. if I ∩ νR−1
C 6= ∅ then / check if there is an infinite run via the cycle C

13. return tt

14. else / the cycle can be executed only finitely many times
15. W ←W ∪ {(m, I, c̄)} / add a new task to the waiting list
16. i← 0 / initialize the number of cycle executions
17. while Ri

C(I) 6= ∅ do / while i-th energy relation is satisfied
18. for 1 ≤ j < k do
19. let RPj = RP (mj ,mj+1) ◦ · · · ◦ RP (m1,m2) / unfold C up to mj+1

20. W ←W ∪ {(mj+1,RPj (Ri
C(I)), c̄)}/ add a task to the waiting list

21. i← i+ 1 / increment the number of cycle executions
22. else / m doesn’t belong to a cycle
23. W ←W ∪ {(m, I, c̄)} / add a new task to the waiting list
24. return ff / no infinite run could be found

Algorithm 1: Existence of energy-constrained infinite runs in flat SETA

Algorithm for flat segmented energy timed automata. Following Exam-
ple 4, we now prove that we can solve the energy-constrained infinite-run problem
for any flat SETA. The next theorem is crucial for our algorithm:

Theorem 6. Let R be the energy relation of an ETP P with energy constraint E,
and let I ∈ I(E). Then either I ∩ νR−1 6= ∅ or Rn(I) = ∅ for some n.

It follows that the energy-constrained infinite-run problem is decidable for
flat SETAs. The decision procedure traverses the underlying graph of A, forward
propagating an initial energy interval I0 ⊆ E looking for a simple cycle C such
that νR−1

C ∩ I 6= ∅, where I ⊆ E is the energy interval forward-propagated
until reaching the cycle. Algorithm 1 gives a detailed description of the decision
procedure. It traverses the underlying graph (S, T ) of the flat SETA A, using a
waiting list W to keep track of the macro-states that need to be further explored.
The list W contains tasks of the form (m, I,flag) where m ∈ S is the current
macro-state, I ∈ I(E) is the current energy interval, and flag ∈ {c, c̄} is a flag
indicating if m shall be explored by following a cycle it belongs to (flag = c), or
proceed by exiting that cycle (flag = c̄). Theorem 6 ensures termination of the
while loop of lines 17-21, whereas flatness ensures the correctness of Algorithm 1.
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It is worth noting that the flatness assumption for the SETA A implies that
the graph (S, T ) has finitely many cycles (each macro-state belongs to at most
one simple cycle of (S, T ), therefore the number of cycles is bounded by the
number of macro-states). As a consequence, Algorithm 1 performs in the worst
case an exhaustive search of all cycles in A. The technique does not trivially
extend to SETAs with nested cycles, because they may have infinitely many
cycles.

3 Energy Timed Automata with Uncertainties

The assumptions of perfect knowledge of energy-rates and energy-updates are
often unrealistic, as is the case in the HYDAC oil-pump control problem (see Sec-
tion 4). Rather, the knowledge of energy-rates and energy-updates comes with a
certain imprecision, and the existence of energy-constrained infinite runs must
take these into account in order to be robust. In this section, we revisit the
energy-constrained infinite-run problem in the setting of imprecisions, by viewing
it as a two-player game problem.

Adding uncertainty to ETA. An energy timed automaton with uncer-
tainty (ETAu for short) is a tuple A = (S, S0, X, I, r, T, ε,∆), where (S, S0, X, I,
r, T ) is an energy timed automaton, with ε : S → Q>0 assigning imprecisions to
rates of states and ∆ : T → Q>0 assigning imprecisions to updates of transitions.
This notion of uncertainty extends to energy timed path with uncertainty (ETPu)
and to segmented energy timed automaton with uncertainty (SETAu).

Let A = (S, S0, X, I, r, T, ε,∆) be an ETAu, and let τ = (ti)0≤i<n be a finite
sequence of transitions, with ti = (si, gi, ui, zi, si+1) for every i. A finite run in A
on τ is a sequence of configurations ρ = (`j , vj , wj)0≤j≤2n such that there exist a
sequence of delays d = (di)0≤i<n for which the following requirements hold:

– for all 0 ≤ j < n, `2j = `2j+1 = sj , and `2n = sn;
– for all 0 ≤ j < n, v2j+1 = v2j + dj and v2j+2 = v2j+1[zj → 0];
– for all 0 ≤ j < n, v2j |= I(sj) and v2j+1 |= I(sj) ∧ gj ;
– for all 0 ≤ j < n, it holds that w2j+1 = w2j +dj ·αj and w2j+2 = w2j+1 +βj ,

where αj ∈ [r(sj)− ε(sj), r(sj) + ε(sj)] and βj ∈ [uj −∆(tj), uj +∆(tj)].

We say that ρ is a possible outcome of d along τ , and that w2n is a possible
final energy level for d along τ , given initial energy level w0. Note that due to
uncertainty, a given delay sequence d may have several possible outcomes (and
corresponding energy levels) along a given transition sequence τ . In particular,
we say that τ together with d and initial energy level w0 satisfy an energy
constraint E ∈ I(Q) if any possible outcome run ρ for t and d starting with w0

satisfies E. All these notions are formally extended to ETPu.
Given an ETPu P, and a delay sequence d for P satisfying a given energy

constraint E from initial level w0, we denote by EEP,d(w0) the set of possible final

energy levels. It may be seen that EEP,d(w0) is a closed subset of E.
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Fig. 4: An energy timed path P with uncertainty, and a representation of the
runs corresponding to the delay sequence (0.6, 0.4) with initial energy level 3.

Example 5. Figure 4 is the energy timed path P of Fig. 2 extended with un-
certainties of ±0.1 on all rates and updates. The runs associated with path P,
delay sequence d = (0.6, 0.4) and initial energy level w0 = 3 satisfy the energy
constraint E = [0; 5]. The set EEP,d(w0) then is [2.5; 3.1]. /

Now let A = (S, T, P ) be an SETAu and let E be an energy constraint.
A (memoryless6) strategy σ returns for any macro-configuration (s, w) (s ∈ S and
w ∈ E) a pair (t, d), where t = (s, s′) is a successor edge in T and d ∈ Rn

≥0 is a
delay sequence for the corresponding energy timed path, i.e. n = |P (t)|. A (finite
or infinite) execution of (ρi)i writing ρi = (`ij , x

i
j , w

i
j)0≤j≤2ni

, is an outcome of σ
if the following conditions hold:

– si0 and si2ni
are macro-states of A, and ρi is a possible outcome of P (si0, s

i
2ni

)
for d where σ(si0, w

i
0) =

(
(si0, s

i
2ni

), d
)
;

– si+1
0 = si2ni

and wi+1
0 = wi

2ni
.

Now we may formulate the infinite-run problem in the setting of uncertainty:
for a SETAu A, an energy constraint E ∈ I(Q), and a macro-state s0 and an
initial energy level w0 the energy-constrained infinite-run problem is to decide
the existence of a strategy σ for A such that all runs (ρi)i that are outcome of σ
starting from configuration (s0, w0) satisfy E?

Ternary energy relations. Let P = ({si | 0 ≤ i ≤ n}, {s0}, X, I, r, T, ε,∆) be
an ETPu and let E ∈ I(Q) be an energy constraint. The ternary energy relation
UE
P ⊆ E ×E ×E relates all triples (w0, a, b) for which there is a strategy σ such

that any outcome of ρ from (s0,0, w0) satisfies E and ends in a configuration
(sn,0, w1) where w1 ∈ [a; b]. This relation can be characterized by the following
first-order formula:

UE
P (w0, a, b) ⇐⇒ ∃(di)0≤i<n. Φtiming ∧ Φi

energy ∧

w0 +

n−1∑

k=0

(r(sk)·dk+uk)+

n−1∑

k=0

([−ε(sk); ε(sk)]·dk+[−∆(tk);∆(tk)]) ⊆ [a; b]

6 For the infinite-run problem, it can be shown that memoryless strategies suffice.
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where Φi
energy encodes the energy constraints as the inclusion of the interval of

reachable energy levels in the energy constraint (in the same way as we do on the
second line of the formula). Interval inclusion can then be expressed as constraints
on the bounds of the intervals. It is clear that UE

P is a closed, convex subset of
E ×E ×E and can be described as a finite conjunction of linear constraints over
w0, a and b using quantifier elimination.

Example 6. We illustrate the above translation on the ETPu of Fig. 4. For energy
constraint [0; 5], the energy relation can be written as:

UE
P (w0, a, b) ⇐⇒ ∃d0, d1. d0 ∈ [0.25; 1] ∧ d1 ∈ [0; 1] ∧ d0 + d1 = 1 ∧ w0 ∈ [0; 5] ∧

w0 + [1.9; 2.1] · d0 ⊆ [0; 5] ∧
w0 + [1.9; 2.1] · d0 + [−3.1;−2.9] ⊆ [0; 5] ∧
w0 + [1.9; 2.1] · d0 + [−3.1;−2.9] + [3.9; 4.1] · d1 ⊆ [0; 5] ∧
w0 + [1.9; 2.1] · d0 + [−3.1;−2.9] + [3.9; 4.1] · d1 + [−0.1; 0.1] ⊆ [a; b] ⊆ [0; 5]]

Applying quantifier elimination, we end up with:

UE
P (w0, a, b) ⇐⇒ 0 ≤ a ≤ b ≤ 5 ∧ b ≥ a+ 0.6 ∧ a− 0.2 ≤ w0 ≤ b+ 0.7 ∧

(4.87 + 1.9 · a)/3.9 ≤ w0 ≤ (7.27 + 2.1 · b)/4.1

We can use this relation in order to compute the set of initial energy levels from
which there is a strategy to end up in [2.5; 3.1] (which was the set of possible
final energy levels in the example of Fig. 4). We get w0 ∈ [37/15; 689/205], which
is (under-)approximately w0 ∈ [2.467; 3.360]. /

Algorithm for SETAu. Let A = (S, T, P ) be a SETAu and let E ∈ I(Q)
be an energy constraint. Let W ⊆ S × E be the maximal set of configurations
satisfying the following:

(s, w) ∈ W ⇒∃t = (s, s′) ∈ T.∃a, b ∈ E.
UE
P (t)(w, a, b) ∧ ∀w′ ∈ [a; b].(s′, w′) ∈ W (2)

NowW is easily shown to characterize the set of configurations (s, w) that satisfy
the energy-constrained infinite-run problem. Unfortunately this characterization
does not readily provide an algorithm. We thus make the following restriction and
show that it leads to decidability of the energy-constrained infinite-run problem:

(R) in any of the ETPu P (t) of A, on at least one of its transitions, some clock x
is compared with a positive lower bound. Thus, there is an (overall minimal)
positive time-duration D to complete any P (t) of A.

Theorem 7. The energy-constrained infinite-run problem is decidable for SETAu
satisfying (R).
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It is worth noticing that we do not assume flatness of the model for proving
the above theorem. Instead, the minimal-delay assumption (R) has to be made:
it entails that any stable set is made of intervals whose size is bounded below,
which provides an upper bound on the number of such intervals. We can then
rewrite the right-hand-size expression of (2) as:

∧

s∈S

∧

1≤j≤N
[as,j ; bs,j ] ⊆ E ∧ w0 ∈

∨

1≤j≤N
[as0,j ; bs0,j ] ∧ ∀w ∈ [as,j ; bs,j ].

∨

(s,s′)∈T

[
∃a, b ∈ E. UE

P (s,s′)(w, a, b) ∧
∨

1≤k≤N
([a; b] ⊆ [as′,k; bs′,k])

]
(3)

Example 7. We pursue on Example 6. If ETPu P is iterated (as on the loop
on state s2 of Fig. 3, but now with uncertainty), the set W (there is a single
macro-state) can be captured with a single interval [a, b]. We characterize the
set of energy levels from which the path P can be iterated infinitely often while
satisfying the energy constraint E = [0; 5] using equation (3), as follows:

0 ≤ a ≤ b ≤ 5 ∧ ∀w0 ∈ [a; b]. UE
P (w0, a, b).

We end up with 2.435 ≤ a ∧ b ≤ 3.635 ∧ b ≥ a+ 0.6, so that the largest interval
is [2.435; 3.635] (which can be compared to the maximal fixpoint [2; 4] that we
obtained in Example 4 for the same cycle without uncertainty). /

As in the setting without uncertainties, we can also synthesize an (optimal)
upper-bound for the energy constraint:

Theorem 8. Let A = (S, T, P ) be a depth-1 flat SETAu satisfying (R). Let
L ∈ Q be an energy lower bound, and let (s0, w0) be an initial macro-configuration.
Then the existence of an upper energy bound U , such that the energy-constrained
infinite-run problem is satisfied for the energy constraint [L;U ] is decidable.
Furthermore, one can compute the least upper bound, if there is one.

4 Case Study

Modelling the Oil Pump System. In this section we describe the character-
istics of each component of the HYDAC case, which we then model as a SETA.

The Machine. The oil consumption of the machine is cyclic. One cycle of consump-
tions, as given by HYDAC, consists of 10 periods of consumption, each having a
duration of two seconds, as depicted in Figure 1b. Each period is described by a
rate of consumption mr (expressed in litres per second). The consumption rate
is subject to noise: if the mean consumption for a period is c l/s (with c ≥ 0) its
actual value lies within [max(0, c− ε); c+ ε], where ε is fixed to 0.1 l/s.
The Pump. The pump is either On or Off, and we assume it is initially Off at
the beginning of a cycle. While it is On, it pumps oil into the accumulator with a
rate pr = 2.2 l/s. The pump is also subject to timing constraints, which prevent
switching it on and off too often.
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The Accumulator. The volume of oil within the accumulator will be modelled by
means of an energy variable v. Its evolution is given by the differential inclusion
dv/dt−u ·pr ∈ −[mr + ε;mr− ε] (or −[mr + ε; 0] if mr− ε < 0), where u ∈ {0, 1}
is the state of the pump.

The controller must operate the pump (switch it on and off) to ensure the
following requirements: (R1) the level of oil in the accumulator must always stay
within the safety bounds E = [Vmin;Vmax] = [4.9; 25.1] l (R2) the average level of
oil in the accumulator is kept as low as possible.

By modelling the oil pump system as a SETA H, the above control problem
can be reduced to finding a deterministic schedule that results in a safe infinite
run in H. Furthermore, we are also interested in determining the minimal safety
interval E, i.e., finding interval bounds that minimize Vmax−Vmin, while ensuring
the existence of a valid controller for H.

As a first step in the definition of H, we build an ETP representing the
behaviour of the machine, depicted on Fig. 5. In order to fully model the behaviour
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Fig. 5: The ETP representing the oil consumption of the machine.
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Fig. 6: An ETP for modelling the pump

of our oil-pump system, one would require the parallel composition of this ETP
with another ETP representing the pump. The resulting ETA would not be a flat
SETA, and is too large to be handled by our algorithm with uncertainty. Since
it still provides interesting results, we develop this (incomplete) approach in the
long version of this article [4].

Instead, we consider an alternative model of the pump, which only allows to
switch it on and off once during each 2-second slot. This is modelled by inserting,
between any two states of the model of Fig. 5, a copy of the ETP depicted on
Fig. 6. In that ETP, the state with rate p −m models the situation when the
pump is on. Keeping the pump off for the whole slot can be achieved by spending
delay zero in that state. We name H1 = (M,T, P1) the SETA made of a single
macro-state equipped with a self-loop labelled with the ETP above.

In order to represent the timing constraints of the pump switches, we also
consider a second SETA model H2 = (M,T, P2) where the pump can be operated
only during every other time slot. This amounts to inserting the ETP of Fig. 6
only after the first, third, fifth, seventh and ninth states of the ETP of Fig. 5.

We also consider extensions of both models with uncertainty ε = 0.1 l/s
(changing any negative rate −m into rate interval [−m− ε;−m+ ε], but changing
rate 0 into [−ε; 0]). We write H1(ε) and H2(ε) for the corresponding models.
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Fig. 7: Local strategies for H1(ε) (left) and H2(ε) (right) for a single cycle of the
HYDAC system.

Synthesizing controllers. For each model, we synthesize minimal upper
bounds U (within the interval [Vmin;Vmax]) that admit a solution to the energy-
constrained infinite-run problem for the energy constraint E = [Vmin;U ]. Then,
we compute the greatest stable interval [a; b] ⊆ [L;U ] of the cycle witnessing the
existence of an E-constrained infinite-run. This is done by following the methods
described in Sections 2 and 3 where quantifier elimination is performed using
Mjollnir [22].

Finally for each model we synthesise optimal strategies that, given an initial
volume w0 ∈ [a, b] of the accumulator, return a sequence of pump activation
times ton

i and toff
i to be performed during the cycle. This is performed in two steps:

first we encode the set of safe permissive strategies as a quantifier-free first-order
linear formula having as free variables w0, and the times ton

i and toff
i . The formula

is obtained by relating w0, and the times ton
i and toff

i with the intervals [L;U ] and
[a; b] and delays di as prescribed by the energy relations presented in Sections 2
and 3. We use Mjollnir [22] to eliminate the existential quantifiers on the delays di.
Then, given an energy value w0 we determine an optimal safe strategy for it
(i.e., some timing values when the pump is turned on and off) as the solution
of the optimization problem that minimizes the average oil volume in the tank
during one consumption cycle subject to the permissive strategies constraints.
To this end, we use the function FindMinimum of Mathematica [26] to minimize
the non-linear cost function expressing the average oil volume subject to the
linear constraints obtained above. Fig. 7 shows the resulting strategies: there,
each horizontal line at a given initial oil level indicates the delays (green intervals)
where the pump will be running.

Table 1 summarizes the results obtained for our models. It gives the optimal
volume constraints, the greatest stable intervals, and the values of the worst-case
(over all initial oil levels in [a; b]) mean volume. It is worth noting that the
models without uncertainty outperform the respective version with uncertainty.
Moreover, the worst-case mean volume obtained both for H1(ε) and H2(ε) are
significantly better than the optimal strategies synthesized both in [14] and [27].

The reason for this may be that (i) our models relax the latency requirement
for the pump, (ii) the strategies of [14] are obtained using a discretization of the
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Controller [L;U ] [a; b] Mean vol. (l)

H1 [4.9; 5.84] [4.9; 5.84] 5.43

H1(ε) [4.9; 7.16] [5.1; 7.16] 6.15

H2 [4.9; 7.9] [4.9; 7.9] 6.12

H2(ε) [4.9; 9.1] [5.1; 9.1] 7.24

G1M1 [14] [4.9; 25.1](∗) [5.1; 9.4] 8.2

G2M1 [14] [4.9; 25.1](∗) [5.1; 8.3] 7.95

[27] [4.9; 25.1](∗) [5.2; 8.1] 7.35
(∗) Safety interval given by the HYDAC company.

Table 1: Characteristics of the synthesized strategies, compared with the strategies
proposed in [14,27].
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Fig. 8: Simulations of 5 consecutive machine cycles for H1(ε) and H2(ε).

dynamics within the system, and (iii) the strategies of [14] and [27] were allowed
to activate the pump respectively two and three times during each cycle.

We proceed by comparing the performances of our strategies in terms of
accumulated oil volume. Fig. 8 shows the result of simulating our strategies for
a duration of 100 s. The plots illustrate in blue (resp. red) the dynamics of the
mean (resp. min/max) oil level in the accumulator as well as the state of the
pump. The initial volume used for the simulations is 8.3 l, as done in [14] for
evaluating respectively the Bang-Bang controller, the Smart Controller developed
by HYDAC, and the controllers G1M1 and G2M1 synthesized with uppaal-tiga.

Table 2 presents, for each of the strategies, the resulting accumulated volume
of oil, and the corresponding mean volume. There is a clear evidence that the
strategies for H1 and H2 outperform all the other strategies. Clearly, this is
due to the fact that they assume full precision in the rates, and allow for more
switches of the pump. However, these results shall be read as what one could
achieve by investing in more precise equipment. The results also confirm that
both our strategies outperform those presented in [14]. In particular the strategy
for H1(ε) provides an improvement of 55%, 46%, 20%, and 19% respectively
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Controller Acc. vol. (l) Mean vol. (l)

H1 1081.77 5.41

H2 1158.90 5.79

H1(ε) 1200.21 6.00

H2(ε) 1323.42 6.62

Controller Acc. vol. (l) Mean vol. (l)

Bang-Bang 2689 13.45

hydac 2232 11.60

G1M1 1518 7.59

G2M1 1489 7.44

Table 2: Performance based on simulations of 200 s starting with 8.3 l.

for the Bang-Bang controller, the Smart Controller of HYDAC, and the two
strategies synthesized with uppaal-tiga.

Tool chain7. Our results have been obtained using Mathematica and Mjollnir.
Specifically, Mathematica was used to construct the formulas modelling the
post-fixpoint of the energy functions, calling Mjollnir for performing quantifier
elimination on them. The combination of both tools allowed us to solve one of our
formulas with 27 variables in a compositional manner in ca. 20 ms, while Mjollnir
alone would take more than 20 minutes. Mjollnir was preferred to Mathematica’s
built-in support for quantifier elimination because the latter does not scale.

5 Conclusion

We developed a novel framework allowing for the synthesis of safe and optimal con-
trollers, based on energy timed automata. Our approach consists in a translation
to first-order linear arithmetic expressions representing our control problem, and
solving these using quantifier elimination and simplification. We demonstrated
the applicability and performance of our approach by revisiting the HYDAC case
study and improving its best-known solutions.

Future works include extending our results to non-flat and non-segmented
energy timed automata. However, existing results [20] indicate that we are close
to the boundary of decidability. Another interesting continuation of this work
would be to add Uppaal Stratego [16,17] to our tool chain. This would allow
to optimize the permissive strategies that we compute with quantifier elimination
in the setting of probabilistic uncertainty, thus obtaining controllers that are
optimal with respect to expected accumulated oil volume.
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