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Abstract

Domain-Specific Languages (DSLs) manifest themselves in
remarkably diverse shapes, ranging from internal DSLs em-
bedded as a mere fluent API within a programming language,
to external DSLs with dedicated syntax and tool support.
Although different shapes have different pros and cons, com-
bining them for a single language is problematic: language
designers usually commit to a particular shape early in the
design process, and it is hard to reconsider this choice later.
In this new ideas paper, we envision a language engineer-
ing approach enabling (i) language users to manipulate lan-
guage constructs in the most appropriate shape according
to the task at hand, and (ii) language designers to combine
the strengths of different technologies for a single DSL. We
report on early experiments and lessons learned building
Prism, our prototype approach to this problem. We illustrate
its applicability in the engineering of a simple shape-diverse
DSL implemented conjointly in Rascal, EMF, and Java. We
hope that our initial contribution will raise the awareness of
the community and encourage future research.
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1 Introduction & Motivating Example

One of the first steps in designing a new Domain-Specific
Language (DSL) is to choose which language vehicle (LV) will
be used to engineer it. We define a LV as the technological
means for implementing a language. This includes language
workbenches as well as programming languages and ontol-
ogy languages, to name a few. The notion of language vehicle
is orthogonal to the distinction between technological spaces
(e.g., grammarware, modelware [9]); between graphical and
textual syntax; between internal, embedded, and external
DSLs. For instance, we consider Rascal [8] and Spoofax [6] as
two distinct language vehicles within the broader technologi-
cal space of grammarware and meta-programming; EMF [13]
and UML [5] (using Profiles [11]) as two distinct language
vehicles within the broader technological space of model-
ware. LVs usually come with their own meta-languages for
expressing the various aspects of a DSL: abstract syntax, con-
crete syntax, static and execution semantics, tools, etc. As
implementation techniques differ radically from one LV to
another, this initial design choice commits the development
of a DSL in a set direction that can hardly be reconsidered
later.

From the language designer’s point of view, however, ev-
ery LV has its own strengths. The ecosystem around EMF
excels in the definition of user-friendly editors and persis-
tence frameworks for large models, while the Rascal environ-
ment excels in the definition of interpreters and refactoring
tools. The benefits of various LVs are also visible from the
language users’ point of view. While domain experts may
prefer to manipulate domain concepts through a dedicated
syntax, advanced users (e.g., system integrators) may favor
the flexibility of a fluent API in their favorite programming
language to manipulate the very same constructs.
Let us consider a simple Finite-State Machine (FSM) lan-

guage as a motivating example. As depicted in Figure 1, one
would like to combine the strengths of multiple LVs to engi-
neer this DSL. Rascal could be used to develop its interpreter,
a set of refactoring tools (e.g., state collapsing and mini-
mization), and a textual editor; EMF to develop a graphical
animator for debugging FSM models and a persistence layer;
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machine Button
  state On
    on push ⇒ Off
  end
  state Off
    on push ⇒ On
  end
end

(Rascal) (EMF) (Java)

System
Integrator

Domain
Expert 2

Domain
Expert 1

OffOn

push

push

FSM fsm =

 new FSMBuilder("Button")

  .init("On")

   .to("Off").on("push")

  .state("Off")

   .to("On").on("push")

 .build();

Interpreter, refactorings Simulator, persistence Integration, reuse

Figure 1. Three incarnations of the same FSM model in
three language vehicles: different representations and tools
for different users and tasks.

Java to offer a fluent API for advanced users who focus on
its integration with other system concerns.

Using today’s techniques, it is possible to define the same
FSM language in these three LVs separately. It is not possible,
however, to apply the tools of a given LV on the models or
programs created in another LV—for instance, animating
a FSM model written in EMF using the Rascal interpreter,
or synchronizing a textual FSM model in Rascal with its
equivalent incarnation as a Java AST. Achieving this goal
requires to efficiently synchronize the diverse representations
of the same model in different LVs; for instance to let the FSM
interpreter written in Rascal update its own representation
of an FSM model after each execution step and synchronize
it with the representation of the same model in EMF for
animation purposes.
In this paper, we envision a language engineering ap-

proach enabling (i) language designers to combine tools from
multiple LVs to engineer diverse shapes for a single DSL and
(ii) language users to manipulate language constructs in the
most appropriate shape. We present the notion of shape-
diverse DSL in Section 2. We then present our prototype
approach, Prism, in Section 3, and discuss our implementa-
tion of a shape-diverse FSM language in Section 4. Finally,
we discuss open questions and next steps in Section 5.

2 Shape-Diverse DSLs

The cornerstone artifact defining a DSL in any LV is its
abstract syntax. The way abstract syntax is expressed dif-
fers drastically from one LV to another: GEMOC [4] and
Xtext [3] use Ecore metamodels [13], MPS uses concepts [16],
Rascal [8] uses Algebraic Data Types (ADT), etc. Language
embedding techniques, on the other hand, use the constructs
of a host language to materialize the constructs of a DSL
in the host language itself (e.g., a set of Java classes). Con-
crete models are then built as instances of the corresponding
abstract syntax formalism: Ecore models, ADT values, Java
ASTs, etc. The tools defined within a particular LV (an in-
terpreter in Rascal, an editor in EMF) manipulate models in

Language
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Incarnation1

conformsTo

LV1

Model

implementedBy

Shape2

Incarnation2

conformsTo

LV2
Shape3

Incarnation3

conformsTo

LV3

projectedAs

Figure 2. Languages are implemented as shapes in LVs
and models are projected as incarnations conforming to the
shapes.

the corresponding formalism (respectively, ADT values and
Ecore models). These formalisms radically differ in many
ways [7]: object-oriented vs. functional, graphs vs. trees, mu-
table vs. immutable datatypes, cross-references vs. symbolic
names, etc. As LVs are developed by independent groups of
people and rely on different underlying theories, it is nei-
ther possible nor desirable to establish a common foundation
upon which all LVs would agree.

Figure 2 gives an overview of the concept of shape-diverse
language and the terminology we use throughout the pa-
per. A shape-diverse language L (e.g., the FSM language
of Figure 1) is a language that is implemented in multiple
LVs through multiple shapes Si . As mentioned earlier, Ecore
metamodels, ADT definitions, and Java APIs, along with
their associated tooling, are examples of shapes. Similarly, a
“conceptual” modelm that uses the constructs of L (e.g., the
simple Button machine) is projected1 as an incarnation Ii
conforming to the shape Si in a LV: an Ecore model, an ADT
value, or a Java AST.

As the same model is incarnated many times, each of its
incarnations Ii must remain synchronized. This synchro-
nization mechanism must ensure three essential properties.
First, it must be efficient. This rules out any synchroniza-
tion mechanism that would require a full traversal or full
(de)serialization of the incarnations after every update. Sec-
ond, it must account for any extra shape-specific information
the various LVs have to maintain to function properly, such
as layout information in a textual or graphical editor, or run-
time state in a simulation environment. The synchronization
mechanism must thus isolate the information that relates
to the model itself from the information that is specific to
a particular shape. Third, the synchronization mechanism
must be language-agnostic, meaning it should not have to
be re-implemented for every shape-diverse DSL.

1The notion of projection here is unrelated to the notion of projectional
editing [17] as there is no underlying AST to project from.
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Figure 3. Using Prism to synchronize three incarnations of
the same model. Here, a change occurs on Incarnation #1
and the resulting patch is shipped to Incarnation #2 and #3.

3 Synchronizing Incarnations with Prism

Figure 3 depicts our prototype approach to the problem of
synchronizing various incarnations of a model, Prism. Prism
acts as a communication bus between LVs that remain fully
independent. The key idea is that every change occurring
on one incarnation is shipped to all other incarnations of
the same model in the form of a patch. This patch represents
the exact set of changes that occurred on one incarnation. It
allows synchronizing incarnations online efficiently without
requiring serialization or a full traversal of any of the incar-
nation. Prism keeps track of a matrix that associates every
conceptual model to its incarnations in various LVs. When
a change occurs on one incarnation, for instance resulting
from a user edit or an execution step of an interpreter, the
LV hosting this incarnation generates a patch describing the
change as a set of CRUD-like operations. In our prototype
implementation, the structure of this patch is prescribed by
the Rascal ADT shown in Listing 1, largely inspired by edit
scripts [15]. Essentially, patches consist of a set of operations
attached to identities [7] that represent particular objects in
the model. To ensure that every LV can apply the operations
on the right elements, identities are preserved across LVs
and, in our case, they are represented by URIs [2].
Every LV then interprets the patch in its own way to

keep its incarnations synchronized. In EMF, for instance,
the patch is interpreted as a set of changes that impact a
model conforming to an Ecore metamodel, while in Rascal it
is interpreted as a set of changes that impact an ADT value.
As mentioned earlier, each LV may want to preserve ex-

tra shape-specific information across the patches. A textual
editor in Rascal, for instance, needs to keep some of the pars-
ing information to maintain layout whenever patches are
applied. So it should be possible to apply the patch while
maintaining the extra information specific to a given LV.
Intuitively, our approach supposes that all the information
that does not directly relate to the constructs of a language
is “extra” and therefore should not be part of the patch itself.
There might be cases where sharing extra-information from

@doc{A patch consists of a sequence of edits}

alias Patch = tuple[Id root, Edits edits];

@doc{Edits are operations attached to object identities}

alias Edits = lrel[Id obj, Edit edit];

data Edit = put(str field, value val)

| unset(str field)

| ins(str field, int pos, value val)

| del(str field, int pos)

| create(str class)

| destroy();

Listing 1. CRUD-like patch definition in Rascal.

one shape to the other is desirable, for instance to share
layout information between two textual editors. We discuss
this point further in Section 5.
New LVs can be connected to Prism by implementing

a simple interface that consists of two operations, namely
(i) produce which creates a patch materializing the changes
on an incarnation and notifies Prism, and (ii) apply which
receives a patch from Prism and interprets it to update an
incarnation, taking into account the specificities of the LV.
The way changes are detected in an incarnation and patches
are produced is not prescribed by our approach. For instance,
our Rascal implementation computes patches from a diff
operation between two ADT values, while our EMF imple-
mentation captures the result of transactions on an Ecore
model to produce the patches. The produce and apply opera-
tions are implemented once for every LV and do not have to
be re-implemented for every language.

A cornerstone artifact in Prism is the dispatch mechanism
that routes patches to the appropriate incarnations. When
receiving a patch, Prism looks up its internal matrix to de-
termine which other incarnations of the same model should
be updated. The patch is then copied and routed accordingly.
Our current implementation of the dispatch mechanism is
kept simple, and we leave for future work the support of
concurrent edits on different incarnations of the same model.
This will allow Prism to scale to advanced scenarios that go
beyond the scope of this paper, such as collaborative editing.

4 A Shape-Diverse FSM Language

To illustrate Prism, we build a shape-diverse FSM language
conjointly in Rascal, EMF, and Java, available on a companion
webpage [14]. Figure 4 depicts the implementation of the
abstract syntax of this FSM language in the three LVs. The
corresponding incarnations are those given in Figure 1.

We use Rascal to define a textual editor and a simple trans-
formation that inserts a new state in a machine. We use EMF
to define two graphical editors: a classical tree editor and
a domain-specific representation with Sirius. We build the
Java API following a simple systematic convention, so as to
easily pinpoint which parts of the Java AST have changed (to
compute a patch) or need to be updated (to apply a patch).
Using Prism, the Rascal and EMF shapes synchronize

seamlessly, but we noticed a number of challenges with the
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data Machine(Id uid) =

Machine(str name,

list[State] states,

Ref[State] initial);

data State(Id uid) =

State(str name,

list[Trans] trans);

data Trans(Id uid) =

Trans(str event,

Ref[State] target);

(a) Rascal ADT

Machine

name:String

State

name:String

Trans

event:String

states

trans
target

*

1..1

* initial 1..1

(b) Ecore MM

class Fsm {

Fsm(String name);

State init(String name);

State state(String name);

Fsm end();

}

class State {

State state(String name);

Trans tgt(String name);

Fsm end();

}

class Trans {

Trans tgt(String name);

State on(String event);

Fsm end();

}

(c) Java API

Figure 4. Three shapes of an FSM language; the correspond-
ing incarnations are those depicted in Figure 1.

Java API. As the Java API inherits the (domain-agnostic) tool-
ing of Java itself, it lacks the domain knowledge necessary to
always generate correct patches. Due to the lack of domain-
specific static semantics, a well-formed Java program may
indeed produce an ill-formed FSM that cannot be interpreted
by the other shapes. Besides, our prototype implementation
does not account for complex string manipulation when in-
voking the API or use of variables. However, we believe that
these are purely engineering concerns and that enough ef-
fort spent on the Java API shape would provide a flawless
experience.

5 Open Questions & Next Steps

We now list in this section some open questions, as well as
possible next research steps in this direction.

Closed-world vs. Open-world Implementers of a synchro-
nization mechanism for shape-diverse DSLs may opt for the
closed-world or open-world assumption. In the former, one
assumes that all LVs are known beforehand, while in the
latter new LVs may be connected at any point in time, for
instance using our produce/apply interface for patches. Al-
though the closed-world assumption eases the definition of a
common patch formalism on which all LVs agree, it hampers
evolution and adaptability of the communication bus.

Automatic shape generation In our evaluation (Section 4),
we handcrafted every shape of the FSM language in Rascal,
EMF, and Java. It may, however, be possible to automatically
generate shapes of a language, either from a common lan-
guage definition or from a shape to another. For instance,
researchers have studied the generation of fluent APIs from
BNF-like grammar definitions [10]. Automatic generation of
shapes is not necessary for shape-diverse DSLs, but future
research in this area would significantly ease their adoption.

Patch formalism In Prism, we opted for patches in the
form of edit scripts [15] and were successfully able to bridge
three distinct LVs relying on radically different theories. We

cannot conclude however that the information contained
in such patches is sufficient for any abstract syntax formal-
ism. In an open world especially, connecting new LVs raises
the problem of patch evolution. Also, if extra information
(e.g., textual layout) must be shared amongst various LVs, the
patch formalism should be adapted accordingly. Patches are
nonetheless central to our vision, as most other approaches
(e.g., change propagation [12]) assume the existence of an
underlying model that is not materialized in our case.

Towards collaborative modeling As mentioned in Sec-
tion 3, Prism does not account for concurrent edits of differ-
ent incarnations of the samemodel. It does not account either
for a possible distribution of the shapes and incarnations
on the network, or the possibility of conflicts. Nonetheless,
we believe that the idea of exchanging patches would be a
good fit for advanced scenarios such as collaborative and
distributed editing of models by different stakeholders under
different shapes. A crucial step towards this direction would
be to improve the dispatch mechanism accordingly.

Challenges of internal DSLs We encountered a number
of challenges when engineering the Java shape of our DSL
(Section 4). These are mainly because domain-specific static
semantics is lost whenmanipulating JavaASTs using domain-
agnostic Java tooling. Besides, it may be hard to statically
analyze the Java code manipulating models to account for
reflexivity, string manipulation, or use of variables. Future
work must investigate what the limits imposed by internal
DSLs in this context are, especially regarding the absence of
domain-specific static semantics.

Towards metamorphic DSLs We view this initial contri-
bution as a first step towards metamorphic DSLs [1]. Beyond
the ideas presented in this paper, the notion of metamorphic
DSL envisions self-adaptable languages that automatically
adapt their shapes and the associated IDE according to a
particular usage or task. How self-adaptability of languages
could be brought to life remains an open question.

In this paper, we have stressed the importance of shape-
diverse DSLs and have proposed a first prototype approach,
Prism. We hope that our initial contribution will raise the
awareness of the community regarding these notions and
that the challenges we identify encourage future research.
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