
HAL Id: hal-01889137
https://hal.science/hal-01889137

Submitted on 5 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

RTD-Finder: A Tool for Compositional Verification of
Real-Time Component-based Systems

Souha Ben-Rayana, Marius Bozga, Saddek Bensalem, Jacques Combaz

To cite this version:
Souha Ben-Rayana, Marius Bozga, Saddek Bensalem, Jacques Combaz. RTD-Finder: A Tool for
Compositional Verification of Real-Time Component-based Systems. 22nd International Conference
on Tools and Algorithms for the Construction and Analysis of Systems (TACAS 2016), Apr 2016,
Eindhoven, Netherlands. pp.394-406, �10.1007/978-3-662-49674-9_23�. �hal-01889137�

https://hal.science/hal-01889137
https://hal.archives-ouvertes.fr

RTD-Finder: A Tool for Compositional
Verification of Real-Time Component-based

Systems

Souha Ben-Rayana, Marius Bozga, Saddek Bensalem, and Jacques Combaz

Univ. Grenoble Alpes, VERIMAG, F-38000 Grenoble, France
CNRS, VERIMAG, F-38000 Grenoble, France ??

Abstract. In this paper we present RTD-Finder, a tool which applies a
fully compositional and automatic method for the verification of safety
properties for real-time component-based systems modeled in the RT-
BIP language. The core method is based on the compositional computa-
tion of a global invariant which over-approximates the set of reachable
states of the system. The verification results show that when the invariant
catches the safety property, the verification time for large systems is dras-
tically reduced in comparison with exploration techniques. Nevertheless,
the above method is based on an over-approximation of the reachable
states set expressed by the invariant, hence false positives may occur in
some cases. We completed our compositional verification method with
a counterexample-based invariant refinement algorithm analyzing iter-
atively the generated counterexamples. The spurious counterexamples
which are detected serve to strengthen incrementally the global invari-
ant until a true counterexample is found or until it is proven that all the
counterexamples are spurious.

1 Introduction

The synchronous model of time makes the compositional verification of real-time
systems a challenging task. State-of-the-art tools [7,10,21,19] for the verification
of such systems rely mostly on exploration techniques. Consequently, they suffer
from the state-space explosion for systems with a large number of components.
The aim of compositional verification is to avoid such limitations. The basic idea
is to infer properties of a system from the properties of its components and the
interactions relating them. In general, as explained in [18], the compositional
verification rules concentrate on the following idea: if components B1 and B2

meet respectively properties φ1 and φ1, if some condition C(B1,B2) characterizes
their parallel composition, and if these properties imply conjointly a property
Ψ , then the system resulting from their composition satisfies Ψ .

In [9], a compositional verification rule was proposed for untimed systems. It
is meant to prove invariance properties Ψ for systems built on an n-ary compo-
sition operation via an interaction set γ as follows:

?? Work partially supported by the European Integrated Project STREP 318772 D-
MILS.

B1 |= �φ1, B2 |= �φ2, II (γ), φ1 ∧ φ2 ∧ II (γ)⇒ Ψ

‖γB1,B2 |= �Ψ
(D-Finder VR)

In the above rule, II (γ) is an interaction invariant expressing constraints on
global locations resulting from the interaction structure. If the computed invari-
ant (φ1 ∧ φ2 ∧ II (γ)) implies the safety property Ψ , then the system satisfies
it. The above rule was implemented in the D-Finder tool [8] and was successful
on several benchmarks. Nonetheless, the D-Finder tool does not handle time
syntax. Furthermore, this rule is rather weak for timed systems. A straightfor-
ward adaptation of the D-Finder method to timed systems mostly yields false
positives as shown in [4]. The main reason behind its weakness is that it does
not capture time synchronization between components. In [4], we extended the
above method precisely with the goal of offering a more successful application
to timed systems. At the heart of the extension is the use of auxiliary history
clocks (HC) in order to capture relations between the clocks of the different
components. These clocks are added during the verification process and do not
influence the behavior of the system. More concretely, to each action a, we asso-
ciate an action history clock ha which is reset whenever a occurs. The intuition
behind this is that, on the one hand, history clocks are related to local clocks of
their components thanks to the local invariants of those components and on the
other hand, relations between history clocks of different components are inferred
from the structure of the interactions. For ease of reference, we use E∗(γ) to
denote all the additional clock constraints. Taking them all together, we obtain
relations between the clocks of the different components in our global invariant.
This invariant is made stronger, in case of conflicting interactions (that is, inter-
actions which share actions) by introducing history clocks for interactions. New
constraints on the interaction history clocks are gathered in the so-called S(γ)
invariant. All in all, the verification rule for a system with n components can be
written as follows:

Bh
1 |= �φ1,Bh

2 |= �φ2, II (γ), E∗(γ),S(γ), φ1 ∧ φ2 ∧ II (γ) ∧ E∗(γ) ∧ S(γ)⇒ Ψ

‖γB1,B2 |= �Ψ
(VR)

where Bh
i represents the component Bi extended with action history clocks. The

tool RTD-Finder presented in this paper is an implementation of such a rule
in the context of RT-BIP, a component-based framework for real-time systems
where components synchronize through multi-party interactions.

2 Tool Structure and Main Functionalities

The structure of RTD-Finder is depicted in Figure 1. The tool takes as input a
Real-time (RT) BIP [1] source file and a safety property Ψ to check for invariance.
If the property is not provided by the user, the tool proceeds by default to
the verification of deadlock-freedom. Following this, it computes the predicate
characterizing the set of deadlock states, the so-called DLK module. The tool

Component Invariant Computation Before computation of local invariants,
each component Bi is extended with history clocks to Bh

i . The local invariant
of Bh

i is the set Reach(Bi) of reachable symbolic states which are computed
by forward propagation algorithm. We mention that a symbolic state s = (l, ⇣)
is defined by a location l and a zone ⇣ expressing constraints on the compo-
nent clocks (including history clocks). For this purpose, we implemented various
operations on zones which we included in a DBM library.

Interaction Invariant Generation Interaction invariant II (�) over-approximates
the set of reachable global locations set. It relates locations of di↵erent compo-
nents and allows to disregard some unreachable configurations. As in [2], II (�) is
computed by static analysis of the interaction structure. In order to implement
it in RT-BIP context, we make abstraction from all timing aspects.

History Clocks Constraints Computation E⇤(�) and S(�) express con-
straints on history clocks. Their computation is detailed in [1]. TODO: Put the
formula here?

3 Experimentation

4 Concluding Remarks

Real-Time BIP
Model

Deadlock-freedom

Safety property

DIS computation

Component Invariant Computation Before computation of local invariants,
each component Bi is extended with history clocks to Bh

i . The local invariant
of Bh

i is the set Reach(Bi) of reachable symbolic states which are computed
by forward propagation algorithm. We mention that a symbolic state s = (l, ⇣)
is defined by a location l and a zone ⇣ expressing constraints on the compo-
nent clocks (including history clocks). For this purpose, we implemented various
operations on zones which we included in a DBM library.

Interaction Invariant Generation Interaction invariant II (�) over-approximates
the set of reachable global locations set. It relates locations of di↵erent compo-
nents and allows to disregard some unreachable configurations. As in [2], II (�) is
computed by static analysis of the interaction structure. In order to implement
it in RT-BIP context, we make abstraction from all timing aspects.

History Clocks Constraints Computation E⇤(�) and S(�) express con-
straints on history clocks. Their computation is detailed in [1]. TODO: Put the
formula here?

3 Experimentation

4 Concluding Remarks

Real-Time BIP
Model

Deadlock-freedom

Safety property

DIS computation

II (�) generation

Extension with HC
Bh

i

Components invariantsV
i CI(Bh

i)

Constraints on HC
E⇤(�) ^ S(�)

Global invariant
� =

V
i CI(Bh

i) ^ E⇤(�) ^ S(�) ^ II (�)

Safisfiability
� ^ ¬

References

1. L. Astefanoaei, S. B. Rayana, S. Bensalem, M. Bozga, and J. Combaz. Composi-
tional invariant generation for timed systems. In TACAS, 2014.

2. S. Bensalem, M. Bozga, J. Sifakis, and T.-H. Nguyen. Compositional verification
for component-based systems and application. In ATVA, 2008.

3. O. Kupferman and M. Y. Vardi. Modular model checking. In COMPOS, 1997.
4. T.-H. N. Saddek Bensalem, Marius Bozga and J. Sifakis. D-finder: A tool for com-

positional deadlock detection and verification. In CAV, 2009.

II (�) generation

Extension with HC
Bh

i

Components invariantsV
i CI(Bh

i)

Constraints on HC
E⇤(�) ^ S(�)

Global invariant
� =

V
i CI(Bh

i) ^ E⇤(�) ^ S(�) ^ II (�)

Safisfiability
� ^ ¬

References

1. L. Astefanoaei, S. B. Rayana, S. Bensalem, M. Bozga, and J. Combaz. Composi-
tional invariant generation for timed systems. In TACAS, 2014.

2. S. Bensalem, M. Bozga, J. Sifakis, and T.-H. Nguyen. Compositional verification
for component-based systems and application. In ATVA, 2008.

3. O. Kupferman and M. Y. Vardi. Modular model checking. In COMPOS, 1997.
4. T.-H. N. Saddek Bensalem, Marius Bozga and J. Sifakis. D-finder: A tool for com-

positional deadlock detection and verification. In CAV, 2009.

DIS computation

II (�) generation

Extension with HC
Bh

i

Components invariantsV
i CI(Bh

i)

Constraints on HC
E⇤(�) ^ S(�)

Global invariant
� =

V
i CI(Bh

i) ^ E⇤(�) ^ S(�) ^ II (�)

Safisfiability
� ^ ¬

DIS computation

II (�) generation

Extension with HC
Bh

i

Components invariantsV
i CI(Bh

i)

Constraints on HC
E⇤(�) ^ S(�)

Global invariant
� =

V
i CI(Bh

i) ^ E⇤(�) ^ S(�) ^ II (�)

Safisfiability
� ^ ¬

 is not satisfied

YES

NO

References

1. L. Astefanoaei, S. B. Rayana, S. Bensalem, M. Bozga, and J. Combaz. Composi-
tional invariant generation for timed systems. In TACAS, 2014.

2. S. Bensalem, M. Bozga, J. Sifakis, and T.-H. Nguyen. Compositional verification
for component-based systems and application. In ATVA, 2008.

3. O. Kupferman and M. Y. Vardi. Modular model checking. In COMPOS, 1997.
4. T.-H. N. Saddek Bensalem, Marius Bozga and J. Sifakis. D-finder: A tool for com-

positional deadlock detection and verification. In CAV, 2009.

 is not satisfied

YES

NO

References

1. L. Astefanoaei, S. B. Rayana, S. Bensalem, M. Bozga, and J. Combaz. Composi-
tional invariant generation for timed systems. In TACAS, 2014.

2. S. Bensalem, M. Bozga, J. Sifakis, and T.-H. Nguyen. Compositional verification
for component-based systems and application. In ATVA, 2008.

3. O. Kupferman and M. Y. Vardi. Modular model checking. In COMPOS, 1997.
4. T.-H. N. Saddek Bensalem, Marius Bozga and J. Sifakis. D-finder: A tool for com-

positional deadlock detection and verification. In CAV, 2009.

 is not satisfied

YES

NO

References

1. L. Astefanoaei, S. B. Rayana, S. Bensalem, M. Bozga, and J. Combaz. Composi-
tional invariant generation for timed systems. In TACAS, 2014.

2. S. Bensalem, M. Bozga, J. Sifakis, and T.-H. Nguyen. Compositional verification
for component-based systems and application. In ATVA, 2008.

3. O. Kupferman and M. Y. Vardi. Modular model checking. In COMPOS, 1997.
4. T.-H. N. Saddek Bensalem, Marius Bozga and J. Sifakis. D-finder: A tool for com-

positional deadlock detection and verification. In CAV, 2009.

Component Invariant Computation Before computation of local invariants,
each component Bi is extended with history clocks to Bh

i . The local invariant
of Bh

i is the set Reach(Bi) of reachable symbolic states which are computed
by forward propagation algorithm. We mention that a symbolic state s = (l, ⇣)
is defined by a location l and a zone ⇣ expressing constraints on the compo-
nent clocks (including history clocks). For this purpose, we implemented various
operations on zones which we included in a DBM library.

Interaction Invariant Generation Interaction invariant II (�) over-approximates
the set of reachable global locations set. It relates locations of di↵erent compo-
nents and allows to disregard some unreachable configurations. As in [?], II (�) is
computed by static analysis of the interaction structure. In order to implement
it in RT-BIP context, we make abstraction from all timing aspects.

History Clocks Constraints Computation E⇤(�) and S(�) express con-
straints on history clocks. Their computation is detailed in [?]. TODO: Put the
formula here?

3 Experimentation

4 Concluding Remarks

Real-Time BIP
Model

Deadlock-freedom

Safety property

Safety property to check

 is not satisfied

 is satisfied

YES

NO

References

1. L. Astefanoaei, S. B. Rayana, S. Bensalem, M. Bozga, and J. Combaz. Composi-
tional invariant generation for timed systems. In TACAS, 2014.

2. S. Bensalem, M. Bozga, J. Sifakis, and T.-H. Nguyen. Compositional verification
for component-based systems and application. In ATVA, 2008.

3. O. Kupferman and M. Y. Vardi. Modular model checking. In COMPOS, 1997.
4. T.-H. N. Saddek Bensalem, Marius Bozga and J. Sifakis. D-finder: A tool for com-

positional deadlock detection and verification. In CAV, 2009.

 is satisfied

YES

NO

CEX analysis

References

1. L. Astefanoaei, S. B. Rayana, S. Bensalem, M. Bozga, and J. Combaz. Composi-
tional invariant generation for timed systems. In TACAS, 2014.

2. S. Bensalem, M. Bozga, J. Sifakis, and T.-H. Nguyen. Compositional verification
for component-based systems and application. In ATVA, 2008.

3. O. Kupferman and M. Y. Vardi. Modular model checking. In COMPOS, 1997.
4. T.-H. N. Saddek Bensalem, Marius Bozga and J. Sifakis. D-finder: A tool for com-

positional deadlock detection and verification. In CAV, 2009.

 is satisfied

YES

NO

CEX analysis

valid CEX

false positive

Strengthen �

References

1. L. Astefanoaei, S. B. Rayana, S. Bensalem, M. Bozga, and J. Combaz. Composi-
tional invariant generation for timed systems. In TACAS, 2014.

2. S. Bensalem, M. Bozga, J. Sifakis, and T.-H. Nguyen. Compositional verification
for component-based systems and application. In ATVA, 2008.

3. O. Kupferman and M. Y. Vardi. Modular model checking. In COMPOS, 1997.
4. T.-H. N. Saddek Bensalem, Marius Bozga and J. Sifakis. D-finder: A tool for com-

positional deadlock detection and verification. In CAV, 2009.

 is satisfied

YES

NO

CEX analysis

valid CEX

false positive

Strengthen �

References

1. L. Astefanoaei, S. B. Rayana, S. Bensalem, M. Bozga, and J. Combaz. Composi-
tional invariant generation for timed systems. In TACAS, 2014.

2. S. Bensalem, M. Bozga, J. Sifakis, and T.-H. Nguyen. Compositional verification
for component-based systems and application. In ATVA, 2008.

3. O. Kupferman and M. Y. Vardi. Modular model checking. In COMPOS, 1997.
4. T.-H. N. Saddek Bensalem, Marius Bozga and J. Sifakis. D-finder: A tool for com-

positional deadlock detection and verification. In CAV, 2009.

 is satisfied

YES

NO

CEX analysis

valid CEX

false positive

Strengthen �

Yices
sat-solver

OR

References

1. L. Astefanoaei, S. B. Rayana, S. Bensalem, M. Bozga, and J. Combaz. Composi-
tional invariant generation for timed systems. In TACAS, 2014.

2. S. Bensalem, M. Bozga, J. Sifakis, and T.-H. Nguyen. Compositional verification
for component-based systems and application. In ATVA, 2008.

3. O. Kupferman and M. Y. Vardi. Modular model checking. In COMPOS, 1997.
4. T.-H. N. Saddek Bensalem, Marius Bozga and J. Sifakis. D-finder: A tool for com-

positional deadlock detection and verification. In CAV, 2009.

Safety property
to check

Negation of safety
property to check ¬

DLK computation

II (�) generation

Extension with HC
Bh

i

Components invariantsV
i CI(Bh

i)

Constraints on HC
E⇤(�) ^ S(�)

Safety property
to check

Negation of safety
property to check ¬

DLK computation

II (�) generation

Extension with HC
Bh

i

Components invariantsV
i CI(Bh

i)

Constraints on HC
E⇤(�) ^ S(�)

Global invariant
� =

V
i CI(Bh

i) ^ E⇤(�) ^ S(�) ^ II (�)

Global invariant
GI =

V
i CI(Bh

i) ^ E⇤(�) ^ S(�) ^ II (�)

Satisfiability of � ^ ¬

Satisfiability of GI ^ ¬

 is not satisfied

 is satisfied

YES

NO

Global invariant
� =

V
i CI(Bh

i) ^ E⇤(�) ^ S(�) ^ II (�)

Global invariant
GI =

V
i CI(Bh

i) ^ E⇤(�) ^ S(�) ^ II (�)

Satisfiability of � ^ ¬

Satisfiability of GI ^ ¬

 is not satisfied

 is satisfied

YES

NO

CEX analysis

valid CEX

false positive

Strengthen �

Strengthen GI

Yices
sat-solver

OR

References

1. L. Astefanoaei, S. B. Rayana, S. Bensalem, M. Bozga, and J. Combaz. Composi-
tional invariant generation for timed systems. In TACAS, 2014.

2. S. Bensalem, M. Bozga, J. Sifakis, and T.-H. Nguyen. Compositional verification
for component-based systems and application. In ATVA, 2008.

3. O. Kupferman and M. Y. Vardi. Modular model checking. In COMPOS, 1997.
4. T.-H. N. Saddek Bensalem, Marius Bozga and J. Sifakis. D-finder: A tool for com-

positional deadlock detection and verification. In CAV, 2009.

Fig. 1. RTD-Finder tool structure

extends each component Bi from the input file with history clocks (HC) into Bh
i .

It then computes the invariants of Bh
i as the set of reachable symbolic states.

Afterwards, it computes the interaction invariant and the inequalities on history
clocks (E∗(γ) and S(γ)). The combination of all the above invariants forms the
global invariant GI. Together with the property Ψ , this invariant is input to
Yices [13] [12], an SMT solver. If GI ∧¬Ψ is unsatisfiable, the property is valid.
Else, a counter-example is generated. A guided backward analysis module is
developed to decide upon their validity (the dashed box in Figure 1).

2.1 The RT-BIP Framework

BIP (Behavior-Interaction-Priority) is a framework for modeling heterogeneous
component-based systems. The BIP model is a superposition of three layers:
the lowest layer models the behaviors of the components, the middle layer con-
tains connectors describing interactions between the transitions of the different
components and the top layer gathers priority rules to schedule among enabled
interactions at a moment. Real-time (RT) BIP language extends BIP to support
the continuous model of time where components are timed automata. Interested
readers may refer to [1] for a detailed presentation.

2.2 Invariants Generation

RTD-Finder implements methods to compute components invariants, interaction
invariants and the different constraints relating the history clocks:

Component Invariant Computation The component invariant is a local
invariant proper to the component over-approximating its reachable states set.
We compute it on the component extended with history clocks Bh

i . Intuitevely,
the possible evaluations in a location li of component Bh

i is the disjunction
of zones expressing constraints on the component clocks (including the history
clocks). In our framework, the local invariant CI(Bh

i) of Bh
i is computed as the

set Reach(Bh
i) of the reachable symbolic states which are computed by a depth-

first-search algorithm. A symbolic state si = (li, ζi) of the component is defined
by a location li and a zone ζi. In order to consider the operations and constraints
on clocks during the computation of the reachability graph, we implemented
various operations on zones and we included them in a DBM (Difference Bound
Matrices [11,22]) library.

History Clocks Constraints Computation Constraints E∗(γ) and S(γ) re-
late local constraints obtained separately from the component invariants and by
transitivity induce relations between inner clocks of the different components.
Those constraints encode information like the fact that the history clock ha of
an action a is equal to the minimum among the history clocks of all the inter-
actions to which it belongs. In fact, an action (resp. interaction) history clock is
reset whenever the related action (resp. interaction) occurs. It results that the
smaller the value of the history clock is, the more recent the related action (resp.
interaction) is. The computation of these constraints is detailed in [4].

Interaction Invariant Generation Interaction invariant II (γ) over-approximates
the set of reachable global locations. It relates locations of different components
and allows to disregard some unreachable configurations. As in [9], II (γ) is com-
puted by static analysis of the interaction structure. In order to implement it in
the RT-BIP context, we make an abstraction from all timing aspects.

2.3 Checking Deadlock-freedom and Invariance Properties

Checking Invariance Properties After the computation of the global invari-
ant GI, we export it to Yices sat-solver to check the satisfiability of the predicate
GI ∧ ¬Ψ . The invariance safety properties follow this grammar:

Ψ ::= a | at(li) | Ψ1 ∧ Ψ2 | ¬Ψ

where a is an atomic clock constraint and at(li) is a predicate expressing the
presence of the component Bi at its location li.

If the predicate (GI ∧ ¬Ψ) is not satisfiable, then the property Ψ is valid
on the system and GI is strong enough to detect it. However, if a counter-
example is generated, then RTD-Finder cannot conclude immediately on the
validity of Ψ since the computed invariant is an over-approximation of the global
reachable states set. A second stage of the tool aims at analyzing the generated
counterexamples.

Checking Deadlock-freedom Deadlock predicate DLK expresses the set of
global symbolic states from which all interactions are disabled. Checking dead-
lock freedom is equivalent to proving invariance of ¬DLK.

2.4 Counterexample-based Invariant Refinement

The method is proven to be sound. It is, however, incomplete: since it relies on an
over-approximation of the reachable states set, a counter-example may satisfy the
global invariant GI and be nonetheless unreachable. The violation of the desired
safety property may be the outcome of some behavior in the over-approximation
which does not belong to the original model. False positives appear particularly
in heavily non-deterministic systems. To remedy this, we implemented a counter-
example analysis module to decide the validity of the counter-examples returned
by the sat-solver. Our approach is based on a backward state space search from
the raised counter-example to the initial state. The algorithm removes iteratively
false positives and verifies the existence of reachable bad states. It stops when
a true counter-example is found or until no suspected counter-example remains,
in which case we deduce that the property is valid.
The algorithm is shown in Figure 2. To describe it, we extend the notion of
symbolic state from components to systems of parallel composition. The global
location of a system is a n-tuple containing one location of each component and
the zone of a global symbolic state is the conjunction of constraints relating the
different components clocks.
The Yices SMT-solver generates well-defined locations of components and a
precise valuation ν of clock variables of the counter-example (line 4). Therefore,
a counter-example is perceived as θ = (l, ν), where l is a global location and
where the clock valuation ν is the conjunction of equalities of the form xij = cij .
The variable xij is a clock of the component Bhi and cij is the constant which it
equals in the solution generated by the sat-solver.
As the clocks space is infinite (R), we need to generalize the counter-example
θ such that the algorithm terminates. Instead of considering only the counter
example θ = (l, ν), we analyze a set of counter-examples having the common
global location l and gathered in a global symbolic state whose zone is generated
as follows:

generalize(θ, Ψ) = (l,
∧

zk∈L.ν|=zk
zk ∧

∧

zk∈L.ν 6|=zk
¬zk)

where L stands for the set of literals constraining the clocks in the property Ψ .
The generalization reflects which literals of the safety property are satisfied by
the counterexample or not. This generalization operation is implemented in the
DBM library.
The backward computation starts from a generalized counterexample and com-
putes iteratively its preimage, resulting at each step in a set of global symbolic
states P, until the initial state I is reached or until the preimage is empty.
To ensure termination, at each step, the visited symbolic states set V relative to
the previous iterations is eliminated using the subtraction operator \ in order to
push the algorithm towards the initial state (line 11), else to conclude, if there is
no intersection between P and I and if P is empty, that (lθ, ζθ) does not contain
any valid counterexample. The set V is cumulative: it contains the states that
have been visited during the analysis of the previous counterexamples. They are
all eliminated during the subtraction operation. If there exists a symbolic state
s0 ∈ P ∩ I, then the length of the shortest path from s0 to (lθ, ζθ) is equal to
the number of preimage computation operations required to reach s0. For each
analyzed counterexample, we note by the depth d the shortest path from (lθ, ζθ)
to the first backwards reachable state belonging to I. If such a state does not
exist, that is if the backward reachability algorithm reaches a set of symbolic
states that has an empty preimage and has no intersection with I, then the coun-
terexample is spurious and the global invariant can be refined with its negation
(line 16). We note that the operators \ and ∩ on global symbolic states sets are
slightly different from the usual set difference and conjunction operations on sets
since symbolic states are defined by locations and zones. We consider the case
where the zone of a symbolic state from a first set is strictly included in the zone
of a symbolic state from another set and has its same location.

3 Experimentation

RTD-Finder is implemented in the Java programming language. It takes as in-
put an RT-BIP file and a file where the property is expressed in Yices syntax.
The tool saves all the computed invariants to an output Yices file and displays
the verification result after the satisfiability checking of GI ∧ ¬Ψ with Yices. If
a counter example is found, then the Yices output is parsed as a symbolic state
and is generalized with respect to the safety property. If a counterexample is
spurious, its negation is conjoined with the global invariant in the Yices file and
the satisfiability of GI ∧ ¬Ψ is further checked.

We show in this section the experimental results for four benchmarks with
different properties for each of them.

Train Gate Controller The first example is the classical train gate controller
(TGC) system, where a controller, a gate and a number of trains interact to-
gether. We verified two properties:

1 GI :=
∧
CI(Bh

i) ∧ E∗(γ) ∧ S(γ) ∧ II (γ) ;
2 V := ∅ ;
3 while GI ∧ ¬Ψ is satisfiable do
4 Let θ a solution of GI ∧ ¬Ψ ;
5 Let (lθ, ζθ) := generalize(θ, Ψ) ;
6 Let P := {(lθ, ζθ)} ;
7 while P ∩ I = ∅ and P 6= ∅ do
8 V := V ∪ P ;
9 P := pre(P) \ V ;

10 end
11 if P ∩ I 6= ∅ then
12 stop ;
13 // The counterexample is valid

14 else
15 GI := GI ∧ ¬(at(lθ) ∧ ζθ) ;
16 // The counterexample is spurious

17 end
18 end
19 if GI ∧ ¬Ψ is not satisfiable then
20 Ψ is satisfied.
21 end

Fig. 2. Counterexample-based invariant refinement algorithm

1. (P1) Utility property: The gate does not go down if all the trains are far
from the crossing.

2. (P2) Safety property: The gate is down when a train is in the crossing.

While the generated invariant was strong enough to verify the utility prop-
erty, a spurious counterexample raises for the P2 property. The counterexample-
based refinement algorithm was necessary in this case.

Temperature Control System The second example is a timed adaptation of
the temperature control (TC) system in [9]. It represents a simplified model of a
nuclear plant. The system consists of a controller interacting with an arbitrary
number of rods in order to maintain the temperature within some bounds. When
the reactor spends 900 units of time in heating, a rod must be used to cool the
reactor. We verified two properties:

1. (P3) At least one rod is ready to take cool action together with the controller
when necessary.

2. (P4) No rod is in cool location if the controller and the other rods are in
heat position.

While (P3) property is implied by the computed invariant, the counterexample
analyis module is needed for (P4) property.

The TGC (resp. TC) example is run with great numbers of trains (resp. rods)
in order to show the scalability of the method.

Gear Controller System The third benchmark is taken from [20] and models
a gear controller system embedded inside vehicles. It is composed of an interface
sending gear change requests to a gear controller component which interacts
with an engine, a clutch and a gear-box component. In order to ensure the
system correctness, some requirements have to be met. We verified the following
properties after making abstraction from the data variables of the system:

1. (P5) Predictability : When the engine is regulating the torque, the clutch
should be closed.

2. (P6) Error detection: The controller detects and indicates the precise errors
when the clutch is not opened or closed at time and when the gear-box is
unable to set or release a gear at time. (P6) gathers 4 state properties.

3. (P7) The gear controller system is deadlock-free.

The computed invariant was strong enough to verify all the above-mentioned
correctness properties required for the gear control system.

Dual Chamber Implantable Pacemaker We considered the verification of
a dual chamber implantable pacemaker modeled and verified in [16]. The system
is designed to manage the cardiac rhythm. In the considered pacemaker mode,
both the atrium and ventricle of the heart are paced. Based on the sensing of
both chambers, the pacing can be restrained or activated. For a safe operation,
it is essential that the ventricles of the heart should not be paced beyond a
maximum rate equal to a TURI constant. A ventricle pace (VP) can occur
at least TURI time units after a ventricle event. This requirement expresses the
Upper rate limit property. We summarize the verified properties in the following:

1. (P8) There is a minimum time elapse TURI between a ventricle (VS) sense
and a ventricle pace (VP) event.

2. (P9) There is a minimum time elapse TURI between two ventricle pace (VP)
events.

3. (P10) The pacemaker system is deadlock-free.

As in [16], we verified both of (P8) and (P9) properties by translating them into
a monitor component. Besides, our method offers another way to check the first
property without resorting to the monitor as it can be expressed by means of the
already introduced history clocks. In fact, the difference between the interactions
history clocks relative to those two events is bigger than the desired time elapse.
However, using history clocks to express the safety requirement is not possible
for the second property since it compares two occurrences of the same action.
The global invariant is strong enough to catch the (P8) property. Nevertheless,

the counterexample analysis is necessary to eliminate 28 raised spurious coun-
terexamples appearing during the verification of (P9) property. RTD-Finder ver-
ified also deadlock-freedom (P10) after eliminating 11 spurious counterexamples.

Experimental Results

Table 1 gives an overview of the experimental results relative to the verification
of the properties where no counterexample raises. In this table, n is the number
of components in the considered example, q is the total number of control lo-
cations of its components and c (resp. h) is the number of system clocks (resp.
actions history clocks) and |γ| is the number of interactions. Finally, t shows the
total verification time required for GI invariant computation and satisfiability
checking of GI ∧ ¬Ψ and tyices specifies the satisfiablity checking time required
by the sat-solver.

The tool and the detailed output results are available at http://www-verimag.
imag.fr/RTD-Finder. We made a comparison of RTD-Finder with the mono-
lithic verification tool UPPAAL based on the complete method of model-checking.
UPPAAL incorporates reduction techniques that are very successful on some
benchmarks, like the train-gate-controller system. Yet, in general, the state-
space exploration has its costs. We made a comparison with RTD-Finder on TC
system. For 10 rods, UPPAAL generated no results after five hours and 436519
explored states. Nevertheless, RTD-Finder checked the property for 300 rods in a
few minutes, as shown in Table 1. All the experiments are run on Linux machine
Intel Core 3.20 GHz ×4 and 15.6 GiB Ram.

Model Property n q c |γ| h t tyices

Train gate controller (50 trains) P1 52 158 52 102 106 0.5s 0.3s

Train gate controller (100 trains) P1 102 308 102 202 206 5.3s 0.6s

Train gate controller (200 trains) P1 202 608 202 402 406 1m33s 5s

Train gate controller (300 trains) P1 302 908 302 602 606 9m8s 20s

Train gate controller (500 trains) P1 502 1508 502 1002 1006 1h13m20s 2m52s

Temperature control (20 rods) P3 21 42 21 40 42 0.07s 0.01s

Temperature control (50 rods) P3 51 102 51 100 102 0.35s 0.04s

Temperature control (100 rods) P3 101 204 102 200 204 3.7s 0.08s

Temperature control (300 rods) P3 301 602 302 600 602 5m47s 0.9s

Gear controller P5, P6 5 65 4 17 32 15.1s 0.14s

Gear controller P7 5 65 4 17 32 17.6s 0.04s

Pacemaker (with monitor) P8 7 19 11 6 21 0.25s 0.004s

Pacemaker (without monitor) P8 6 16 9 6 19 0.24s 0.004s

Table 1. Results from experiments where no counterexample raises

http://www-verimag.imag.fr/RTD-Finder
http://www-verimag.imag.fr/RTD-Finder

All of the properties shown in Table 1 are checked without resorting to the
counterexample analysis module, that is the computed invariant catches them.
At the opposite, the other properties are not implied by the invariant and for
that the generated counterexamples have been analyzed. The results are shown
in Table 2. For a spurious counterexample, d is the length of the path from the
suspected state (lθ, ζθ) to the symbolic states set P having an empty preimage.
Intuitively, the depth d is the number of backward computation steps required to
deduce the invalidity of the counterexample. The number dmax is the maximum
depth d amongst the analyzed spurious counterexamples. By p, we note the to-
tal number of all the symbolic states computed and visited during the backward
analysis and contained in the P sets, while by kcex we refer to the number of
analyzed counterexamples. The total verification time is tcex.
The verification time is visibly less important when the invariant is strong

Model Property n |γ| dmax p kcex tcex

Train gate controller (3 trains) P2 5 8 22 440 1 0.6s

Train gate controller (5trains) P2 7 12 22 2452 1 3.2s

Train gate controller (10 trains) P2 12 22 22 22982 1 45s

Train gate controller (20 trains) P2 22 42 22 199192 1 19m45s

Temperature control (3 rods) P4 4 6 7 48 1 0.2s

Temperature control (5 rods) P4 6 10 7 218 1 0.6s

Temperature control (20 rods) P4 21 40 7 8914 1 3m46s

Temperature control (50 rods) P4 51 100 7 128794 1 14h14m

Pacemaker (with monitor) P9 7 3 6 126 28 0.6s

Pacemaker P10 7 3 4 93 11 0.5s

Table 2. Results from experiments where counterexamples analysis is needed

enough to detect the desired property, which was the case for all the properties
shown in Table 1. In some cases, even when counterexample analysis is needed,
RTD-Finder remains competitive to model checking using forward reachability
analysis. This is for instance the case of the temperature control system and
(P4) property which is verified in 3 minutes for 20 rods using the counterexam-
ple analysis module compared to the inability to check the property in 5 hours
for 10 rods with UPPAAL.
It is worth noting that some symmetry reduction techniques can be applied
in order to ameliorate the performances of the counterexample-guided invari-
ant refinement algorithm. Some of them were already applied under the model-
checking tool UPPAAL [14]. Symmetry reduction would notably allow to refine
the global invariant not only with the negation of a given counterexample proven
to be spurious, but also with a set of counterexamples to which it is symmetric.
It would also serve to reduce the complexity of the backward computation.
In Table 2, we notice that for the Train-gate-controller (resp. temperature con-
trol) system, the number of backward steps dmax necessary to deduce the invalid-

ity of the counterexample remains the same, independently from the number of
replicated trains (resp. rods) in the system. This suggests some similar behaviors
among systems differing only on the copies number of the replicated component
and motivates the consideration of an extension for the verification of parame-
terized timed systems adapted to our compositional verification method.
We propose an extension of RTD-Finder precisely with the goal of offering uni-
form verification for a class of parameterized timed systems.

4 Ongoing Extensions

Our ongoing extensions are multifold and focus mainly on the expressive power
of the system properties, and the class of systems itself.

Uniform Verification of Parameterized Timed systems In [5], we pro-
posed an extension of (VR) to the verification to parameterized timed systems.
Parameterized systems are those which rely on multiple copies of a given compo-
nent. Illustrative examples are satellite systems, swarm robots, ad-hoc networks,
device drivers, or multi-threaded programming. The main purpose is to establish
system safety independently from the number of components. It turned out that
typical small model results lend themselves well to the parameterized timed sys-
tems we considered. The main idea is that it is sufficient to apply (VR) for all the
systems with less than n0 identical components in order to conclude correctness
for the systems with any number of copies. The bound n0 is computed statically
from the number of quantifiers in (VR). With n0 at hand, the tool computes
the global invariant for any k ≤ n0 and checks if the property is satisfied. The
steps are precisely those depicted in Figure 1.
If we consider the TGC system and deadlock-freedom, then following the small
model theorem, it suffices to check the property for all numbers of trains ranging
from 1 to 5. The total RTD-Finder verification time for those small models is
1.4s. We applied this method also on a timed version of a token ring system. We
check that at any time, exactly one of the processes possesses the token (i.e is
in a busy location). The total verification time of the small models, containing
from 1 to 5 processes, is 0.4s.
The present verification approach for parameterized timed systems states that if
the global invariant implies the property for the small models, then it is verified
for all numbers of the replicated component. We want to complete it in order
to cover the cases where the refinement of the invariant with the negation of
the spurious counter examples is needed. Since the backward reachability com-
putation is in general practical for small models, this extension of our uniform
verification method would drastically reduce the verification time even when
raised false positives are eliminated.

Verification of Timed Systems with Parameters and Data One inter-
esting extension of RTD-Finder is concerns parametric timed systems which

contain timing constraints defined by use of parameters. These parameters may
range over infinite domains and are in general related by a timing constraints
set. Since the lack of restriction makes emptiness undecidable, the verification of
systems composed of parametric timed automata is even harder. It requires data
structures that handle efficiently and compactly the configurations that are in-
troduced by the plentifulness of parameters. Inspired by existing work [15,2,17],
a feasible approach consists in extending DBMs to parametric DBMs [3] and
existentially quantifying (VR) such that the prover returns concrete values of
the parameters ensuring the desired safety property for the system. As most
of the existing tools are based on exploring the whole state space, they han-
dle a relatively small number (mostly below ten) of automata, the immediate
advantage of our approach is in scalability. Another possible extension is the
consideration of richer classes of models, handling data variables and urgency
types on transitions [6]. This is not a trivial task since urgency does not lend
itself to a compositional definition.

Properties Currently, RTD-Finder handles only state safety properties but the
extension to check LTL properties by use of Timed Büchi automata is possible.
As for the pacemaker example, history clocks may help to express some LTL
properties without resorting to the monitors.
RTD-Finder offers high scalability especially when the property to check is not
combinatorial. Checking the absence of deadlock is currently more problematic.
If in the untimed case one can provide an exact formalization of deadlock by
means of local characterizations, this is no longer the case for timed systems.
More precisely, the condition which expresses that an interaction is eventually
enabled in a timed setup cannot be decided by the consideration of the involved
components only, but depends also from the timing constraints of the non in-
volved components. We are working on some approximation techniques in order
to avoid its full computation.

Acknowledgement The authors would like to thank Lacramioara Aştefănoaei for
her contribution to the construction of the global invariant and to the verification of
parameterized timed systems.

References

1. T. Abdellatif, J. Combaz, and J. Sifakis. Model-based implementation of real-time
applications. In Proceedings of the 10th International conference on Embedded
software, EMSOFT, pages 229–238, 2010.

2. É. André and R. Soulat. Synthesis of timing parameters satisfying safety properties.
In Proceedings of Reachability Problems - 5th International Workshop, RP, pages
31–44, 2011.

3. A. Annichini, E. Asarin, and A. Bouajjani. Symbolic techniques for parametric
reasoning about counter and clock systems. In Computer Aided Verification, 12th
International Conference, CAV, pages 419–434, 2000.

4. L. Astefanoaei, S. B. Rayana, S. Bensalem, M. Bozga, and J. Combaz. Com-
positional invariant generation for timed systems. In Proceedings of Tools and
Algorithms for the Construction and Analysis of Systems - 20th International Con-
ference, TACAS, pages 263–278, 2014.

5. L. Astefanoaei, S. B. Rayana, S. Bensalem, M. Bozga, and J. Combaz. Composi-
tional verification of parameterised timed systems. In Proceedings of NASA Formal
Methods - 7th International Symposium, NFM, pages 66–81, 2015.

6. A. Basu, M. Bozga, and J. Sifakis. Modeling heterogeneous real-time components
in BIP. In Fourth IEEE International Conference on Software Engineering and
Formal Methods SEFM, pages 3–12, 2006.

7. G. Behrmann, A. David, K. G. Larsen, J. H̊akansson, P. Pettersson, W. Yi, and
M. Hendriks. UPPAAL 4.0. In Third International Conference on the Quantitative
Evaluation of Systems QEST, pages 125–126, 2006.

8. S. Bensalem, M. Bozga, T. Nguyen, and J. Sifakis. D-finder: A tool for compo-
sitional deadlock detection and verification. In Proceedings of Computer Aided
Verification, 21st International Conference, CAV, pages 614–619, 2009.

9. S. Bensalem, M. Bozga, J. Sifakis, and T. Nguyen. Compositional verification
for component-based systems and application. In Proceedings of Automated Tech-
nology for Verification and Analysis, 6th International Symposium, ATVA, pages
64–79, 2008.

10. M. Bozga, C. Daws, O. Maler, A. Olivero, S. Tripakis, and S. Yovine. Kronos:
A model-checking tool for real-time systems. In Proceedings of Computer Aided
Verification, 10th International Conference, CAV, pages 546–550, 1998.

11. D. L. Dill. Timing assumptions and verification of finite-state concurrent systems.
In Proceedings of Automatic Verification Methods for Finite State Systems, Inter-
national Workshop, pages 197–212, 1989.

12. B. Dutertre. Yices 2.2. In Proceedings of Computer Aided Verification - 26th
International Conference, CAV, pages 737–744, 2014.

13. B. Dutertre and L. de Moura. The Yices SMT solver. Technical report, SRI
International, 2006.

14. M. Hendriks, G. Behrmann, K. G. Larsen, P. Niebert, and F. W. Vaandrager.
Adding symmetry reduction to uppaal. In Formal Modeling and Analysis of Timed
Systems: First International Workshop, FORMATS, pages 46–59, 2003.

15. T. Hune, J. Romijn, M. Stoelinga, and F. W. Vaandrager. Linear parametric model
checking of timed automata. J. Log. Algebr. Program., 52-53, 2002.

16. Z. Jiang, M. Pajic, S. Moarref, R. Alur, and R. Mangharam. Modeling and verifi-
cation of a dual chamber implantable pacemaker. In TACAS, 2012.

17. A. Jovanovic, D. Lime, and O. H. Roux. Integer parameter synthesis for timed au-
tomata. In Proceedings of Tools and Algorithms for the Construction and Analysis
of Systems - 19th International Conference, TACAS, pages 401–415, 2013.

18. O. Kupferman and M. Y. Vardi. Modular model checking. In Compositionality:
The Significant Difference, International Symposium, COMPOS, pages 381–401,
1997.

19. D. Lime, O. H. Roux, C. Seidner, and L. Traonouez. Romeo: A parametric model-
checker for petri nets with stopwatches. In Proceedings of Tools and Algorithms for
the Construction and Analysis of Systems, 15th International Conference, TACAS,
pages 54–57, 2009.

20. M. Lindahl, P. Pettersson, and W. Yi. Formal design and analysis of a gear con-
troller. In Proceedings of Tools and Algorithms for Construction and Analysis of
Systems, 4th International Conference, TACAS, pages 281–297, 1998.

21. F. Wang. Redlib for the formal verification of embedded systems. In Leveraging
Applications of Formal Methods, Second International Symposium, ISoLA, pages
341–346, 2006.

22. S. Yovine. Model checking timed automata. In Lectures on Embedded Systems,
European Educational Forum, School on Embedded Systems, pages 114–152, 1996.

	RTD-Finder: A Tool for Compositional Verification of Real-Time Component-based Systems
	Souha Ben-Rayana, Marius Bozga, Saddek Bensalem, and Jacques Combaz

