
HAL Id: hal-01889124
https://hal.science/hal-01889124v1

Submitted on 16 May 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Model-based design of IoT systems with the BIP
component framework

Alexios Lekidis, Emmanouela Stachtiari, Panagiotis Katsaros, Marius Bozga,
Christos K. Georgiadis

To cite this version:
Alexios Lekidis, Emmanouela Stachtiari, Panagiotis Katsaros, Marius Bozga, Christos K. Georgiadis.
Model-based design of IoT systems with the BIP component framework. Software: Practice and
Experience, 2018, 48 (6), pp.1167 - 1194. �10.1002/spe.2568�. �hal-01889124�

https://hal.science/hal-01889124v1
https://hal.archives-ouvertes.fr

Model-based Design of IoT Systems with the BIP Component

Framework

May 16, 2024

Alexios Lekidis, Emmanouela Stachtiari, Panagiotis Katsaros
Department of Informatics, Aristotle University of Thessaloniki 54124 Thessaloniki, Greece

E-mail address: alekidis, emmastac, katsaros @csd.auth.gr

Marius Bozga
Univ. Grenoble Alpes, VERIMAG, F-38000 Grenoble, France CNRS, VERIMAG, F-38000 Grenoble,

France
E-mail address: marius.bozga@imag.fr

Christos K. Georgiadis
Department of Applied Informatics, University of Macedonia 54006 Thessaloniki, Greece

E-mail address: geor@uom.edu.gr

Abstract

The design of software for networked systems with nodes running an Internet of Things (IoT)
operating system faces important challenges, due to the heterogeneity of interacting things and
the constraints stemming from the often limited amount of available resources. In this context,
it is hard to build confidence that a design solution fulfills the application’s requirements. This
paper introduces a design flow for web service applications of the Representational State Transfer
(REST) style that is based on a formal modeling language, the BIP (Behaviour, Interaction, Pri-
ority) component framework. The proposed flow applies the principles of separation of concerns
in a component-based design process that supports the modular design and reuse of model arti-
facts. The BIP tools for state space exploration allow verifying qualitative properties for service
responsiveness, i.e. the timely handling of events. Moreover, essential quantitative properties
are validated through statistical model checking of a stochastic BIP model. All properties are
preserved in actual implementation by ensuring that the deployed code is consistent with the
validated model. We illustrate the design of a REST sense-compute-control application for a
Wireless Personal Area Network architecture with nodes running the Contiki OS. The results
validate qualitative and quantitative properties for the system and include the study of error
behaviours.

Keywords: Internet of Things; Model-based design; Service Oriented Architecture

1 INTRODUCTION

The Internet Of Things (IoT) aims at the seamless interconnection of heterogeneous embedded sys-
tems using the Internet technologies and infrastructure. The connected things are network nodes
equipped with low-memory and low-power devices that collect data from the surroundings (sensors)
and communicate it to the system, as well as smart objects that perform computations. System in-
tegration is facilitated by operating systems [1, 2, 3], which enable the nodes’ control by abstracting
the provided hardware and software resources.
Many different programming models have been proposed for the various types of IoT applications [4,

5, 6, 7]. In practice, software design relies heavily on node programming close to the operating
system level. This affects the development time, the application reliability and its efficiency, due to
the heterogeneity of the involved things and the diverse interaction modes to be taken into account.
For things with continuous communication, a fixed schedule with periodic transmissions will have to
be designed. If the application includes event-driven and command-based communications, packet
collisions and message overloading may be encountered. Moreover, applications are not easily adapted
to the ever evolving needs, especially when they are deployed in large-scale distributed environments,
where they handle and route many different types of events [8].

1

The design complexity of an IoT application is reduced significantly, when re-using web services [9,
10]. According to the REpresentational State Transfer (REST) style, the things are accessed as
abstract resources located by Universal Resource Identifiers (URIs) and they are manipulated through
the Hypertext Transfer Protocol (HTTP) or the Constrained Application Protocol (CoAP) [11].
However, IoT applications primarily involve asynchronous interactions as opposed to the synchronous
interactions found in most Internet applications. Furthermore, a typical web service is a long-running
executable process, whereas IoT applications are based on resource-constrained things, which may
have to remain idle for relatively long periods of time.
To address the risks due to the overall design complexity, operating systems provide tools [12, 13]

for the simulation-based validation of execution scenarios. This support is insufficient for guranteeing
at design time requirements of applications and systems. To this end, a model-based design process
relying on formal modeling semantics can open prospects for an exhaustive analysis of the application’s
behaviour, and a simulation analysis grounded on statistical confidence.
We therefore advocate a design flow based on the BIP component framework [14]. The system

design is specified in a Domain Specific Language, which is used to preserve the consistency between
the auto-generated BIP model and the application code. BIP is a language with formally defined
semantics for building executable models of mixed software/hardware systems. With its expressive
coordination primitives, BIP facilitates the modeling of heterogeneous computations and interactions
(synchronous and asynchronous) that are inherent in service-based IoT applications [15, 16]. It
also allows using resource variables that model resources (e.g. time, memory, energy). The BIP
model is amenable to formal verification through state space exploration, for guaranteeing behavioural
correctness properties. If the model is extended with stochastic variables, it is amenable to statistical
model checking [17], a simulation-based analysis with statistical guarantees, i.e. finely controlled
quality of results by various confidence parameters. This allows validating quantitative properties
derived from requirements relevant to the IoT system’s architecture [18].
Through analysis by state space exploration we ensure deadlock freedom and other properties re-

lated to handling events in a timely manner, i.e. what we call service responsiveness. With statistical
model checking, we validate properties for the correct operation of the system under statistical as-
sumptions for its external stimuli, as well as the message buffer utilisation, the collision occurrence
and the event queue blocking times [19]. These analyses are not supported by today’s IoT operating
system simulators. The concrete contributions of this research work are as follows:

• We present our model-based design flow in the context of IoT WPAN (Wireless Personal Area
Network) systems.

• The domain specific language (DSL) for REST applications running on the Contiki OS [1] is
then introduced; the focus on the Contiki OS was motivated by the fact that it is open source
and its design is transparent to the development community.

• We illustrate the design of a REST sense-compute-control (SCC) application for a building
automation system. The BIP model was based on the WPAN architecture standards and it was
subsequently calibrated based on the Contiki OS runtime constraints.

• We provide results for properties derived from requirements for IoT WPAN systems. Moreover,
a study of the system’s robustness with respect to error behaviours is presented.

The described approach supports a component-based design philosophy that allows locating design
errors to specific components, while boosting modular design and reuse of model artifacts. Through
the separation of concerns, it enables the application development independently from the IoT system
architecture. Finally, based on the wide range of supported analyses, multiple requirement types can
be validated. The BIP models for the Contiki OS were first presented in [20]. Compared to that
work, we introduce here the design flow with the DSL, and we present a SCC use case (a sense-only
application was shown in [20]). This allowed us to additionally provide statistical model checking
results for the system’s operation under assumptions for its external stimuli.
Section 2 provides the background on the foundations of IoT systems, and on the BIP tools. Section

3 introduces the model-based design flow. Section 4 presents the case study and Section 5 comments
on the benefits and the limitations of our approach. A comparison with other design methods is also
included. The paper concludes with a summary of our work’s contributions.

2

2 BACKGROUND

2.1 Foundations of IoT Systems

In an IoT system, the interactions amongst the different abstraction layers of the mixed SW/HW
architecture (Figure 1) impact the overall system’s performance and efficiency. From another point
of view, we often have different applications overlapping in networks of heterogeneous things. The
REST design is an architectural style that enables application-layer interoperability, i.e. multiple
applications can co-exist and share the same set of things. It is used in the design of node-decentralized
systems, but the nodes may be also integrated in cloud-centric solutions [21], which are more often
preferred. Here, we only consider the former case. In most IoT operating systems, there is integrated
support for the design of REST applications.

Network stack

Operating system

Device drivers

Application software

Hardware architecture

Figure 1: Typical SW/HW architecture of IoT node

Every message exchange involves a “server” node and one or many “clients”. Clients send requests
to the server and receive responses; they are responsible for keeping the state of the involved inter-
actions. The servers accept requests in the form of CoAP/HTTP methods (e.g GET, POST, PUT,
DELETE), for retrieving or modifying the state of their resources; every resource is uniquely identi-
fied by a URI and encapsulates data, such as thing descriptions and locations, sensor values or the
state of an actuator. The same node may act as a server in some communications (e.g. to provide
access to sensor values), and as a client in others (e.g. to register in a directory). There are also
intermediary nodes, which implement both the client and server roles, but they only forward requests
or translate them in other protocols. A gateway node may be used to mediate client requests and
forward them to the actual server; such nodes often encapsulate legacy services, to improve server
performance through caching, and to enable load balancing across multiple machines.
The IoT applications for WPAN systems can be classified in two broad categories according to

how they manage their internal interactions and the interactions with the physical environment. The
Sense-Only (SO) applications collect sensor data whenever necessary (intermittent sensing) or on a
regular basis. Such examples are the smart heating systems, where one can remotely access and adjust
the in-house temperature using cloud services, as in [20]. On the other hand, applications of the SCC
category, apart from sensing, also coordinate various control activities. Such activities range from
e.g. taking proactive actions for controlling the room’s temperature to dispatching client notifications.
The main difference between these two application categories is the autonomic operation of the SCC
nodes, i.e. their functioning without any human intervention.

2.2 Contiki and REST application programming

The Contiki OS implements a lightweight architecture for event-driven applications [1]. The node
processes wait for events and handle them in event handlers that run sequentially with respect to
other handlers without being interrupted, i.e. they finish upon running to completion. This means
that lengthy event handlers can absorb the processing capacity [22].
Processes communicate by posting synchronous and asynchronous events to each other. Syn-

chronous events are dispatched immediately when they are posted, so that they are handled on the
spot. The execution control returns to the calling process only after the event handler has finished.
On the other hand, asynchronous events are en-queued by the OS and are dispatched later. While
synchronous events target a single process, asynchronous events can target many processes. In that
case, each process is called in a sequential manner.

3

Events are identified by their type. Along with the predefined event types by the OS, we can have
application-specific types defined by processes. Two commonly used predefined events are the poll
and the exit events. The poll events are asynchronous events of high priority; they are dispatched
before any other asynchronous event. The exit events are posted synchronously and cause a process
to run the exit handler and eventually end. As opposed to other handlers, the optional poll and exit
handlers are enabled at all control flow locations of the process, though they might be omitted.
The Contiki OS features a REST Engine API [23], for the definition of REST service resources. A

basic REST resource has a name, a URI-path and a set of HTTP/CoAP methods through which the
resource is accessed. Each access is handled by a dedicated resource handler that responds to the
requests coming from the network. A REST Engine process listens to the network stack and transfers
the requests/responses from/to the resource handlers. The design of REST applications typically
consists of the following steps:

1. The REST resource definitions are provided and the resource handlers are implemented or
reused.

2. The application behaviour is distributed to nodes with the client, the server or both roles. The
server processes, which activate the REST engine and the client processes with the methods to
access server resources are implemented.

3. Appropriate parameters for the network are configured.
4. The functional behaviour is debugged using the OS’s simulator.
5. When enough testing confidence is achieved, the client and REST server implementations are

deployed on the system nodes.
The Cooja simulator [13] is used to validate the functional behaviour and when simulating realistic

workloads the performance aspects of Contiki OS applications. However, such a simulation provides
insight only for a limited set of execution scenarios and cannot ensure by itself the diverse requirements
of an IoT system. Programming for resource-constrained devices involves various sources of delay
that are hardy predictable. First, asynchronous communication within a node or between remote
nodes is prone to delays, due to the execution of other processes and the fact that events are handled
sequentially. Second, delays might occur due to message encoding and decoding, which depends on
the overall CPU load of nodes. Finally, there is a high probability of collision, if two or more nodes
access the communication medium simultaneously. In this case, all the involved nodes will back off
the transmission for a random period of time and will retry once this period has elapsed. With
Cooja, the programmer is restricted to inspecting the behaviour of application functions and the
performance of system nodes, without being able to inspect the interactions at the lower layers of the
node architecture shown in Figure 1.

2.3 On the Tools of the BIP methodology

2.3.1 The BIP component framework

BIP (Behaviour-Interaction-Priority) [24] is a formal framework for building complex systems by
coordinating the behaviour of a set of atomic components. Behaviour is defined as a transition system
extended with data and C/C++ functions. The definition of coordination between components is
layered: in the first layer lie the component interactions, while the second layer involves dynamic
priorities between interactions.
The atomic components are finite-state automata extended with variables and ports. Variables are

used to store local data. Ports are named, and may be associated with variables. They are used for
interaction with other components. States denote control locations at which the components await
for interaction. A transition is an execution step, labelled by a port, from a control location to
another. It might be associated with a boolean condition (guard) and a computation defined on local
variables. The model’s global state at each execution step is given as the current control locations
and the values of local variables of all atomic components.
Connectors relate ports from different subcomponents. by assigning to them a synchronization

attribute: trigger (▲) or synchron (•). The connectors represent sets of interactions, that are, non-
empty sets of ports which are jointly executed. If all connected ports are synchrons, one interaction is
executed, that is, if all connected components allow the transitions of those ports (rendezvous). If a
connector has one trigger, the possible interactions include at least one trigger port (broadcast). For
every interaction, the connector might provide a guard and a data transfer, that are, respectively, an
enabling condition and an exchange of data across the ports involved in the interaction. Additionally,

4

s0	

sndPacket	

NB:=0	

s1	

s2	

s3	

busy	

.ck	

[t<CCA]	

t:=t+1	

elapsed	

[t=backoff]	

t:=0	

s5	

free	

s8	

endT	

[t=tdata]	

	
 startTrans
beginT	

[t=CCA	
 ||	
 eval=1]	

t:=0	

.ck	

[t<backoff]	

t:=t+1	

.ck	

[t<tdata]	

t:=t+1	

	
 backoff=distVal*aUnitBackoffPeriod L0

beginT	

nodeNum:=nodeNum+1	

endT	

nodeNum=nodeNum-­‐1	

sending	

[nodeNum	
 	
 	
 	
 1]	

L1

busy	

nodeNum:=nodeNum+1	

beginT	

busy	
 endT	
 free	

nodeNum	

L2

free	

nodeNum=nodeNum-­‐1	

newTrans	

[nodeNum=0]	

beginT	
 eval	

endT	
 busy	
 free	

.ck	
 sndPacket	
 pkt	

if	
 (nodeNum	
 	
 	
 	
 1)	
 then	
 eval:=1	
 else	
 eval:=0	

busy	

[eval=0]	

≤

≤

Figure 2: Example BIP components and their interactions - Channel (left) and ProtStack.MsgSender
(right)

connectors can export ports for building hierarchies of connectors. The stochastic extension of BIP
[25] allows (1) to specify stochastic aspects of individual components and (2) to provide a purely
stochastic semantics for the parallel composition of components through interactions and priorities.
Syntactically, stochastic behaviour at the level of atomic BIP components is obtained by using prob-
abilistic variables. These are attached to probability distributions (implemented as C functions) and
are updated (or sampled) during transition firing where they get random values accordingly. The
semantics on transitions is thus fully stochastic. The stochastic semantics also covers the interaction
level. When several interactions are enabled after application of priority rules, a probabilistic choice
among them is performed using a user-specified probability distribution.
Figure 2 shows the composition of two BIP components from our IoT system model. On the left,

the Channel models access to a shared communication medium. This component interacts through
the ports beginT, busy, free and endT. On the right, the ProtStack.MsgSender component models the
sending of data packets through the network and exhibits a stochastic behaviour, due to sampling
from the uniform distribution for assigning a value to the distVal variable in transition startTrans.
Only strict synchronization with synchrons (rendezvous) is used for these two components.

2.3.2 Statistical Model Checking

Statistical Model Checking (SMC) was proposed as a means to cope with the scalability issues in
numerical methods for the analysis of stochastic systems. Consider a system model M and a set of
requirements, where each requirement can be formalised by a stochastic temporal property ϕ written
in the Probabilistic Bounded Linear Temporal Logic (PBLTL) [26]. The SMC applies a series of
simulation-based analyses to decide PBLTL properties of the following two types:

1. Is the probability PrM (ϕ) for M to satisfy ϕ greater or equal to a threshold θ? Existing ap-
proaches to answer this question are based on hypothesis testing [27]. When p = PrM (ϕ), to
decide if p ≥ θ, we can test H : p ≥ θ against K : p < θ. Such a solution does not guarantee a
correct result but it allows to bound the error probability. The strength of a test is determined
by the parameters (α, β), such that the probability of accepting K (resp. H) when H (resp. K)
holds is less than or equal to α (resp. β). However, it is not possible for the two hypotheses to
hold simultaneously and therefore the ideal performance of a test is not guaranteed. A solution
to this problem is to relax the test by working with an indifference region (p1, p0) with p0 ≥ p1
(p0 − p1 is the size of the region). In this context, we test the hypothesis H0 : p ≥ p0 against
H1 : p ≤ p1 instead of H against K. If the value of p is between p1 and p0 (the indifference
region), then we say that the probability is sufficiently close to θ, so that we are indifferent with

5

respect to which of the two hypotheses K or H is accepted.
2. What is the probability for M to satisfy ϕ? This analysis computes the value of PrM (ϕ) that

depends on the existence of a counterexample to ¬ϕ, for the threshold θ. This computation is of
polynomial complexity and, depending on the model M and the property ϕ, it may or may not
terminate within a finite number of steps. In [26], a procedure based on the Chernoff-Hoeffding
bound [28] was proposed, to compute a value for p′, such that |p′−p| < δ with confidence 1−α,
where δ denotes the precision.

The SMC of BIP models is automated by the SMC-BIP tool (Figure 3) that supports both types
of PBLTL properties. The tool accepts as inputs the PBLTL property, a model in SBIP and the
confidence parameters α, β and δ. The SBIP model is then triggered iteratively by the SMC Core, a
module that implements statistical testing algorithms [17], to generate independent execution traces.
The execution traces are monitored in order to produce local verdicts. This procedure is repeated
until an overall decision can be taken. At the end, the tool provides a verdict in the form of the
probability for the property to hold true. The number of needed execution traces depends on the
confidence parameters that are given as inputs. However, since the approach is designed for the
validation of bounded LTL properties, it is guaranteed to terminate in finite time.

Figure 3: Architecture of the SMC-BIP tool for statistical model checking (source: SMC-BIP web-
site1)

3 THE BIPMODEL-BASED DESIGN FLOWFOR IOT SYS-
TEMS

An IoT project always starts from a set of requirements that can be classified in two major categories:
(i) the functional requirements that are related to the application functionality, and (ii) the non-
functional requirements related to the performance and the efficiency of the IoT system, along with
its robustness characteristics. Functional requirements can be captured by formally specified safety
and liveness properties, but we may be interested also for a quantitative characterisation of the correct
operation of system under statistical assumptions for its external stimuli. Of particular importance
are the non-functional requirements, such as the enforcement of bounded latencies due to e.g. packet
collisions, and limited energy consumption.
We advocate a design flow using models that capture both the functional, as well as the non-

functional aspects of behaviour across all abstraction layers of Figure 1, while supporting the separa-
tion of concerns during the system’s design [29]. The separation of concerns is two-fold and involves
not only the separation of application from the lower abstraction layers, but also the separation of

1http://www-verimag.imag.fr/Statistical-Model-Checking.html

6

computation from the communication. The former is of vital importance as it enables the application
development independently from the IoT system architecture. The latter refers to the mechanisms
and the primitives of the protocols employed in the network stack, which can be handled indepen-
dently from the data processing. In this context, developers can model and build artifacts separately
for the software and the various node architecture layers, which can be also reused in similar applica-
tions. Those reusable model artifacts are easily instantiated and parameterized, with respect to the
particular system under design.
The design flow aims to the progressive development of the system, starting from the modelling and

the implementation of the application functions up to their deployment onto the IoT system. The
design philosophy is incremental in nature, since it is based on the hierarchical composition of simpler
model artifacts, i.e. components, to form more complex components. An immediate consequence is
that the debugging and identification of design errors in simpler components is easier and less time-
consuming. In the course of the design flow, the developers should be able to find the optimal
deployment - from the performance perspective at a given system scale - for the applications, while
ensuring their proper functioning.
Our models rely on the BIP component framework. We take care of preserving the consistency

between the BIP models and the corresponding application code by generating both from a single
design definition written in a proprietary DSL. The DSL refers specifically to REST applications to
be deployed onto IoT WPAN systems with Contiki OS nodes. The language provides XML-based
constructs for the communication, the control flow and the scheduling of events in Contiki OS nodes,
as well as for mapping the application’s modules onto the system’s nodes. The network configuration
parameters are defined in XML files of the format proposed in [30]. Each model modification for
fulfilling a violated requirement is respectively applied by the developer to the DSL design definition,
from which the updated Contiki code is generated.
The design flow is based on analysis techniques for guaranteeing the qualitative and quantitative

properties that capture the functional and non-functional requirements. The qualitative properties
for safety and bounded liveness are formalised as observer automata [31] for monitoring the state of
the BIP model and are then verified with the BIP tools for state space exploration. The quantitative
properties are validated with statistical model checking [17].
Figure 4 provides an overview of our model-based design flow. We assume the availability of a

library with model fragments for the applicable OS and SW/HW network stack, which can be reused
in new IoT projects. All the necessary system components are instantiated from this library, according
to the DSL design definition, which includes the IoT application’s mapping onto the system’s nodes.
From these artifacts, it is possible to generate the BIP model of the IoT system. The overall approach
consists of the following steps:

1. Translation for the construction of the Application Model. The design definition for a
REST application in the DSL is translated into BIP. The structure of the DSL description is
preserved and this allows to trace the analysis findings back to the design definition.

2. Translation for the synthesis of the OS/kernel Model. The BIP model fragments for
the OS and the network stack (part of the network stack may be implemented by the HW
architecture, as shown in Figure 1) are instantiated from the OS kernel library, through the
translation of the XML-based network configuration file that determines also the components’
parameterization and their interconnection.

3. Transformation for the construction of the System Model. The DSL mapping onto the
system’s nodes is manually edited2. It is used for transforming the Application and OS/Kernel
models into a System Model. Appropriate BIP glueing code is generated from the defined
mapping to connect the OS kernel model with the application model.

4. Code generation. The design and mapping definitions in DSL are used for generating code.
The code can be either node-specific, i.e. ready to be deployed onto the distributed IoT system,
or node-agnostic, if there is need for further validation within the OS simulator (Cooja). In any
case, the code is deployed/simulated according to the specified application mapping onto the
system’s nodes.

5. State-space exploration. The verification of qualitative properties derived from functional
requirements takes place by state-space exploration with the BIP tools. In case of a property
violation, the original DSL definition (and the auto-generated BIP model) has to be repaired.

6. Calibration. The runtime characterization of the IoT application takes place by executing
the generated code on the nodes and within the system environment. All influential hardware/

2The computation of the optimal solution would have to be based on a parametric mapping definition

7

Modeling

Code

generation
4

Transformation for

System Model

Fault

(BIP)
model

Fault

injection

Model
(BIP)

Application

System

Model

(BIP)

Calibration 6

Model

Calibrated
System

(BIP)

(SMC)
7model−checking

Statistical

configuration

(XML specification)
(DSL)

Mapping

Simulation
(e.g. Cooja)

Distributed
deployment

Runtime

(e.g. packet
delivery ratio)

measurements
error

(DSL)

Application

description

Network

(BIP)

component
library

Preliminary phase

standards
communication

network stack
IoT OS kernel/

IoT

3

5

8

2Translation for
Application

Model

OS / Kernel
Model

1

(BIP)

Translation for
OS / Kernel

Model

exploration)
(state−space
Verification

Figure 4: The BIP model-based design flow for IoT WPAN systems
(numbered rectagles show the process steps)

8

software constraints are identified and subsequently added to the BIP System Model.
7. Statistical model checking. The validation of quantitative properties derived from functional

and non-functional requirements takes place by SMC. If a property is not satisfied at the required
level of confidence, the DSL definition has to be repaired.

8. Fault injection. The robustness of the BIP System Model is analyzed by considering various
error behaviours, such as loss of bandwidth and radio interference as additive noise. The former
increases packet losses and out-of-order deliveries and the latter causes error-prone access to the
wireless medium and increases packet collisions [32]. For this analysis, additional components
with the error behaviour are added, and further parameterization through proper runtime error
measurements is required [20].

The design flow is iterated upon any change in the application’s description or in its mapping, which
follows the previous verification and validation step. The Step 8 takes place only when there are
specific robustness requirements for the system under design.
In any case, the step 4 precedes the verification and validation of requirements, in order to enable

the calibration of the system’s model in step 6. This process aims to augment the model with
timing information for computations and communications from executions of the actual system. The
timing information for computations is derived from executing an application process on a system
node. Communication times are induced by functions that use communication resources. In general,
these times depend on the system’s interactions with the environment, and on various interference
factors that are not known in advance. In these cases, we can apply a probability distribution fitting
technique, whereas the functional BIP model is transformed into a stochastic BIP model through
the introduction of probabilistic variables that represent stochastic time evolution [17]. When the
software runs to the completion of events and if it is possible to justify the absence of any interference,
the measured execution times can be approximated by fixed times that are incorporated into the BIP
System model.

3.1 Domain Specific Language for Contiki REST applications

The DSL for our model-based flow allows specifying a REST Contiki application in a single design
definition file. This file is used as input to auto-generate both the BIP model and the C code to be
deployed on Contiki nodes; in essence, it ensures the consistency between the BIP model and the
application code across the design flow of Figure 4.
The language constructs used in REST Contiki applications are encoded into XML elements, and

include essential control flow constructs, as well as actions for node communication and event schedul-
ing. All these affect the validity of important functional and non-functional requirements for resource-
constrained applications. Each element corresponds to a BIP code template and a template of Contiki
C code. The BIP model and the C code are generated through a structure-preserving translation.
Thus, every single part of the application model (port, component, data) can be traced to an XML
element.
A REST Contiki application is represented by a<RESTapp> element (Listing 1) enclosing<module>

elements (+ denotes one or more elements). A module contains client and server processes that will
be loaded in one Contiki node and is identified by an id.

1 <RESTapp>
2 <module>+
3 (<client> | <server>)+
4 </module>
5 </RESTapp>

Listing 1: DSL syntax for a REST Contiki application

A client process is encoded as shown in Listing 2 and includes optional poll and exit handlers (? = 0
or 1 elements), a block of initial actions (init) and a repeating body of actions. The body includes wait
actions that enclose event handlers (onEv elements) for specific event types. A wait action causes
the process to block until an event is received. If an incoming event is an EXIT or POLL or if it
matches one of the enclosed event types, the corresponding handler is invoked.
Listing 3 shows the template that generates the Contiki code for a client process. The template

contains placeholders for the code of the process’s main elements (e.g. exit, poll and body). The
wait is represented with a PROCESS YIELD blocking statement and alternative if branches for the
enclosed event handlers.

9

1 <client>+
2 <poll> action+ </poll>?
3 <exit> action+ </exit>?
4 <init> action+ </init>
5 <body>
6 (action*
7 <wait>
8 <onEv evType="MSG">*
9 action*

10 </onEv>
11 </wait>
12 action*)+
13 </body>
14 </client>

Listing 2: DSL syntax for client

1 PROCESS_THREAD() {
2 PROCESS_EXITHANDLER(/* exit */)
3 PROCESS_POLLHANDLER(/* poll */)
4 PROCESS_BEGIN();
5 /* init */
6 while (true) { /* body */
7 . . .
8 PROCESS_YIELD();
9 if (ev == MSG){

10 . . .
11 }else if(...){ }
12 . . .
13 }
14 PROCESS_END(); }

Listing 3: Contiki code template for client

initcall yield call

[ev==EXIT]

yield

[other ev]

[ev==POLL]

poll

[ev==MSG]

onEv

exit

end

Figure 5: BIP template for the client (all event handlers of Listing 2 are composed in a single
automaton)

The BIP component for the client is generated using the template in Figure 5. After the component
starts (called), it performs the init actions and proceeds with the body loop. The wait is represented
by: a) a yield port leading to a waiting state, b) a call port receiving an event, c) internal transitions
(executed atomically with their preceding transition) that begin each event handler, d) an internal
transition that returns to the waiting state, if the event doesn’t match a handler. When the handler is
finished, the component performs actions that follow the wait and eventually repeats the body. If an
exit handler was activated, the component exits the body (end port), after the handler has finished.
More details for the DSL syntax are provided in Appendix A. Additionally, a complete design of

an IoT system includes the mapping of application modules to the system nodes. The DSL syntax for
defining this mapping is shown in Listing 4; this information is used for generating the BIP system
model (process step 3 of Figure 4).
Each node’s network configuration (network-config) determines a set of parameters, which are

defined in our XML-based specification [30] (an example file is given in [29]), with default values
that may be overwritten in auto-generated Contiki header files (e.g. uipopt.h). The same values are
also used for the parameterization of the node’s network stack model in BIP. For example, one such
parameter is the maximum backoff exponent, which influences the network’s waiting time, before
another attempt to occupy the channel after a collision occurrence. The complete list of configurable
parameters is provided in Appendix C.

1 <architecture>
2 <node ip="string" module="QName">+
3 network-config?
4 </node>
5 </architecture>

Listing 4: DSL syntax for application deployment

3.2 BIP models for Contiki WPAN systems

Figure 6 outlines the BIP model structure for Contiki WPAN systems. In overall, the System model
comprises two layers, the REST Application Model (AppModel) and the Contiki Kernel (ConKernel).
The Application Model consists of BIP components for the REST modules that define the client-server
interactions and their constraints, as they are derived from step 1 of Figure 4. Based on the REST

10

modules mapping to Contiki nodes, the System Model integrates the application model with the
BIP components from the OS kernel library and the network stack, for communication through the
channel. For the lower level hierarchy we use phrase structure rules, where each rule refers to a BIP
compound (shown in “<” and “>”) in the left and its constituents (enclosed components) in the right
part:

RESTful Application Model

RESTModule 1 RESTModule N

OS N

Network

Contiki Kernel Model

ProtStack 1 ProtStack N

Shared Channel

H1

P1 Pk

Hj

OS 1

R1

Rn

H1

P1 Pk

Hj R1

Rn

Figure 6: BIP model structure for Contiki WPAN systems

⟨SystemModel⟩ ::= ⟨AppModel⟩ ⟨ConKernel⟩
⟨AppModel⟩ ::= ⟨RestModule⟩+
⟨RestModule⟩ ::= Process+ (Resource ResHandler+)*

⟨ConKernel⟩ ::= ⟨OS ⟩+ ⟨Network⟩
⟨OS ⟩ ::= Scheduler Timer CommHandler

⟨Network⟩ ::= ⟨ProtStack⟩+ Channel

⟨ProtStack⟩ ::= MsgSender MsgReceiver

The <AppModel> consists of several <RestModule>, each of them with a number of processes and
(optionally) REST resources with their handlers. <ConKernel> includes <OS> components for each
node and the <Network>, encompassing components for the network stack and the communication
medium (channel). The interactions between <RestModule> and <OS> are detailed in Appendix B.
<OS> models the scheduling of interprocess and remote communication (includes the Scheduler, the
Timer and the CommHandler [29]). The granularity of behaviour in components ensures that all
interleavings of events in a DSL definition are taken into account.
The Scheduler maintains a FIFO queue with the posted asynchronous events, boolean flags with

poll requests and a call stack with the active processes, i.e. those that were called and subsequently
paused after having posted a synchronous event. When a synchronous event has been handled, the
call stack is used to transfer the control to the right active process. A cycle is initiated periodically
(period pscheduler), in which the Scheduler first sends the requested poll events and then dispatches
an asynchronous event from the FIFO. The cycle is completed, when the call stack is emptied. If the
queue is full, an error is returned to the process.

11

The Timer receives timing requests from <RESTModule> processes and stores them in a stack.
All requests have a mode, which allows setting, resetting, restarting and stopping a timer. The time
advancing is modeled through an interaction that synchronizes all model components. The granularity
of a time step affects the simulation efficiency and analysis scalability, and it is therefore determined by
a configurable parameter. The remaining time for the next timing interaction is computed separately
for each component, and the time advances directly by the minimum number of time steps amongst
all components [29].
The CommHandler models the TCP/IP processing and interacts with <Network> (packets are

stored in a transmission buffer TxBuffer or a reception buffer RxBuffer). <ProtStack> includes the
MsgSender (Figure 2) and MsgReceiver components, for message transmission (resp. reception) with
the CoAP or HTTP protocol. Channel (Figure 2) implements behaviour for message transmission
and for resolving collisions in simultaneous transmission requests.
The network stack’s performance is modelled by proper parameterization of the <Network>. We

have the fixed and the modifiable parameters (with default values), shown in Appendix C.

3.3 Calibration

The System Model omits characteristics, which can be measured only during the code execution on
the nodes and within the system environment. This information includes the characterization of
sensor data and HW/SW performance factors, like the time or other resource costs to be quantified
at runtime. In the former case, we need to derive probabilistic distributions that fit to measurements
of sensor data. In the latter case, it is necessary to employ performance characterization methods,
such as the process profiling technique [29] that allows measuring isolated blocks of code. The values
obtained from this analysis are injected as parameters to the System Model and we eventually obtain
the Calibrated System Model (Step 6 of Figure 4).

ss1

ss2

distVal=rand(0,2 −1)BE

startTrans

backoff=distVal*aUnitBackoffPeriod

buf

comp

[t < t]

[t = t]comp

buf

s1

ss1

ss2

distVal=rand(0,2 −1)BE

backoff=distVal*aUnitBackoffPeriod

startTrans

encode

prebuf

sndPacket

s1
NB:=0

tick

t:= t+1

[t = t]

tick

t:= t+1

prebuf

[t < t]

encode

sndPacket

NB:=0

Figure 7: New transitions/guards for the calibration of the ProtStack.MsgSender component of Figure
2

Let us consider the time for pre- and post-buffering of each message transmission, which can only
be measured during the code execution. The Contiki code for an IoT application is generated first
(Step 4 of Figure 4) and then instrumented with clock time calls. For the pre/post-buffering phase,
the memcpy function is isolated between two subsequent calls of clock time. The elapsed time is
computed by subtracting the two recorded time instants.
Figure 7 depicts the calibration of the ProtStack.MsgSender component. We focus on the s0 → s1

and s1 → s2 transitions of Figure 2, labelled by the sndPacket and startTrans ports. Two internal
transitions (not involved in interactions) are inserted between sndPacket and startTrans, called prebuf
and encode. A model transformation is finally applied: two loop transitions are introduced, as shown
on the right-hand side of Figure 7, which are annotated with discretized time durations (i.e. tbuf and
tcomp) and guards that block prebuf and encode until the time delays have been elapsed.

12

3.4 State-space exploration

For the state-space exploration, each property is formalised as an observer automaton [31] monitoring
the events in the BIP model that are relevant to the property, i.e. a set of interactions. Every such
event triggers a state transition, which may cause the observer to reach an error control location
with no outgoing transitions. If the error location is reached, the property is violated. Observers are
attached to the model using broadcast connectors, which allow the model’s components to trigger the
observers by excluding the other way round. Thus, observers do not interefere with the model and
our analysis is sound. To avoid state explosion, it suffices the exploration to be limited to execution
scenarios that generate all relevant event interleavings for the examined properties.
As an example, Figure 8 shows the observer automaton for the requirement: The client never sends

redundant messages to a server. The error is reached from s2 and s3. In s2, the client has sent a
request (Cli sndMsg port) that has been acknowledged (NetwCli recvAck port), while the server has
not yet transmitted (NetwSrv transmit port) or aborted the transmission (NetwSrv endSnd port)
of response. In s3, the response has been transmitted to the client, but it has not yet been received
(Cli getMsg port). Any request sent while in one of these two locations is considered redundant.

s0 s1

Err

s2s3

Cli sndMsg

NetwCli endSnd

NetwCli rcvAck
NetwSrv endSnd

NetwSrv transmit

Cli getMsg

Cli sndMsg Cli sndMsg

Figure 8: Example observer automaton for the formal verification of a qualitative property
(no redundant service requests)

Figure 9: Example FaultHandler automaton - packet is ignored if fail = 1

3.5 Fault injection

The fault injection (Step 8 of Figure 4) is used when there are requirements for the robustness of the
IoT system. One such requirement is the tolerance of extensive bandwidth loss, which assumes fault
behaviour for studying the impact of consecutive long packet delays or packet losses.
As an example, Figure 9 depicts a FaultHandler component that receives the transmitted packets

(recv port) and decides whether they will be delivered to their destination. This choice is handled
through the NORMAL and LOSS locations, which represent the successful transmission and the case
of delayed or lost packets. The FaultHandler remains in each location, for as long as the number
of consecutive transmissions is positive. This number is chosen from two probabilistic distributions,
λsuccess and λloss. The FaultHandler is added to the Calibrated System model, which is then validated
using SMC.

13

4 CASE STUDY

4.1 General description

The design of a building automation SCC application with digital and analog sensors is now illustrated
using the BIP model-based design flow of Figure 4. The application controls the temperature and
detects motion in offices using passive infrared (PIR) sensors. A ZIG001 Temperature-Humidity
sensor is installed in each office, along with the low power MS-320LP PIR, both from Zolertia3. A
zone-controller (acting as Client) reads temperature measurements (shown as t in Figure 10) and
turns on a thermostat, if the temperature exceeds the desired level (t > ub ∨ t < lb). During non-
office hours, the controller runs into the energy-saving mode, and the desired temperature is reduced.
If there is motion detected (Figure 11) during non-office hours, an intrusion alarm is activated. The
intrusion alarm notifies the subscribed devices inside or outside the building (e.g. smartphones). If
there is motion during office-hours, the lights switch on.

working_hour

t<lb

t>ub

set_desired_level(ub,lb)

t < ub & t > lb

working_hour

timezone_change

activate_thermostat

se
t_

d
es

ir
ed

_
le

v
el

(u
b
,l

b
)

ac
ti

v
at

e_
th

er
m

o
st

at

Figure 10: State flow for temperature control by
the zone-controller (temperature t should be in
[lb, ub])

working_hours

trigger_alarm

unsubscribe subscribe

switch_on_lights

motion_detected

working_hours

Figure 11: State flow for motion detection by
the zone-controller (alarm triggered in non-office
hours)

Thing (S)

Thing

Thing

Thing

(S)

(S)

(S)

Zone controller

Thermostat

(C)

(S)

(C)

Server id 2

Server id 1

Server id 3

Server id 4

Client id 0

Figure 12: Node topology with clients and servers in the building automation system

The system consists of 5 nodes with the zone-controller acting as client of 4 REST servers using
CoAP (Figure 12). Each server owns a temperature resource for a ZIG001 and a motion resource for
a MS-320LP PIR. The client runs two Contiki processes, one for sending unicast GET requests to the
servers and one for periodically observing their motion resource. The GET requests are sent with a
fixed transmission period of 1s. The observation of a resource begins with a registration request and

3http://wiki.zolertia.com/wiki/index.php/Z1 Sensors

14

is cancelled with a de-registration request. Upon the state change of a resource, the server sends a
CoAP notification to the registered client, which acts according to the time of day. Message receipts
should be acknowledged by the server. However, if the client does not receive a response within a
deadline, the request is re-transmitted.

Figure 13: Client process of the building automation application

Figure 13 depicts the behaviour of the client process’s body for receiving temperature measure-
ments4. A cycle of measurements starts upon a TIMERcycle event (timer expires). The process then
sends a request (unicast message) to a server, and asks to be polled for contacting another server,
until all servers have been contacted. For each request, a deadline timer is set (setTimerresp) for
waiting the response. If the deadline expires and no response has been received, the client resends
the request to the same server up to a maximum number of attempts. When the response of a server
is received (TCPIP event) the temperature is read and if it differs more than two degrees from the
desired level, the thermostat is turned on. The client starts a new cycle, when all servers have sent
measurements or the maximum number of attempts has been reached.

4.2 Application of the BIP design flow

We focus now on the individual steps of the design flow in Figure 4, for the outlined SCC application.

Step 2: synthesis of the OS/kernel model

The case study was based on the detailed modeling of the Contiki OS by taking into account all
kernel interactions with the application layer and the network. This allowed us to deliver the first
OS kernel library [29].

Step 3: construction of the System Model

The generated BIP system model for the case study (4850 lines of code) consists of 30 atomic com-
ponents for the AppModel and 26 components for the ConKernel; it includes 430 connectors and
805 transitions. The time step of the model was based on the transmission time per bit through the
Contiki network stack. This is given as the inverse of the data rate of a Contiki network access point.
The smallest transmitted data unit is one symbol (4 bits) and its transmission time is:

symbolPeriod =
4

dataRate
(1)

For an access point to a wireless medium operating at the 2.4 GHz band, the data rate is 250 kbps
and from (1) the symbol period is 16µs. Thus, our timing abstraction ignores delays smaller than the
inverse of this data rate, which is 4µs. This adjustment allows for a much more fine-grained timing

4To ease readability, a simplified view of the behaviour is shown from that derived as in Figure 5. Guards are
shortened (e.g. POLL instead of ev==POLL) and transitions not relevant to the application logic are omitted (e.g.
the EXIT event handling, the msgSnt and timerSet transitions of the templates of Figure 17 that respectively follow
sndMsg and setTimer.

15

model compared to the one of the Cooja simulator, which is in the ms scale. Every parameter of the
model that is associated with a time delay can be quantified with an adequate degree of fidelity.

Step 5: state-space exploration

IoT applications are prone to event scheduling delays. Thus, clients set deadlines for expected re-
sponses before re-sending the requests. Each deadline is tuned, such that it is feasible to receive a
response and avoid sending redundant requests. For the case study, the following functional require-
ments were formalised as qualitative properties that were checked by state-space exploration:

Functional Requirement FR1 The client reaches PROCESS END.
FR2 The client never sends redundant messages to a server.
FR3 The client collects measurements from each sensor at least once in a specified period.

FR1 specifies a liveness property stating that the client shall terminate. The property is violated
if the process does not exit by itself and neither receives an EXIT message from another process, i.e.
the corresponding actions are omitted in the code or they are not reachable at runtime. For FR2, a
deadline must be set, in which the client obtains a response and avoids sending redundant requests.
Every such request is monitored by the observer automaton in Figure 8; the property may not be
satisfied due to node communication and event scheduling delays that invalidate the set deadline.
FR3 implies finding a period for sensing the environment, in which the client will have collected all
necessary measurements.
The scenario considered for the state-space exploration involved a limited number of messages to be

sent by the two client processes. Specifically, two GET requests, a registration and a de-registration
request are sent to each server. Moreover, the GET requests could be attempted twice. The above
scenario is sufficient for the generation of all the necessary interaction interleavings that are relevant
to the verification of requirements FR1 to FR3.

Step 6: calibration

The calibration was performed based on the execution of the generated code. The temperature
distribution was fitted using several measurements taken at random instants during the course of a
day. For the motion detection, we fitted a normal distribution with mean µ = 1.5 Volts5 and standard
deviation σ = 1.5 Volts (we used the distribution fitting method in [33]).
The System Model was augmented with timing information for computations and communica-

tions measured in executions of the system. Specifically, (i) the time for the packets’ IP header
compression/decompression was measured by linking the Contiki OS with the 6LoWPAN protocol
implementation of the HC1/HC2 encoding mechanisms [34], whereas (ii) the time for pre- and post-
buffering of each message transmission was measured by locating a message and copying its fields
from/to the buffers6. These time costs are fixed, because the computations are applied to a fixed size
input and they do not interfere with other computations until they finish.

Steps 7 and 8: statistical model checking and fault injection

A key functional requirement for an SCC application is to achieve its ultimate control objective:

FR4 Room temperature is maintained within [-2,2] C degrees difference from a user-defined level.

FR4 depends on the temperature variability of the system environment in combination with the
client’s ability to collect data sufficiently often to act on time (data collection is prone to delays).
This requirement was formalised as a stochastic temporal property in PBLTL [26] and the property
was validated with the SMC-BIP tool. Moreover, the following key non-functional requirements refer
to the performance of the building automation system:

Non Functional Requirement NFR1 Rapid detection of movement during non-working hours,
based on the PIR’s voltage level.

5Motion detection is sensitive to the distance, which impacts the sensor’s voltage level. Here we observe the current
voltage level of the sensor and not its binary output. A threshold 0.5 V was used with the sensor generating a motion
event when the current voltage level is higher than the mean value augmented by the threshold (1.5 + 0.5 = 2V).

6The model’s time step was much larger than the time taken to store the messages in the transmission/reception
buffers.

16

NFR2 Memory saving by properly sizing the message buffers used by the Contiki network stack in
each node.

NFR3 Avoidance of overflows in the asynchronous event queue of each node.

NFR4 Relatively low collision rate in the channel, in order to avoid extensive latencies, which
deteriorate the network performance and increase the probability of packet losses.

The mentioned non-functional requirements were formalised as stochastic temporal properties in
PBLTL, which were accordingly validated on the calibrated BIP system model.
Regarding the fault injection (step 8 of Figure 4), we used the FaultHandler component in Figure 9

for studying the system tolerance to extensive bandwidth loss. The FaultHandler was parameterized
using probabilistic distributions derived from the analysis of debugging traces [29] obtained from
executing the code on the node topology of Figure 12.

4.3 Experiments and results

The state-space exploration took place within the Contiki 16.04 environment running on a worksta-
tion with an Intel i5-3230M CPU@2.60GHz (4 processors), 6GB RAM and 500GB HDD. The SMC
experiments were conducted within the Instant Contiki 2.6 environment running in a virtual machine
with one CPU core, 1GB RAM and 9GB hard drive.
FR1 was verified as a bounded liveness property using an observer automaton that monitors whether

the client has reached PROCESS END before the system model terminates. For FR2, we checked
whether the property holds for the temperature monitoring process, using various deadlines (112ms,
160ms and 800ms). The requirement was satisfied for a 160ms deadline, if the motion detection
process is not observing simultaneously and it is violated for a 112ms deadline. These results show
that the it is less likely for the client to get responses within short deadlines, hence it sends more
redundant requests. However, it is possible the client to get all responses even at short deadlines,
provided that the motion detection process does not simultaneously consume network and node
processing resources. The FR3 is satisfied for a period of 5.6s even when the motion detection is
operating.

100 150 200 250

18

20

22

24

26

28

30

Temperature observations

D
eg

re
es

 (
C

el
ci

us
)

Desired temperature

Sensed temperatureA

C

Figure 14: Temperature observations (in Celcius) for our building automation application

For FR4, we checked ϕ1 = |RecvDegree− InputDegree| ≤ 2, where RecvDegree is the tempera-
ture sensed by the ZIG001 sensors and InputDegree is the desired temperature level. We found that
P (ϕ1) = 0.6, due to the zone-controller responsiveness to temperature changes and fluctuations at-
tributed to external factors. Figure 14 shows part of the obtained observations, with the temperature
often exceeding the acceptable range, like in point A. Such a rapid change might be attributed to an
abrupt change in the environment, as the opening of a window. In point C, the desired temperature
has been changed, the zone-controller has perceived the change and the temperature was then reduced
by the thermostat.

17

Figure 15: Transmission times (ms) for motion detection with faults injected in the Calibrated System
Model

For the non-functional requirements NFR1 - NFR4, we analysed two sets of execution scenarios:
the first set was obtained using the Calibrated System Model (step 7 of Figure 4) and the second set
by including the FaultHandler component of Figure 9 (step 8 of Figure 4).

For the second set of execution scenarios, Figure 15 shows the transmission time of messages for all
servers upon changes in the motion resource. These times are classified in three categories (shown in
different colours), namely the minimum observed, the average and the worst-case time. We observe
that the worst-case times are significantly different from the two other times, i.e. when there are no
collisions or message delays, except from Server 1. This happens because Server 1 does not encounter
additional transmission delays, since it is the first to which the zone-controller sends the room’s
temperature and there are no additional messages to transmit/receive, before the motion resource
change messages.
The SMC experiments for NFR1 - NFR4 generated the following results:

NFR1 We checked the property ϕ2 = TPIR ≤ Ttrans, where TPIR is the worst-case message trans-
mission time for the motion resource and Ttrans the period for a regularly transmitted message, i.e.
a client request for the temperature resource (1s). In the first set of experiments, TPIR did not
exceed 32 ms, hence P (ϕ2) = 1. In the second set with the presence of the FaultHandler, a higher
number of packet collisions occurred with TPIR being approximately 63ms (server ID=2 in Figure
15). Nevertheless, the property still holds, since TPIR remains smaller than Ttrans.
NFR2 We checked the property ϕ3 = (size(RxBuffer) < B) in the first set of experiments, where
B is a bound for the reception buffer size of the protocol stack1. B depends on pscheduler (cf.
Section 3.2), which affects the rate in which the MsgReceiver removes messages from the buffer.
When pscheduler = 10µs, P (ϕ3) = 1 if B = 2. When pscheduler = 10ms, B would have to be 10, so
that P (ϕ3) = 1. Thus, pscheduler must be small enough to avoid adjusting the reception buffer size.
NFR3 We have analysed the property: ϕ4 = (size(FIFO) < MAX), where size(FIFO) represents
the size of the Scheduler’s FIFO queue and MAX = 10. This property holds true (P (ϕ4) = 1) in
both sets of experiments.
NFR4 We analysed the property: ϕ5 = (NC ≤ 1), where NC is the number of re-transmissions
following a collision. In the first set of experiments we had P (ϕ5) = 0.75, which implies a limited
number of collisions. In the second set of experiments, we observed a significant collision rate that
resulted in P (ϕ5) = 0.5.

1The bound on the reception buffer size can be adjusted by the parameter MAX NUM QUEUED PACKETS of
the Contiki kernel; the default value is 2.

18

5 DISCUSSION

5.1 Benefits of the BIP design flow

The design flow of Figure 4 supports the progressive development of IoT WPAN systems using BIP
models that capture both functional and non-functional system aspects. BIP is component-based,
which is essential for enhanced productivity through reuse of model artifacts. The building automation
case study in Section 4 aimed to test the effectiveness of our approach. Through the invested effort, it
was possible to deliver tools (DSL and code generator) and a component library with model fragments
for the Contiki OS and the network stack. Table 1 reports figures for the required effort and the size
of the model and code artifacts for the case study. Each row refers to a particular step of the design
flow, but the effort for steps 2 and 4 includes development work, which was done once for the tools
and the library of components but can be reused in similar projects.

Step of Figure 4 Effort Scope Product Lines of code
1. App design definition 4 days Application-specific DSL 120

2. Network configuration 6 hours Reusable XML 70
2. IoT comp. lib. & ConKernel 7 weeks Reusable BIP models 2530

3. App mapping & transform. 4 hours Application-specific DSL 40

4. Code generation 8 weeks Reusable C 1168

6. Calibration 4 days Reusable BIP model 70

8. Fault injection 3 days Reusable BIP model 70

Table 1: Effort and design artifacts for the building automation case study

Model Components Connectors Transitions Lines of code
Application model 30 130 223 856

OS/kernel model (ConKernel) 26 300 582 3924

System model 56 430 805 4780

Calibrated system model 56 430 820 4850

Fault model 5 13 25 70

Table 2: BIP model statistics for the building automation case study

Step of Figure 4 Verified properties

Satisfied
properties
(without
faults)

Satisfied
properties

(with
faults)

CPU time Memory

State-space

exploration

Deadlock-freedom

FR1

FR2

FR3

✓
✓
✓
✓

N/A 5h 13 min 4500MB

Statistical

model

checking

FR4

NFR1

NFR2

NFR3

NFR4

60%

100%

100%

100%

75%

55%

100%

100%

100%

50%

2h 10 min

1h 35 min

1h 21 min

0h 24 min

5h 4 min

956MB

720MB

630MB

780MB

918MB

Table 3: State-space exploration and statistical model checking statistics for the building automation
model

Table 2 reports statistics on the complexity of the generated models. A substantial difference
appears between the complexities of the models for the Application and the OS/kernel (ConKernel).
This is due to the detailed modeling of the Contiki OS and network stack functionalities in the library
of model components. We thus ensure that all relevant events for the analyzed properties are taken
into account, whereas the models should be also valid for additional properties that may be of interest
in other Contiki WPAN systems.
Table 3 presents statistics for the used resources in steps 5 and 7 of Figure 4, i.e. the state-space

exploration and the SMC of the building automation model. The verification of deadlock-freedom
and the properties for FR1 - FR3 consumed 4.5GB of RAM and was completed in 5h 13 min. The

19

CPU time for the SMC of the properties for FR4 and NFR1 - NFR4 varies depending on the used
confidence and precision parameters (cf. Section 2.3.2).
A comparison of BIP’s SMC efficiency with the Cooja simulation is certainly interesting (recall

that the granularity of our model’s time step is in the order of a few µs, whereas Cooja’s time step is
in the order of ms). For this purpose, we conducted simulations of the building automation system
during office hours, as well as when it is operating over the whole day including office and non-office
hours. The results are shown in Table 4.

Simulated time Cooja simulation BIP SMC
8h 1h 03min 1h 20 min

24h 3h 27min 3h 02min

Table 4: Simulation time for the building automation model

Here, it is important to recall that Cooja works with a fixed time step advance of the simulation
clock, while the BIP simulation advances the clock directly to the time of next event, for all sys-
tem nodes (cf. Section 3.2). The reported CPU times for BIP SMC include as many experiment
replications as necessary for providing an accurate verdict.
From the system design point of view, the benefits of our approach stem from the motivating

principles in Section 3; an informative comparison with other design methods is exposed below.

5.2 Limitations

The design flow limitations in its present form concern with its applicability scope, the expectations
for experience of its users on formal methods, the degree of process automation and some scalability
issues related to the model complexity, the size of systems under design and the supported analyses.
The current applicability scope is the Contiki-based WPAN systems, due to the available model

fragments in our IoT component library. For widening the application to other Contiki system
architectures, it is essential to enrich the component library, as well as to customize the specification
file for the network configuration and the translation for the synthesis of the OS/kernel model (step 2
of Figure 4). If the focus is extended to other types of applications than Contiki REST, or to other IoT
operating systems, then there is need to modify or even create a new DSL. This implies adaptations
or respectively new implementations for the translator used in step 1, the model transformation in
step 3 and the code generator in step 4 of Figure 4.
If the analysis is restricted to the requirements of our building automation system, there is no

need for formal method experience by the designers. For additional requirements concerning timing,
memory or thermal aspects, there is still need for some basic knowledge on automata, in order to
formulate the new requirements in terms of the BIP system model. For requirements focusing on
other aspects, say for example the energy consumption, we need to add appropriate power models
for quantifying the energy resources used in computations and communications during the execution
of system model. Related work in this direction has been presented in [35].
The degree of process automation is, as always, a matter of balancing usability and flexibility

concerns in the provided tool support. We opted to limit the automation to steps 1, 2, 3 and 4 of
Figure 4, while retaining the ability to manually edit the BIP model during steps 5, 6, 7 and 8, in
order to have more space for experimentation during our analyses.
Finally, for the scalability to larger IoT systems, it is important to note that our analyses took

place for a limited number of nodes. This is due to the detailed representation of interactions within
the ConKernel model, since it was generated from our component library in step 2 of Figure 4.
Such detailed modeling is essential for the state-space exploration and for calibrating the model with
sufficient accuracy; it allows validating very diverse requirements and opens prospects for additional
requirements in future works. Moreover, for IoT systems of a larger size there is no need for a BIP
model that will include all of the system’s nodes; for the state-space exploration we only need a model
with representative instances of those types of nodes, which suffice to generate all relevant interleavings
of events for the properties. For far more complex IoT applications and possible SMC scalability
issues, the BIP model can be abstracted using automated stochastic abstraction techniques [36] for
identifying those events that are significant for the properties of interest.

5.3 Comparison with competitive design methods

The design of IoT systems involves rapidly evolving technologies, diverse applications and a frag-
mented landscape of operating systems/middleware with various development tools. The major

20

incentives for a model-based design process are: (i) the overall design complexity, due to the high
heterogeneity of interconnected things and their interaction modes, and (ii) especially for IoT WPAN
systems, the limited computational and energy resources. System models allow reasoning about cer-
tain properties of the system’s behaviour, and serve as a specification that will lead to a physical
implementation of the system, which is compliant with the model. They also provide a means for ex-
ploration of different design alternatives. The Flex-eWare model [37] is a general purpose component
model for distributed embedded systems that aims to unify model driven and component-based soft-
ware engineering across many different application domains. This is achieved by integrating generic
elements in its metamodel that are instantiated by model libraries. All other design methods in this
comparison focus on specific IoT system architectures or application domains.
Table 5 summarizes the main characteristics of the design/analysis methods found in related bibli-

ography and compares them with the BIP design flow of Figure 4. Most approaches are model-based,
but only the BIP flow and [38, 39, 40, 41, 42, 43] are grounded on languages with formal semantics.

The validation of quantitative specifications or the robustness analysis of systems is supported
by some methods, but only [42] and the BIP flow support the verification of qualitative properties,
with the latter covering all categories. Moreover, most methods do not cover the entire design cycle
(including code generation and deployment) with the notable exceptions of [38], [40], [42], [43] and
the BIP design flow. Some methods are limited to the analysis of WSN systems.
In terms of the tools that support the various forms of analysis, most of the approaches in Table 5

provide or utilize various simulation frameworks with the notable exception of the BIP flow along
with [39], [40], [42] and [43], which support statistical model checking and/or other formal analyses.
Finally, a noteworthy number of the shown methods aim to the generation of code for REST services
running on the Contiki OS or other operating system.

6 CONCLUSION
We presented a model-based design flow for resource-constrained IoT applications using the BIP
component framework. Currently, the provided support concerns with the design of REST service-
based applications for WPAN systems with nodes running the Contiki OS. The application-level model
and the IoT system model in BIP are generated from a design definition of the REST application
and its mapping to Contiki nodes that are both expressed in a domain specific language. This design
definition is also used for auto-generating the code to be deployed to the nodes, thus preserving the
properties of the validated models. All tools and models of the design flow of Figure 4 along with
technical instructions on their use are available online 7.
The described approach was applied to a building automation application running on one client

and four REST server nodes with various forms of interactions between the connected things (peri-
odic transmission of temperature measurements and event-driven transmission of motion detection
signals). We verified functional requirements related to service responsiveness and subsequently we
validated the system’s operation under statistical assumptions for its external stimuli. The analysis
also included important non-functional requirements for WPAN applications and their robustness
with respect to a fault behaviour reprsenting an extensive bandwidth loss.
As the key features of the overall approach, we highlight the following:
• BIP promotes a component-based design philosophy that allows locating design errors to specific
components and supports the modular design and reuse of model artifacts.

• The design flow supports the separation of concerns between the application design from the
lower-level system aspects, and the separation of computation from the communication. A
direct consequence is that developers can model and build artifacts separately for the software
and the lower node architecture layers.

• Both functional and non-functional system aspects are captured in the BIP models that enable
a wide range of analyses using the BIP tools and the SMC-BIP.

As future work, it is worth to consider the extension of our domain specific language towards
supporting MQTT (Message Queue Telemetry Transport) clients and servers, as in [45]. To this
respect, a publish-subscribe model has to be integrated, such as the BIP model described in [50].
An interesting direction is the detection of compute-bound event loops [51] and the analysis of their
robustness, which is defined as conjunction of two correctness properties [52], event serializability
and event determinism (executions within each event are insensitive to the interleavings between

7http://depend.csd.auth.gr/ServiceSystemsModelling.php

21

Table 5: Logical comparison of design-time analyses and design methods for IoT systems

Design
method
/analy-
sis

Focus Scope Qualitative
properties
(verifica-
tion)

Quantitative
properties
(valida-
tion)

Robustness
analysis

DSL &
tool
support

[21] cloud-
centric IoT

app design ✗ ✗ ✗ Aneka
Platform-as-
a-Service

[38] REST
\Contiki or
TinyOS
systems

model-
based, app
design, sys.
design, code
gener.,
deployment

✗ ✗ ✗ graphical
Matlab
tools,
network/hw-
in-the-loop
simulation

[44] Sense\Comp.
\Control
apps

model-
based, app
design, code
gener.,
deployment

✗ ✗ ✗ DSL, progr.
framework
generator,
runtime,
scenario
simulator

[45] Android &
JavaSE
devices with
MQTT

model-
based, app
design, sys.
design, code
gener.,
deployment

✗ ✗ ✗ DSL, compi-
ler, linker,
runtime
system

[46] iSense OS
for WSNs

code gener. ✗ ✗ ✗ DSL

REMORA
[47]

services for
WSNs (inc.
REST)

app design ✗ ✗ ✗ programming
language

WSN-
DPCM
[48]

services for
WSNs (inc.
REST)

model-
based, app
design, sys.
design, code
gener.,
deployment

✗ ✗ ✗ middleware,
network
simulation

[49] services for
WSNs (inc.
REST)

model-
based, app
design

✗ ✗ ✗ DSL

[39] WSN
analysis

model-
based,
performance
\dependability

✗ ✓ ✓ WSN
topolo- gy
(GUI), tra-
ce analysis

[40] Arduino,Ra-
spberry Pi
(POSIX),
Robot OS

model-
based, app
design, sys.
design, code
gener.

✗ ✓ ✗ ThingML
(DSL), stat.
model
checking

[41] WSN
analysis

model-
based,
performance
& dependa-
bility

✗ ✗ ✓ DSL,
analytical &
behavioural
simulation

BeC3 [42] REST
Contiki
Android
WSAN
systems

model-
based,
service
choreogra-
phy,
deployment

✓ ✗ ✗ D-LITe
middleware,
DSL, BeC3

tool
(consiste-
ncy check)

[43] REST
\Contiki
WSAN
systems

model-
based,
functional
design,
service
choreogra-
phy,
deployment

✗ ✓ ✗ EMMA mi-
ddleware,
ma- pper
(GUI),
satisfiability
solver

BIP de-
sign flow

REST
\Contiki
WPAN
systems

model-
based, app
design, sys.
design, code
gener.,
deployment

✓ ✓ ✓ DSL, simul.,
state explor.,
stat. model
checking

22

concurrent tasks dynamically spawned by the event). Finally, we intend to provide support for
additional non-functional requirements, related to energy consumption [35, 53] and security aspects.
For the latter, it has been planned to extend the design flow with BIP components that model the
security mechanisms of the Contiki OS [54], for being able to identify vulnerabilities and verify the
IoT system’s protection against node spoofing attacks [55] and denial of service [56] attempts. In
another perspective, it is worth to consider using the secureBIP extension [57], as a means for the
analysis and synthesis of security configurations in IoT applications that can ensure data and event
non-interference [58].

References

[1] Dunkels A, Gronvall B, Voigt T. Contiki-a lightweight and flexible operating system for tiny
networked sensors. 29th Annual IEEE International Conference on Local Computer Networks,
IEEE, 2004; 455–462.

[2] Baccelli E, Hahm O, Günes M, Wählisch M, Schmidt TC. RIOT OS: Towards an OS for the
Internet of Things. IEEE Conference on Computer Communications Workshops (INFOCOM
WKSHPS), IEEE, 2013; 79–80.

[3] Schor L, Sommer P, Wattenhofer R. Towards a zero-configuration wireless sensor network ar-
chitecture for smart buildings. Proceedings of the First ACM Workshop on Embedded Sensing
Systems for Energy-Efficiency in Buildings, ACM, 2009; 31–36.

[4] Beal J, Pianini D, Viroli M. Aggregate programming for the internet of things. Computer Sept
2015; 48(9):22–30, doi:10.1109/MC.2015.261.

[5] Hong K, Lillethun D, Ramachandran U, Ottenwälder B, Koldehofe B. Mobile fog: A program-
ming model for large-scale applications on the internet of things. Proceedings of the Second ACM
SIGCOMM Workshop on Mobile Cloud Computing, MCC ’13, ACM: New York, NY, USA, 2013;
15–20, doi:10.1145/2491266.2491270. URL http://doi.acm.org/10.1145/2491266.2491270.

[6] Nastic S, Sehic S, Vögler M, Truong HL, Dustdar S. Patricia – a novel programming
model for iot applications on cloud platforms. Proceedings of the 2013 IEEE 6th Inter-
national Conference on Service-Oriented Computing and Applications, SOCA ’13, IEEE
Computer Society: Washington, DC, USA, 2013; 53–60, doi:10.1109/SOCA.2013.48. URL
http://dx.doi.org/10.1109/SOCA.2013.48.

[7] Sugihara R, Gupta RK. Programming Models for Sensor Networks: A Survey. ACM Transactions
on Sensor Networks (TOSN) Apr 2008; 4(2):8:1–8:29.

[8] Castellani A, Bui N, Casari P, Rossi M, Shelby Z, Zorzi M. Architecture and protocols for
the Internet of Things: A case study. Pervasive Computing and Communications Workshops
(PERCOM Workshops), 2010 8th IEEE International Conference on, 2010; 678–683.

[9] Zeng D, Guo S, Cheng Z. The Web of Things: A Survey (Invited Paper). Journal of Communi-
cations 2011; 6(6):424–438.

[10] Colitti W, Steenhaut K, Caro ND. Integrating Wireless Sensor Networks with the Web. Extending
the Internet to Low power and Lossy Networks (IP+ SN 2011), 2011.

[11] Shelby Z, Hartke K, Bormann C. The Constrained Application Protocol (CoAP). IETF, RFC
7252, 2014.

[12] Cao Q, Abdelzaher T, Stankovic J, Whitehouse K, Luo L. Declarative Tracepoints: A Pro-
grammable and Application Independent Debugging System for Wireless Sensor Networks. Pro-
ceedings of the 6th ACM conference on Embedded network sensor systems, ACM: New York, NY,
USA, 2008; 85–98.

[13] Eriksson J, Österlind F, Finne N, Tsiftes N, Dunkels A, Voigt T, Sauter R, Marrón PJ. COO-
JA/MSPSim: interoperability testing for wireless sensor networks. Proceedings of the 2nd Inter-
national Conference on Simulation Tools and Techniques, ICST (Institute for Computer Sciences,
Social-Informatics and Telecommunications Engineering), 2009; 27.

23

[14] Basu A, Bensalem S, Bozga M, Bourgos P, Maheshwari M, Sifakis J. Component assemblies in the
context of manycore. Formal Methods for Components and Objects, Lecture Notes in Computer
Science, vol. 7542, Beckert B, Damiani F, de Boer F, Bonsangue M (eds.). 2013; 314–333.

[15] Sifakis J. Rigorous system design. Foundations and Trends¬Æ in Electronic Design Automation
2013; 6(4):293–362, doi:10.1561/1000000034. URL http://dx.doi.org/10.1561/1000000034.

[16] Stachtiari E, Vesyropoulos N, Kourouleas G, Georgiadis CK, Katsaros P. Correct-by-
Construction Web Service Architecture. IEEE 8th International Symposium on Service Oriented
System Engineering (SOSE), IEEE, 2014.

[17] Nouri A, Bozga M, Molnos A, Legay A, Bensalem S. Astrolabe: A rigorous approach for
system-level performance modeling and analysis. ACM Trans. Embed. Comput. Syst. Mar 2016;
15(2):31:1–31:26, doi:10.1145/2885498. URL http://doi.acm.org/10.1145/2885498.

[18] Schantz RE, Loyall JP, Rodrigues C, Schmidt DC. Controlling quality-of-service in distributed
real-time and embedded systems via adaptive middleware. Software: Practice and Experience
2006; 36(11-12):1189–1208.

[19] Despaux F. Modelling and evaluation of the end to end delay in WSN. Theses, Université de
Lorraine Sep 2015. URL https://hal.inria.fr/tel-01241044.

[20] Lekidis A, Stachtiari E, Katsaros P, Bozga M, Georgiadis CK. Using BIP to reinforce correct-
ness of resource-constrained IoT applications. International Symposium on Industrial Embedded
Systems (SIES), IEEE, 2015; 1–10.

[21] Gubbi J, Buyya R, Marusic S, Palaniswami M. Internet of Things (IoT): A vision, architectural
elements, and future directions. Future Generation Computer Systems 2013; 29(7):1645–1660.

[22] Desai A, Gupta V, Jackson E, Qadeer S, Rajamani S, Zufferey D. P: Safe asynchronous event-
driven programming. ACM SIGPLAN Notices, vol. 48, ACM, 2013; 321–332.

[23] Kovatsch M, Duquennoy S, Dunkels A. A low-power CoAP for Contiki. MASS’11, IEEE, 2011;
855–860.

[24] Basu A, Bensalem B, Bozga M, Combaz J, Jaber M, Nguyen TH, Sifakis J. Rigorous component-
based system design using the bip framework. IEEE software 2011; 28(3):41–48.

[25] Nouri A, Bensalem S, Bozga M, Delahaye B, Jegourel C, Legay A. Statistical model checking
QoS properties of systems with SBIP. International Journal on Software Tools for Technology
Transfer 2014; 17(2):171–185.

[26] Hérault T, Lassaigne R, Magniette F, Peyronnet S. Approximate probabilistic model checking.
Verification, Model Checking, and Abstract Interpretation, Springer, 2004; 73–84.

[27] Legay A, Delahaye B, Bensalem S. Statistical model checking: An overview. Runtime Verifica-
tion, Springer, 2010; 122–135.

[28] Hoeffding W. Probability inequalities for sums of bounded random variables. Journal of the
American statistical association 1963; 58(301):13–30.

[29] Lekidis A. Design flow for the rigorous development of networked embedded systems. Theses, Uni-
versite Grenoble Alpes Dec 2015. URL https://tel.archives-ouvertes.fr/tel-01261936.

[30] Abraham D, Alam MS, Duplessis JP, Freeman TW, Hanlon B, Krantz AW, Manchester S, Nick
B. XML schema for network device configuration feb ” 2” 2010. US Patent 7,657,612.

[31] Halbwachs N, Lagnier F, Raymond P. Synchronous observers and the verification of reactive
systems. Proceedings of the Third International Conference on Methodology and Software Tech-
nology: Algebraic Methodology and Software Technology, AMAST ’93, Springer-Verlag: London,
UK, UK, 1994; 83–96. URL http://dl.acm.org/citation.cfm?id=646055.677894.

[32] Zhou G, He T, Krishnamurthy S, Stankovic JA. Impact of radio irregularity on wireless sensor
networks. Proceedings of the 2nd international conference on Mobile systems, applications, and
services, ACM, 2004; 125–138.

24

[33] Lekidis A, Bourgos P, Djoko-Djoko S, Bozga M, Bensalem S. Building Distributed Sensor Net-
work Applications using BIP. Sensors Applications Symposium, 2015. SAS’15, IEEE, 2015; 1–6.

[34] Montenegro G, Kushalnagar N, Hui J, Culler D. Transmission of IPv6 packets over IEEE 802.15.
4 networks. RFC 2007; 4944.

[35] Benini L, Hodgson R, Siegel P. System-level power estimation and optimization. Proceedings of
the 1998 international symposium on Low power electronics and design, ACM, 1998; 173–178.

[36] Nouri A, Raman B, Bozga M, Legay A, Bensalem S. Faster Statistical Model Checking by Means
of Abstraction and Learning. Runtime Verification, Springer, 2014; 340–355.

[37] Jan M, Jouvray C, Kordon F, Kung A, Lalande J, Loiret F, Navas J, Pautet L, Pulou J, Rader-
macher A, et al.. Flex-eware: a flexible model driven solution for designing and implementing
embedded distributed systems. Software: Practice and Experience 2012; 42(12):1467–1494.

[38] Song Z, Lazarescu MT, Tomasi R, Lavagno L, Spirito MA. High-Level Internet of Things Ap-
plications Development Using Wireless Sensor Networks. Internet of Things. Springer, 2014;
75–109.

[39] Testa A, Coronato A, Cinque M, Augusto JC. Static verification of wireless sensor networks
with formal methods. Eighth International Conference on Signal Image Technology and Internet
Based Systems (SITIS), IEEE, 2012; 587–594.

[40] Xu S, Miao W, Kunz T, Wei T, Chen M. Quantitative analysis of variation-aware internet of
things designs using statistical model checking. Software Quality, Reliability and Security (QRS),
2016 IEEE International Conference on, IEEE, 2016; 274–285.

[41] Di Martino C, Cinque M, Cotroneo D. Automated generation of performance and dependability
models for the assessment of wireless sensor networks. IEEE Transactions on Computers 2012;
61(6):870–884.

[42] Cherrier S, Salhi I, Ghamri-Doudane YM, Lohier S, Valembois P. Bec3: Behaviour crowd centric
composition for iot applications. Mob. Netw. Appl. Feb 2014; 19(1):18–32.

[43] Duhart C, Sauvage P, Bertelle C. A resource oriented framework for service choreography over
wireless sensor and actor networks. International Journal of Wireless Information Networks 2016;
23(3):173–186.

[44] Bertran B, Bruneau J, Cassou D, Loriant N, Balland E, Consel C. Diasuite: A tool suite to
develop sense/compute/control applications. Science of Computer Programming 2014; 79:39–
51.

[45] Patel P, Cassou D. Enabling high-level application development for the internet of things. Journal
of Systems and Software 2015; 103:62–84.

[46] Glombitza N, Pfisterer D, Fischer S. Using state machines for a model driven development of web
service-based sensor network applications. Proceedings of the 2010 ICSE Workshop on Software
Engineering for Sensor Network Applications, ACM, 2010; 2–7.

[47] Taherkordi A, Loiret F, Abdolrazaghi A, Rouvoy R, Le-Trung Q, Eliassen F. Programming sensor
networks using remora component model. International Conference on Distributed Computing
in Sensor Systems, Springer, 2010; 45–62.

[48] Antonopoulos C, Asimogloy K, Chiti S, D’Onofrio L, Gianfranceschi S, He D, Iodice A, Koubias
S, Koulamas C, Lavagno L, et al.. Integrated toolset for wsn application planning, development,
commissioning and maintenance: The wsn-dpcm artemis-ju project. Sensors 2016; 16(6):804.

[49] Shimizu R, Tei K, Fukazawa Y, Honiden S. Model driven development for rapid prototyping
and optimization of wireless sensor network applications. Proceedings of the 2nd Workshop on
Software Engineering for Sensor Network Applications, ACM, 2011; 31–36.

[50] Bliudze S, Mavridou A, Szymanek R, Zolotukhina A. Exogenous coordination of concurrent
software components with javabip. Software: Practice and Experience 2017; 47(11):1801–1836.

25

[51] Poroor J, Jayaraman B. Formal analysis of event-driven cyber physical systems. Proceedings of
the First International Conference on Security of Internet of Things, SecurIT ’12, ACM: New
York, NY, USA, 2012; 1–8.

[52] Bouajjani A, Emmi M, Enea C, Ozkan BK, Tasiran S. Verifying Robustness of Event-Driven
Asynchronous Programs Against Concurrency. Springer Berlin Heidelberg: Berlin, Heidelberg,
2017; 170–200.

[53] Patino MAN. Energy efficiency in data collection wireless sensor networks. PhD Thesis, Purdue
University 2016.

[54] Halcu I, Stamatescu G, Sgârciu V. Enabling security on 6lowpan/ipv6 wireless sensor networks.
7th International Conference on Electronics, Computers and Artificial Intelligence (ECAI),
IEEE, 2015; SSS–29.

[55] Basagiannis S, Katsaros P, Pombortsis A. An intruder model with message inspection for model
checking security protocols. Computers & Security 2010; 29(1):16 – 34.

[56] Deshpande T, Katsaros P, Basagiannis S, Smolka SA. Formal analysis of the dns bandwidth
amplification attack and its countermeasures using probabilistic model checking. 2011 IEEE
13th International Symposium on High-Assurance Systems Engineering, 2011; 360–367.

[57] Said NB, Abdellatif T, Bensalem S, Bozga M. A model-based approach to secure multiparty
distributed systems. Leveraging Applications of Formal Methods, Verification and Validation:
Foundational Techniques - 7th International Symposium, ISoLA 2016, Imperial, Corfu, Greece,
October 10-14, 2016, Proceedings, Part I, 2016; 893–908.

[58] Fernandes E, Paupore J, Rahmati A, Simionato D, Conti M, Prakash A. Flowfence: Practical
data protection for emerging iot application frameworks. 25th USENIX Security Symposium
(USENIX Security 16), USENIX Association: Austin, TX, 2016; 531–548.

26

Appendices

A Language for Contiki REST application design definition
(DSL)

This Appendix refers to the DSL syntax and BIP templates, for client actions, which are not men-
tioned in Section 3.1. Moreover, a server process in DSL and its Contiki template are presented.

1 <while boolExp="bool-expr">
2 action+
3 </while>
4

5 <if boolExp="bool-expr">
6 action+
7 <elseif boolExp="bool-expr">*
8 action+
9 </elseif>

10 <else>?
11 action+
12 </else>
13 </if>
14

15 <wait>
16 <onEv evType="event-type"?
17 cond=""? >*
18 action+
19 </onEv>
20 </wait>

Listing 5: DSL syntax for structured actions

. . .

. . .

[while]

action+[¬while]

[if]
[elseif1]

[else]

action+
action+

action+

yield called

yield

[other]

[onEv1] [onEvN]

action+ action+

Figure 16: BIP templates for actions in List-
ing 5

The actions can encode control flow structures with nested actions, such loops, conditionals or
event handlers. We call these actions structured and their syntax is defined in Listing 5. Moreover,
Figure 16 shows the corresponding BIP template for each of them.

1 <timeout timer="QName"
2 command="set|rset|rstrt|stop"
3 (var="QName"|val="unsign-int")? />
4

5 <postEv mode="syn|asyn"
6 evType="event-type"
7 process="QName"?
8 var="QName"? />
9

10 <sndReq server="QName"
11 resource="QName"
12 params="QName-list"?
13 method="put|get|post|del"
14 (contentType="txt|json|xml"
15 var="QName")? />
16

17 <getResp/>
18

19 <exit />
20

21 <code> <!--C/C++ code--> </code>

Listing 6: DSL syntax for basic actions

setTimer timerSet

postSyn resume

postAsyn

sndMsg msgSnt

getMsg

postAsyn yield

internal / code();

Figure 17: BIP templates for actions in List-
ing 6

A set of basic actions including timeout, event dispatching, message communication, block of code
etc. have been also encoded, whose syntax is presented in Listing 6. The BIP behaviour that is
instantiated for these actions is shown in Figure 17, where each action is modelled by the activation
of one or two successive ports. For a <timeout>, the process first sets a timer (timerSet port) and
waits until the timer is set by Contiki (timerSet port). The <postEv> action corresponds either to
a synchronous or an asynchronous posting. After synchronous posting (postSyn port), the process
is blocked until be allowed to resume (resumr port) by the Contiki. This is in contrast with the

27

asynchronous posting, which does not block the process. With the <sndReq> action, the process
creates a message to be sent by Contiki (sndMsg port) and it is notified when the message is sent
(msgSnt port). The <getResp/> action (getMsg port) is used when receiving a response message,
whereas with the <yield/> action (yield port) the process yields. With an <exit/> action, the process
posts asynchronously an EXIT event for itself and yields. The process is called, when the EXIT event
is scheduled to occur and the exit handler is then triggered. Except from the aforementioned actions,
the DSL provides also the <code> element that allows for custom actions which are specified using
C/C++ code. In BIP, this element is represented by an internal action (no port is activated) that
calls the function with the specified code.
A server process description (Listing 7) includes a set of (periodic or aperiodic) resource handlers,

with handlers for their supporting COAP methods. The “autoStart” value8 defines whether the
process will be initiated by default, or upon an event by another process. Listing 8 shows the Contiki
syntax of a server process. At the bottom of the template (lines 13-19), there is the definition of a
process, which lives only to start a REST engine and activate the resources. The REST engine (whose
code is included in the server’s source file) is a predefined Contiki process that implements a REST
server, i.e. it invokes the server’s resource handlers either periodically, or upon an incoming request.
The communicated messages are passed between the REST engine and the handlers with the req and
resp variables. The template includes two resources, one aperiodic (line 2) and one periodic (line 6).
Resource handlers are implemented as a [resource id] handler function.

1 <server id="..."
2 autoStart="[true|false]"? >+
3 <resource_handler
4 resource_id="..." >+
5 <method id="[get|post|put|del]{1,4}"/>+
6 <code> <!--C/C++ code--> </code>
7 <periodic period="int" >
8 <!--C/C++ code-->
9 </periodic>?

10 </resource_handler>
11 </server>

Listing 7: DSL syntax for a REST server

1 RESOURCE(res1,/*methods*/,...);
2 void res1_handler(REQUEST* req,
3 RESPONSE* resp)
4 { }
5
6 PERIODIC_RESOURCE(res2,/*period*/,...);
7 ... /* res2 handler */
8 void res2_periodic_handler(REQUEST* req,
9 RESPONSE* resp)

10 { }
11 /* other resources and handlers */
12
13 PROCESS(server, ...);
14 AUTOSTART_PROCESSES(&server);
15 PROCESS_THREAD(server, ...){
16 PROCESS_BEGIN();
17 /* start rest engine process */
18 /* activate resources */
19 PROCESS_END();}

Listing 8: Contiki code template for a REST
server

B BIP interactions of the RestModule model with the OS
model

In <AppModel>, each <RESTModule> interacts with the <OS> component as it is shown in
Figure 18. For simplicity, only the OS interactions with one process are depicted. Every process
is modelled as an atomic component with application-specific behaviour.
A process is called (called port), when the OS dispatches an event to it. After the event is handled,

the process’s execution yields (yield port). Posted synchronous or asynchronous events to other
processes are passed through the postSyn and postAsyn ports. For a synchronous event, the process
resumes execution (resume port) upon the end of event handling. Each process may request polling
for itself or other processes and can set deadlines using timers (setTimer port) or send a message
(sndMsg port). The <ConKernel> acknowledges the completion of setting a timer or transmitting a
message (timerSet, msgSnt ports). When the process execution is finished, the end port is enabled.
The model details for the invocations of REST resource handlers are discussed in [20]. In current
model, the supported resource types are periodic, event and actuator.

C Network stack model parameters
The model parameters in Table 6 can be adjusted through the network configuration XML specifi-
cation (input in step 2). Some parameters concern with the exponential backoff mechanism of the
IEEE 802.15.4 standard or the timeout for a packet receipt. Moreover, there are parameters like

8The “autoStart” attribute is used for both servers and clients, although it was not shown in Section 3.1

28

called

resume

ends

yields

call

called

resume

ends

yields

postAsyn

postSyn

pollReqyields

ends
resume OS

msgSnt dlvrMsg

ticksndPacket recvPacket

postSyn

postAsyn

procPoll

msgSnt getMsgsndMsg

setTimer request

setTimer

postSyn

procPoll

postAsyn

msgSnt getMsgsndMsg

setTimer

Process NProcess 1

RESTModule

Figure 18: The RestModule for a Client and its interactions with the OS

macMinBE, macMaxBE, macMaxCSMABackoffs and macMaxFrameRetries that affect the network
throughput and the number of channel collisions. Parameter values depend on the transmission time
of one symbol (4 bits), denoted by symbolPeriod. This time is computed from equation (1).

Model parameter Value
aUnitBackoffPeriod 20 ∗ symbolPeriod

CCA duration 1 8 ∗ symbolPeriod

macMaxCSMABackoffs 0-5 (default 4)

macAckWaitDuration 54 ∗ symbolPeriod

macMinBE 3

macMaxBE 3-8 (default 5)

aMaxFrameRetries 3

tdata [152, 1064] ∗ symbolPeriod

tack 136 ∗ symbolPeriod

aTurnaroundTime 12 ∗ symbolPeriod

SIFS 2 12 ∗ symbolPeriod

LIFS 2 40 ∗ symbolPeriod

Table 6: Parameters of the modelled network stack

2Short Interframe Space (SIFS) is the period required for allowing the MAC layer time to process the data received
in the physical layer for short data frames and Long Interframe Space (LIFS) is the respective period for long data
frames

1Clear Channel Assessment (CCA) is the time needed to access the communication channel

29

