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The series of DyF3 nanosized samples was synthesized by the colloidal chemistry method. The microwave-assisted hydrothermal
treatment was used for the first time for the modification of DyF3 nanoparticles. Transmission electron microscopy images show
that the DyF3 nanoparticles have average particle size of about 16–18 nm and the size distribution becomes narrower during the
microwave irradiation. The X-ray diffraction analysis shows the narrowing of the diffraction peaks versus microwave treatment
time. The experimental data demonstrates restructuring of the nanoparticles and their crystal structure becomes closer to the
ideal DyF3 regular structure during the microwave irradiation of colloidal solution.The defect-annealing model of the microwave-
assisted hydrothermal modification process is suggested.

1. Introduction

Several dozen research papers dedicated to LnF3 nanosized
samples synthesis have been published in recent years. Nowa-
days the lanthanide fluoride nanoparticles attract scientific
interest because of their possible applications in many areas
such as lasers, biolabels, and optical amplifiers [1–12]. The
autoclave hydrothermal treatment is often used for struc-
ture and size modification of the lanthanide nanoparticles.
The microwave-assisted synthesis of PrF3 nanoparticles was
suggested by Ma et al. [13] and modified at Kazan Federal
University (Kazan, Russia). The PrF3 nanoparticles size and
structure dependence on the microwave-assisted hydrother-
mal treatment time were obtained by the high-resolution
transmission electron microscopy (TEM), nuclear magnetic
resonance (NMR), and electron paramagnetic resonance [14–
21].

The other trifluoride compound of great interest is DyF3.
Recent research showed that DyF3 powders could signifi-
cantly improve the properties of Nd-Fe-B magnets [22–25].
In addition, DyF3 is an important component of oxyfluoride
glasses [26].On the other hand, there is a ferromagnetic phase

transition in a single crystal at 𝑇𝑐 = 2.55K [27]. Investigation
of Curie temperature dependence versus the size of DyF3
nanoparticles is a fundamental problem. There are only few
reports about DyF3 nanoparticles synthesis [28–30] and the
size modification was achieved by the autoclave technique.

The aim of the present work is a synthesis and modifi-
cation of DyF3 nanoparticles using the microwave-assisted
hydrothermal treatment method.

2. Materials and Methods

Sodium fluoride NaF (99.9%) and dysprosium oxide Dy2O3
(99.99%) were obtained from Sigma-Aldrich. The nanosized
DyF3 samples #1–3 were synthesized by similar method as for
PrF3 nanoparticles synthesis [14, 15]. In a typical synthesis,
6.2 g of powdered dysprosium oxide Dy2O3 was dissolved in
400mL of 10% nitric acid HNO3 aqueous solution to form a
transparent solution

Dy
2
O3 (s) + 6HNO3 (aq)

󳨀→ 2Dy (NO3)3 (aq) + 3H2O (l)
(1)
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Figure 1: (a) TEM image of DyF
3
nanoparticles with corresponding electron diffraction pattern in the insert (sample #3). (b)–(d) The size

distribution diagrams for all samples. Solid line is the log-normal distribution fitting, and 𝑑𝑐 is the center.

Then, after filtering, 4.75 g of sodium fluoride NaF (F : Dy =
3 : 1) was added into the abovementioned solution under vio-
lent stirring. A white colloidal precipitate of DyF3 appeared
immediately.

Dy (NO3)3 (aq) + 3NaF (s)

󳨀→ DyF
3
(s) + 3NaNO3 (aq)

(2)

The pH of the suspension was adjusted by 25% ammonia
aqueous solution (about 4.0–5.0). Deionized water was filled
into the suspension to make the volume up to 750mL.
After stirring for about 20min, the suspension was finally
transferred into a 1 L round flask (synthesis of sample #1
has been stopped at this stage). Part of the solution was
placed into themicrowave oven (650W, 2.45GHz) for further
hydrothermal treatment (sample #2).The suspension was put
into the microwave oven at 70% of the maximum power
for 30 minutes. The resulting product was collected by

centrifugation (Janetski K24; 12000 RPM) and washed using
the deionized water for several times.

Finally, the solutionwas dried out on the flat surface in air
at room temperature. Sample #3 was prepared by the same
method and treated by the microwave irradiation for 420
minutes.

TEM images of nanosized sampleswere obtained by using
Philips CM300 operated at 300 kV (Neel Institute, Grenoble,
France). Powder X-ray diffraction was done by Bruker D8
Advance X-ray diffractometer with use of copper Ka (𝛼 =
1.5418 Å) radiation and continuous scan (scan speed 0.005
degrees per second in the range of diffraction angles 20–60
degrees).

3. Results and Discussion

Figure 1 shows the TEM image with the corresponding
electron diffraction pattern in the insert (sample #3) and size
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Figure 2: (a)–(c) Experimental XRD patterns of synthesized DyF3 nanosized samples #1–3. (d) simulated XRD patterns in PowderCell
software.

distribution diagrams for all samples. The sharp diffraction
rings show the crystal particles presence (rings radii: 0.36 nm,
0.32 nm, and 0.20 nm). All diagrams were fitted by the
log-normal distribution. The synthesized nanoparticles have
average size of about 16–18 nm (sample #1, 16.9 nm; sample
#2, 16.9 nm; sample #3, 18.2 nm).There is no significant DyF3
nanoparticles size dependence on the microwave-assisted
hydrothermal treatment time unlike the case of PrF3 sample
[20]. Clearly, the size distribution becomes narrower during
the microwave irradiation. In the case of the microwave-
assisted synthesis of PrF3 nanoparticles, the restructuring of
particles was observed earlier by NMR [20]. It was interesting
to see the crystal structure changes in the process of DyF3
nanosized samples treatment.

Crystal structure ofDyF3 nanoparticleswas characterized
by X-ray diffraction (XRD). Experimental XRD patterns of
three DyF3 nanosized samples are shown in Figure 2. Diffrac-
tion peaks could be indexed from the simulated pattern
calculated by PowderCell [31] software (space group Pnma
(No. 62), lattice constants a = 0.6460 nm, b = 0.6906 nm,
and c = 0.4376 nm [32]). Obviously, sample #1 (Figure 2(a))
has wide peaks and after 30 minutes of the microwave-
assisted hydrothermal treatment the peaks becomes narrower
(Figure 2(b)). After 7 hours of treatment the XRD pattern
became even narrower (Figure 2(c)). High and sharp peaks
indicate high crystallinity of nanoparticles for sample #3.

The analysis of obtained experimental data suggests the
following hypothetical picture of the microwave-assisted
hydrothermal modification process. Sample #1 has many
defects of crystal structure because of the explosive character
of the colloidal reaction. Further microwave treatment of the
colloidal solution leads to local heating of DyF3 particles.
Some bigger particles crack into smaller ones,making the size
distribution narrower, but the local restructuring continues

further. The restructuring leads to decrease in the number of
crystal structure defects.

The obtained results of restructuring process are different
from that of PrF3 nanoparticles, where the weak size depen-
dence [20] and absolutely no difference in XRD patterns
were observed. One of the possible reasons for difference
of the microwave-assisted hydrothermal treatment’s results
between DyF3 and PrF3 nanoparticles may be the different
symmetry (DyF3 – orthorhombic 𝐷16

2ℎ
-Pnma; PrF3 – hexag-

onal 𝐶3
6V-P63cm). Another reason could be the difference of

lattice energies for lanthanide ions Pr and Dy [33].
The type of crystal structure defects is also different.

In the case of PrF3 nanoparticles—point defects, for DyF3
nanoparticles—the defects are more severe. Annealing of the
defects of the crystal structure of DyF3 nanoparticles leads
to significant (2–5 times) narrowing of XRD peaks. Usually
the width of XRD peaks is related to the nanoparticles size
andmicrostrains.There are variousmethods of X-ray analysis
such as Scherrer [34], Williamson-Hall [35], and Warren-
Averbach [36] methods. The average nanoparticles size was
calculated using Debye-Scherrer’s formula:

𝐷 =
𝐾𝜆

𝛽ℎ𝑘𝑙 cos 𝜃
. (3)

For synthesized DyF3 nanoparticles, the estimation gives too
high values (ex., for sample #3 55 nm), which supports the
defect nature of XRD peaks linewidth.

The analysis of XRD pattern byWilliamson-Hall method
also gives too high values for the average size of nanoparticles
and attempts to estimate lattice distortions do not give reliable
results. Warren-Averbach analysis is suitable for resolved
XRD peaks and in our case is not applicable.
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4. Conclusions

In summary, the series ofDyF3 nanoparticleswas successfully
synthesized by the microwave-assisted colloidal hydrother-
mal method for the first time. The nanoparticles were char-
acterized by TEM and XRD. The average size of particles is
about 16–18 nm and the size distribution becomes narrower
after the microwave treatment. It was observed that the
microwave irradiation treatment strongly affects the width
of XRD peaks. They become narrower with the microwave
treatment. The defect-annealing model of the microwave-
assisted hydrothermal modification process is suggested.
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