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Efficient timed diagnosis
using automata with timed domains?

Patricia Bouyer1, Samy Jaziri1, and Nicolas Markey2

1 LSV – CNRS & Univ. Paris-Saclay – France
2 IRISA – Univ. Rennes & CNRS & INRIA – France

Abstract. We consider the problems of efficiently diagnosing and pre-
dicting what did (or will) happen in a partially-observable one-clock
timed automaton. We introduce timed sets as a formalism to keep track
of the evolution of the reachable configurations over time, and use our
previous work on automata over timed domains to build a candidate di-
agnoser for our timed automaton. We report on our implementation of
this approach compared to the approach of [Tripakis, Fault diagnosis for
timed autmata, 2002].

1 Introduction

Formal methods in verification. Because of the wide range of applications of
computer systems, and of their increasing complexity, the use of formal meth-
ods for checking their correct behaviours has become essential [16,10]. Numerous
approaches have been introduced and extensively studied over the last 40 years,
and mature tools now exist and are used in practice. Most of these approaches
rely on building mathematical models, such as automata and extensions thereof,
in order to represent and reason about the behaviours of those systems; var-
ious algorithmic techniques are then applied in order to ensure correctness of
those behaviours, such as model checking [11,12], deductive verification [17,13]
or testing [25].

Fault diagnosis. The techniques listed above mainly focus on assessing correct-
ness of the set of all behaviours of the system, in an offline manner. This is
usually very costly in terms of computation, and sometimes too strong a re-
quirement. Runtime verification instead aims at checking properties of a run-
ning system [19]. Fault diagnosis is a prominent problem in runtime verification:
it consists in (deciding the existence and) building a diagnoser, whose role is
to monitor real executions of a (partially-observable) system, and decide on-
line whether some property holds (e.g., whether some unobservable fault has
occurred) [24,26]. A diagnoser can usually be built (for finite-state models) by
determinizing a model of the system, using the powerset construction; it will
keep track of all possible states that can be reached after each (observable) step
of the system, thereby computing whether a fault may or must have occurred.

? Work supported by ERC project EQualIS.



The related problem of prediction, a.k.a. prognosis, (that e.g. no fault may occur
in the next five steps) [15], is also of particular interest in runtime verification,
and can be solved using similar techniques.

Verifying real-time systems. Real-time constraints often play an important role
for modelling and specifying correctness of computer systems. Discrete mod-
els, such as finite-state automata, are not adequate to model such real-time
constraints; timed automata [1], developed at the end of the 1980’s, provide
a convenient framework for both representing and efficiently reasoning about
computer systems subject to real-time constraints. Efficient offline verification
techniques for timed automata have been developed and implemented [3,2]. Di-
agnosis of timed automata however has received less attention; this problem is
made difficult by the fact that timed automata can in general not be deter-
minized [27,14]. This has been circumvented by either restricting to classes of
determinizable timed automata [6], or by keeping track of all possible configu-
rations of the automaton after a (finite) execution [26]. The latter approach is
computationally very expensive, as one step consists in maintaining the set of
all configurations that can be reached by following (arbitrarily long) sequences
of unobservable transitions; this limits the applicability of the approach.

Our contribution. In this paper, we (try to) make the approach of [26] more
efficiently applicable (over the class of one-clock timed automata). Our improve-
ments are based on two ingredients: first, we use automata over timed domains [7]
as a model for representing the diagnoser. Automata over timed domains can
be seen as an extension of timed automata with a (much) richer notion of time
and clocks; these automata enjoy determinizability. The second ingredient is the
notion of timed sets: timed sets are pairs (E, I) where E is any subset of R, and
I is an interval with upper bound +∞; such a timed set represents a set of clock
valuations evolving over time: the timed set (E; I) after a delay d represents the
set (E + d) ∩ I. As we prove, timed sets can be used to finitely represent the
evolution of the set of all reachable configurations after a finite execution.

In the end, our algorithm can compute a finite representation of the reachable
configurations after a given execution, as well as all the configurations that can
be reached from there after any delay. This can be used to very quickly update
the set of current possible configurations (which would be expensive with the
approach of [26]). Besides diagnosis, this can also be used to efficiently predict
the occurrence of faults occurring after some delay (which is not possible in [26]).
We implemented our technique in a prototype tool: as we report at the end of
the paper, our approach requires heavy precomputation, but can then efficiently
handle delay transitions.

Related works. Model-based diagnosis has been extensively studied in the com-
munity of discrete-event systems [23,24,28]. This framework gave birth to a num-
ber of ramifications (e.g. active diagnosis [22], fault prediction [15], opacity [18]),
and was applied in many different settings besides discrete-event systems (e.g.

2



Petri nets, distributed systems [4], stochastic systems [20,5], discrete-time sys-
tems [9], hybrid systems [21]).

Much fewer papers have focused on continuous-time diagnosis: Tripakis pro-
posed an algorithm for deciding diagnosability [26]. Cassez developed a uniform
approach for diagnosability of discrete and continuous time systems, as a reduc-
tion to Büchi-automata emptiness [8]. A construction of a diagnoser for timed
systems is proposed in [26]: the classical approach of determinizing using the
powerset construction does not extend to timed automata, because timed au-
tomata cannot in general be determinized [27,14]. Tripakis proposed the con-
struction of a diagnoser as an online algorithm that keeps track of the possible
states and zones the system can be in after each event (or after a sufficiently-long
delay), which requires heavy computation at each step and is hardly usable in
practice. Bouyer, Chevalier and D’Souza studied a restricted setting, only look-
ing for diagnosers under the form of deterministic timed automata with limited
resources [6].

2 Definitions

2.1 Intervals

In this paper, we heavily use intervals, and especially unbounded ones. For r ∈ R,
we define

7→r = [r; +∞) →r = (r; +∞)

→

r = (−∞; r)

7→

r = (−∞; r].

We let R̂≥0 = { 7→r, →r | r ∈ R≥0} for the set of upward-closed intervals of R≥0;

in the sequel, elements of R̂≥0 are denoted with r̂. Similarly, we let R̂≥0 =
{

7→

r,
→

r | r ∈ R≥0}, and use notation r̂ for intervals in R̂≥0. The elements

of R̂≥0 can be (totally) ordered using inclusion: we write r̂ ≺ r̂′ whenever r̂′ ⊂ r̂
(so that r < r′ entails →r ≺ →r′).

2.2 Timed automata

Let Σ be a finite alphabet.

Definition 1. A one-clock timed automaton over Σ is a tuple A = (S, {s0},
T, F ), where S is a finite set of states, s0 ∈ S is the initial state, T ⊆ S× R̂≥0×
R̂≥0 × (Σ ] {ε}) × {0, id} × S is the set of transitions, and F ⊆ S is a set of
final states. A configuration of A is a pair (s, v) ∈ S×R≥0. There is a transition
from (s, v) to (s′, v′) if

– either s′ = s and v′ ≥ v. In that case, we write (s, v)
d−→ (s, v′), with d =

v′ − v, for such delay transitions (notice that we have no invariants);

– or there is a transition e = (s, l̂, û, a, r, s′) s.t. v ∈ l̂ ∩ û and v′ = v if r = id,
and v′ = 0 otherwise. For those action transitions, we write (s, v)→e (s′, v′).

We assume that for each transition e = (s, l̂, û, a, r, s′), it holds l̂ ∩ û 6= ∅.

3



Fix a one-clock timed automaton A; we write Tid for the set of non-resetting
transitions, i.e., having id as their fifth component, and T0 for the complement
set of resetting transitions.

For a transition e = (s, l̂, û, a, r, s′), we write ê and ê for l̂ and û, respec-
tively. We write src(e) = s and tgt(e) = s′, and lab(e) = a ∈ Σ. We extend
these definitions to sequences of transitions w = (ei)0≤i<n as src(w) = src(e0),
tgt(w) = tgt(en−1), and lab(w) = (lab(ei))0≤i<n.

Let w be a sequence (e2i+1)0≤2i+1<n of transitions of T , and d ∈ R≥0.

We write (s, v)
d−→w (s′, v′) if there exist finite sequences (si, vi)0≤i≤n ∈ (S ×

R≥0)n+1 and (d2i)0≤2i<n ∈ Rbn/2c≥0 such that
∑

0≤2i<n d2i = d, and (s0, v0) =

(s, v) and (sn, vn) = (s′, v′), and for all 0 ≤ j < n, (sj , vj)
dj−→ (sj+1, vj+1) if j

is even and (sj , vj) →ej (sj+1, vj+1) if j is odd. We write (s, v) → (s′, v′) when

(s, v)
d−→w (s′, v′) for some w ∈ T ∗ and some d ∈ R≥0.

For any λ ∈ Σ∗ and any d ∈ R≥0, we write (s, v)
d−→λ (s′, v′) whenever there

exists a sequence of transitions w such that λ = lab(w) and (s, v)
d−→w (s′, v′).

Notice that3 (s, v)
d−→⊥ (s′, v′) (sometimes simply written (s, v)

d−→ (s′, v′)) indi-
cates a delay-transition (hence it must be s = s′). The untimed language L(A)

of A is the set of words λ ∈ Σ∗ such that (s0, 0)
d−→λ (s′, v′) for some s′ ∈ F and

d ∈ R≥0.
We borrow some of the formalism of [7], in order to define a kind of powerset

construction for timed automata. For a one-clock timed automatonA = (S, {s0},
T, F ) on Σ, we write M = (P(R≥0))S for the set of markings, mapping states
of A to sets of valuations for the unique clock of A. For a marking m ∈ M,
we write supp(m) = {s ∈ S | m(s) 6= ∅}. For any l ∈ Σ, we define the function
Ol : M→M by letting, for any m ∈M and any s′ ∈ S,

Ol(m) : s′ 7→ {v′ ∈ R≥0 | ∃s ∈ S. ∃v ∈ m(s). (s, v)→l (s′, v′)}.

Similarly, for any d ∈ R≥0, we let

Od(m) : s′ 7→ {v′ ∈ R≥0 | ∃s ∈ S. ∃v ∈ m(s). (s, v)
d−→ (s′, v′)}.

Notice that Od simply shifts all valuations by d.

Definition 2 ([7]). The powerset automaton of a timed automaton A = (S, {s0},
T, F ) is a tuple DA = (P(S), {{s0}},PT,PF ), where P(S) is the set of states,
{s0} is the initial state, PT = {(q,m, a, q′) ∈ P(S) × M × Σ × P(S) | q =
supp(m), q′ = supp(Oa(m))} is the set of transitions, and PF = {E ∈ P(S) |
E ∩ F 6= ∅} is a set of final states.

Configurations of DA are all pairs (q,m) ∈ P(S)×M for which q = supp(m).
There is a transition from a configuration (q,m) to a configuration (q′,m′) la-
belled with l ∈ Σ ∪ R≥0 whenever m′ = Ol(m). We extend this definition to

3 In this paper, we write ⊥ for the empty word (or empty sequences) over any alphabet.
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sequences alternating delay- and action transitions, and write (q,m)
d−→w (q′,m′)

when there is a path from (q,m) to (q′,m′) following the transitions of w in d

time units. Similarly, we write (q,m)
d−→σ (q′,m′) if (q,m)

d−→w (q′,m′) and
lab(w) = σ.

Following [7], the automaton DA is deterministic, and it simulates A in
the sense that given two marking m and m′ and a word σ of Σ∗, we have

(supp(m),m)
d−→σ (supp(m′),m′) if, and only if, m′(s′) = {v′ ∈ R≥0 | ∃s ∈

S. ∃v ∈ m(s). (s, v)
d−→σ (s′, v′)} for all s′ ∈ S.

2.3 Timed automata with silent transitions

The work reported in [7] only focuses on the case when there are no silent
transitions. In that case, for any d ∈ R≥0, the operation Od can be computed
easily, since it amounts to adding d to each item of the marking (in other terms,
for any marking m, any state s ∈ S, and any v ∈ R≥0 such that v + d ∈ R≥0,
we have v ∈ m(s) if, and only if, v + d ∈ Od(m)(s)). This leads to an efficient
expression of a (deterministic) powerset automaton simulating A.

However fault diagnosis should deal with timed automata with unobservable
transitions (unobservable transitions then correspond to internal transitions).
So we now assume that Σ contains a special silent letter ε, whose occurrence is
not visible. This requires changing the definition of lab: we now let

lab(⊥) = ⊥
lab(w · e) = lab(w) if lab(e) = ε

lab(w · e) = lab(w) · lab(e) if lab(e) 6= ε

Notice that lab(w) ∈ (Σ \ {ε})∗. We may write →ε in place of →⊥, to stick to
classical notations and make it clear that it allows silent transitions.

In that case, DA still is a (deterministic) powerset automaton that simu-
lates A, and hence is still a diagnoser, but the function Od cannot be computed
by just shifting valuations by d. In its raw form, the function Od can be obtained
by the computation of the set of reachable configurations in a delay d by follow-
ing silent transitions. This is analogous to the method proposed by Tripakis [26],
and turns out to be very costly. However, a diagnoser must be able to simulate
all possible actions of the diagnosed automaton quickly enough, so that it can be
used at runtime. In this paper, we introduce a new data structure called timed
sets, which we use to represent markings in the timed powerset automaton; as
we explain, using timed sets we can compute Od more efficiently (at the expense
of more precomputations).
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−3 −2 −1 0 1 2 3 4 5

r = 1

E F (0) = [1; 2]

−3 −2 −1 0 1 2 3 4 5

E + 3

r = 1
F (3) = [1; 2] ∪ [3; 5]

Fig. 1. Example of an atomic timed set F = ([−3;−1] ∪ [0; 2]; 7→1).

3 (Regular) timed sets

3.1 Timed sets

For a set E and a real d, we define the set E + d = {x + d | x ∈ E}. We intro-
duce timed sets as a way to represent sets of clock valuations (and eventually
markings), and their evolution over time.

Definition 3. An atomic timed set is a pair (E; r̂) where E ⊆ R and r̂ ∈ R̂≥0.
With an atomic timed set F = (E; r̂), we associate a mapping F : R≥0 → 2R

defined as F (d) = (E + d) ∩ r̂.

We define the union of two timed sets F and F ′, denoted as F tF ′, as their
pointwise union: (F t F ′)(d) = F (d) ∪ F ′(d).

Definition 4. A timed set is a countable set F = {Fi | i ∈ I} (intended to
be a union, hence sometimes also denoted with

⊔
i∈I Fi) of atomic timed sets.

With such a timed set, we again associate a mapping F : R≥0 → 2R≥0 defined as
F (d) =

⋃
i∈I Fi(d). A timed set is finite when it is made of finitely many atomic

timed sets. We write T (R) for the set of timed sets of R.

Given two timed sets F and F ′, we write F v F ′ whenever F (d) ⊆ F ′(d) for
all d ∈ R≥0. This is a pre-order relation; it is not anti-symmetric as for instance
({1}; 7→0) v ({1}; 7→1) and ({1}; 7→1) v ({1}; 7→0). We write F ≡ F ′ whenever
F v F ′ and F ′ v F .

Example 1. Figure 1 displays an example of an atomic timed set F = (E; 7→1),
with E = [−3;−1]∪ [0; 2]. The picture displays the sets F (0) = [1; 2] and F (3) =
[1; 2] ∪ [3; 5]. /

3.2 Regular timed sets

In order to effectively store and manipulate timed sets, we need to identify a
class of timed sets that is expressive enough but whose timed sets have a finite
representation.
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Definition 5. A regular union of intervals is a 4-tuple E = (I, J, p, q) where
I and J are finite unions of intervals of R with rational (or infinite) bounds,
p ∈ Q≥0 is the period, and q ∈ N is the offset. It is required that J ⊆ (−p; 0] and
I ⊆ 7→(−q · p).

The regular union of intervals E = (I, J, p, q) represents the set (which we
still write E) I ∪

⋃+∞
k=q J − k · p.

Regular unions of intervals enjoy the following properties:

Proposition 6. Let E and E′ be regular unions of intervals, K be an interval,
and d ∈ Q. Then E ∪ E′, E, E + d and E −K are regular unions of intervals.

Definition 7. A regular timed set is a finite timed set F = {(Ei; r̂i) | i ∈ I}
such that for all i ∈ I, the set Ei is a regular union of intervals.

4 Computing the powerset automaton

In this section, we fix a one-clock timed automaton A = (S, {s0}, T, F ) over
alphabet Σ, assumed to contain a silent letter ε. We assume that some silent
transitions are faulty, and we want to detect the occurrence of such faulty transi-
tions based on the sequence of actions we can observe. Following [26], this can be
reduced to a state-estimation problem, even if it means duplicating some states of
the model in order to keep track of the occurrence of a faulty transition. In the
end, we aim at computing (a finite representation of) the powerset automa-
ton DA, which amounts to computing the transition functions Ol for any l ∈ Σ
and Od for any d ∈ R≥0. Computing Ol(m) for l ∈ Σ is not very involved:
for each state s ∈ S and each transition e labelled with l with source s and
target s′, it suffices to intersect m(s) with the guard ê∩ ê, and add the resulting
interval (or the singleton {0} if e is a resetting transition) in Ol(m)(s′).

From now on, we only focus on computing Od, for d ∈ R≥0. For this, it is
sufficient to only consider silent transitions of A: we let U = U0 ] Uid be the
subset of T containing all transitions labelled ε, partitioned into those transitions
that reset clock x (in U0), and those that do not (in Uid). We write Aε for the
restriction of A to silent transitions, and only consider that automaton in the
sequel. All transitions are silent in Aε, but for convenience, we assume that
transitions are labelled with their name in A, so that the untimed language
of Aε is the set of sequences of consecutive (silent) transitions firable from the
initial configuration.

4.1 Linear timed markings and their ε-closure

We use markings to represent sets of configurations; in order to compute Od,
we need to represent the evolution of markings over time. For this, we intro-
duce timed markings. A timed marking is a mapping M : S → (R≥0 → 2R≥0).
For any s ∈ S and any d ∈ R≥0, M(s)(d) is intended to represent all clock valua-
tions that can be obtained in s after a delay of d time units. For any delay d ∈ R,
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we may (abusively) write M(d) for the marking represented by M after delay d
(so that for any s ∈ S and any d ∈ R≥0, both notations M(d)(s) and M(s)(d)
represent the same subset of R).

A special case of timed marking are those timed markings that can be defined
using timed sets; timed markings of this kind will be called linear timed markings
in the sequel. As we prove below, linear timed markings are expressive enough to
represent how markings evolve over time in one-clock timed automata. Atomic
(resp. finite, regular) timed markings are linear timed markings whose values
are atomic (resp. finite, regular) timed sets (we may omit to mention linearity in
these cases to alleviate notations). Union, inclusion and equivalence of (timed)
markings are defined statewise.

With any marking m, we associate a linear timed marking, which we write −→m
(or sometimes m if no ambiguity arises), defined as −→m(s)(d) = {v+d | v ∈ m(s)}.
This timed marking is linear since it can be defined e.g. as −→m(s) = (m(s); 7→0).
This timed marking can be used to represent all clock valuations that can be
reached from marking m after any delay d ∈ R≥0.

Given a marking m, a delay d and a sequence w ∈ U∗ of silent transitions
of Aε, we define the marking m⊕w d as follows:

m⊕w d : s′ 7→ {v ∈ R≥0 | ∃s ∈ S. ∃v ∈ m(s). (s, v)
d−→w (s′, v′)}

(remember that w here represents a sequence of silent transitions). This corre-
sponds to all configurations reachable along w from a configuration in m with
a delay of exactly d time units. By definition of the transition relation →w,
for m ⊕w d to be non-empty, w must be a sequence of consecutive transitions.
With this definition, for any sequence w of silent transitions and any marking m,
we can define a timed marking mw : d 7→ m ⊕w d. In particular, for the empty
sequence ⊥, the timed marking m⊥ is equivalent to the timed marking −→m (hence
it is linear).

For any d ∈ R≥0, we define m ⊕ε d as (m ⊕ε d)(s) =
⋃
w∈U∗(m ⊕w d)(s).

The marking m ⊕ε d represents the set of configurations that can be reached
after a delay d through sequences of silent transitions. This gives rise to a timed
marking, which we write mε. By definition of Od, we have Od(m) = mε(d) for
any marking m and any delay d.

The definition is extended to timed markings as follows: for a timed mark-
ing M and a delay d, we let

M⊕wd : s′ 7→ {v′ ∈ R≥0 | ∃s ∈ S. ∃d0 ≤ d. ∃v ∈M(d0)(s). (s, v)
d−d0−−−→w (s′, v′)},

Again, this gives rise to a timed marking Mw : d 7→M⊕wd. Observe that for any
linear timed marking, we have M⊥ ≡ M . Notice also that for any marking m,
it holds (−→m)w ≡ mw. We let M ⊕ε d be the union of all M ⊕w d when w ranges
over U∗, and M ε be the associated timed marking.

Definition 8. Let M be a timed marking. A timed marking N is an ε-closure
of M if N ≡ M ε. The timed marking M is said ε-closed if it is an ε-closure of
itself.
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s0

s1

x < 1;
ε

x ≥ 2;
ε;

x := 0

−3 −2 −1 0 1 2

r = 0

−3 −2 −1 0 1 2

r = 0

Fig. 2. A silent timed automaton

Our aim in this section is to compute (a finite representation of) an ε-closure of
any given initial marking (defined using regular unions of intervals).

Example 2. Consider the (silent) timed automaton of Fig. 2. The initial config-
uration can be represented by the timed marking M with M(s0) = ([0; 0]; 7→0)

and M(s1) = (∅; 7→0), corresponding to the single configuration {(s0, x = 0)}.
This timed marking is not closed under delay- and silent-transitions, as for in-
stance configuration (s1, x = 0) is reachable; however, this configuration cannot
be reached after any delay: it is only reachable after delay 0, or after a delay
larger than or equal to 2 time units. In the end, an ε-closed timed marking for
this automaton is M ε(s0) = M(s0), and M ε(s1) = ((−∞;−2]∪ [0; 0]; 7→0). /

4.2 Computing ε-closures

Let E and F be two subsets of R. We define their gauge as the set E ./ F =
(E − F ) ∩ R≤0. Equivalently, E ./ F = {d ∈ R≤0 | F + d ∩ E 6= ∅}.

Lemma 9. – If E ≤ F (in particular, if E ⊆ R≤0 and F ⊆ R≥0), then
E ./ F = E − F .

– if E > F , then E ./ F = ∅.
– If E and F are two intervals, then E ./ F is an interval.

– IF E is a regular union of intervals and J is an interval, then E ./ F is a
regular union of intervals.

– If F ′ ⊆ R≥0, then (E ./ F ) ./ F ′ = (E ./ F )− F ′.

We now define a mapping ε : T (R)× U∗ → T (R), intended to represent the
timed set that is reached by performing sequences of silent transitions from some
given timed set. We first consider atomic timed sets, and the application of a
single silent transition. The definition is based on the type of the transition:

ε((E, r̂), (s, ê, ê, ε, op, s′)) =


(∅; 7→0) if r̂ ∩ ê = ∅
(E ∩ ê; p̂) if r̂ ∩ ê 6= ∅ and op = id

(E ./ (p̂ ∩ ê); 7→0) if r̂ ∩ ê 6= ∅ and op = 0

9



where p̂ = r̂ ∩ ê. We extend ε to sequences of transitions inductively by letting
ε((E; r̂),⊥) = (E; r̂) and, for w ∈ U+,

ε((E; r̂), w · e) =

{
ε(ε((E; r̂), w), e) if tgt(w) = src(e)

(∅; 7→0) otherwise.

Finally, we extend this definition to unions of atomic timed sets by letting ε(F1t
F2, w) = ε(F1, w) t ε(F2, w). We now prove that this indeed corresponds to
applying silent- and delay-transitions from a given timed set.

Lemma 10. Let F be a timed set and w ∈ U∗. Then for any d ∈ R≥0 and
any v ∈ R≥0,

v ∈ (ε(F,w))(d) ⇔ ∃d0 ∈ [0; d]. ∃v′ ∈ F (d0). (src(w), v′)
d−d0−−−→w (tgt(w), v).

Proof. We carry the proof for the case where F is an atomic timed set. The ex-
tension to unions of atomic timed sets is straightforward. The proof for atomic
timed sets is in two parts: we begin with proving the result for a single transition
(the case where w = ⊥ is easy), and then proceed by induction to prove the full
result.

We begin with the case where w is a single transition e = (s, ê, ê, ε, op, s′).
In case F is empty, then also ε(F, e) is empty, and the result holds. We now
assume that F is not empty, and consider three cases:

– if r̂ ∩ ê = ∅, then ε(F, e) = (∅; 7→0). On the other hand, for any d0 and
any v′ ∈ F (d0), it holds v′ ∈ r̂, so that v′ /∈ ê, and the transition cannot be
taken from that valuation. Hence both sides of the equivalence evaluate to
false, and the equivalence holds.

– now assume that r̂ ∩ ê 6= ∅, and consider the case where e does not reset the
clock. Then v ∈ (ε(F,w))(d) means that v ∈ (E + d) ∩ (ê + d) ∩ p̂. If such
a v exists, then p̂∩ ê∩ [v− d; v] is non-empty: indeed, this is trivial if either
v ∈ ê, or v − d ∈ p̂, or d = 0; otherwise, we have ê ⊆

→

v and p̂ ⊆ →v − d, so
that p̂ ∩ ê ⊆ (v − d; v). Moreover, p̂ ∩ ê 6= ∅ since r̂ ∩ ê 6= ∅ and ê ∩ ê 6= ∅.
Then for any v′ in that set p̂ ∩ ê ∩ [v − d; v], letting d0 = v′ − (v − d),
we have v′ ∈ E + d0. In the end, v′ ∈ F (d0), and v′ ∈ ê ∩ ê, so that

(src(e), v′)
d−d0−−−→e (tgt(e), v). Conversely, if d0 ∈ [0; d] and v′ ∈ F (d0) exist

such that (src(w), v′)
d−d0−−−→w (tgt(w), v), then v′ ∈ E + d0 ∩ r̂, and for

some d1 ≤ d − d0, v′ + d1 ∈ ê ∩ ê. Then letting v = v′ + d − d0, we have
v ∈ E + d and v ∈ r̂ + (d − d0) ⊆ r̂ and v ∈ ê + (d − d0 − d1) ⊆ ê and
v ∈ ê+ (d− d0 − d1) ⊆ ê+ d. This proves our result for this case.

– we finally consider the case where r̂∩ê 6= ∅ and e resets the clock. In this case,
v ∈ (ε(F,w))(d) means that v ∈ 7→0 and v − d ∈ E ./ (p̂ ∩ ê), which rewrites
as 0 ≤ v ≤ d and (E+d−v)∩(p̂∩ ê) 6= ∅. Let d0 = d−v. The property above
entails that 0 ≤ d0 ≤ d, and that there exists some v′ ∈ (E+d0)∩ (p̂∩ ê), so

that 0 ≤ d0 ≤ d, v′ ∈ F (d0) and (src(e), v′)
d−d0−−−→e (tgt(e), v). Conversely, if

those conditions hold, then for some 0 ≤ d1 ≤ d−d0, we have v′+d1 ∈ ê∩ ê,
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and v = d − (d0 + d1) (remember that e resets the clock). Then v′ + d1 ∈
E + (d0 + d1) ∩ r̂ ∩ ê ∩ ê, so that −(d0 + d1) ∈ E ./ (p̂ ∩ ê), and finally
v ∈ ε(F,w)(d).

We now extend this result to sequences of transitions. The case where w = ⊥
is straightforward. Now assume that the result holds for some word w, and
consider a word w · e. In case tgt(w) 6= src(e), the result is trivial.

The case of single transitions has been handled just above. We thus consider
the case of w · e with w ∈ U+. First assume that v′ ∈ (ε(F,w · e))(d), and
let F ′ = ε(F,w). Then v′ ∈ (ε(F ′, e))(d), thus there exist 0 ≤ d0 ≤ d and

v ∈ F ′(d0) s.t. (src(e), v)
d−d0−−−→e (tgt(e), v′). Since v ∈ F ′(d0), there must exist

0 ≤ d1 ≤ d0 and v′′ ∈ F (d1) such that (src(w), v′′)
d0−d1−−−−→w (tgt(w), v). We thus

have found 0 ≤ d1 ≤ d such that (src(w), v′′)
d−d1−−−→w·e (tgt(e), v′).

Conversely, if (src(w), v′′)
d−d1−−−→w·e (tgt(e), v′) for some 0 ≤ d1 ≤ d and

v′′ ∈ F (d1), then we have (src(w), v′′)
d0−d1−−−−→w (tgt(w), v)

d−d0−−−→e (tgt(e), v′) for
some d0 ∈ [d1; d] and some v. We prove that v ∈ (ε(F,w))(d0): indeed, we have

d1 ∈ [0; d0], and v′′ ∈ F (d1) such that (src(w), v′′)
d0−d1−−−−→w (tgt(w), v), which

by induction hypothesis entails v ∈ (ε(F,w))(d0). Thus we have d0 ∈ [0; d] and

v ∈ F ′(d0), where F ′ = ε(F,w), such that (tgt(w), v)
d−d0−−−→e (tgt(e), v′), which

means v′ ∈ ε(F ′, e)(d), and concludes the proof. �

Thanks to this semantic characterization of ε(F,w), we get:

Corollary 11. For any sequence w of transitions, and any two equivalent timed
sets F and F ′, the timed sets ε(F,w) and ε(F ′, w) are equivalent.

Finally, we extend ε to linear timed markings in the expected way: given a
linear timed marking M , and a sequence w of transitions, we let

ε(M,w) : s 7→ ε(M(src(w)), w) if s = tgt(w),
s 7→ (∅; 7→0) otherwise.

Again, we have ε(M1 tM2, w) ≡ ε(M1, w) t ε(M2, w) for any w ∈ U∗. Then:

Lemma 12. ε(M,w) ≡Mw for all w ∈ U∗ and all linear timed marking M .

Letting ε(M,L) =
⊔
w∈L ε(M,w) for any subset L of U∗, and ε(M) =

ε(M,U∗), we immediately get:

Theorem 13. For any linear timed marking M , it holds ε(M) ≡M ε.

It follows that the closure of any marking can be represented as a linear timed
marking. However, this linear timed marking is currently defined as an infinite
union over all sequences of consecutive silent transitions. We make the compu-
tation more effective in the next section.
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4.3 Finite representation of the closure

In this section, we prove that we can effectively compute a finite representation
of the closure of any regular timed marking. More precisely, we show how to
compute such a closure as a regular timed marking.

Finiteness. Indeed, let M be (a finite representation of) a regular timed mark-
ing: then M can be written as the finite union of atomic regular timed mark-
ings M(s,E,r̂), defined as M(s,E,r̂)(s) = (E; r̂) and M(s,E,r̂)(s

′) = (∅; 7→0) for
all s′ 6= s. In the end, any regular timed marking M can be written as the
finite union

⊔
i∈IMi of atomic regular timed markings. Thus we have ε(M) ≡⊔

i∈I ε(Mi), and it suffices to compute ε for atomic regular timed markingsM(s,E,r̂).
We prove that those closures can be represented as regular timed markings.

We write ε1((E; r̂), w) and ε2((E; r̂), w) for the first and second components
of ε((E; r̂), w). Notice that ε2((E; r̂), w) does not depend on E (so that we may
denote it with ε2(r̂, w) in the sequel). In particular,

– ε2((E; r̂), w) = 7→0 if w ∈ U∗ × U0 is a sequence of consecutive transitions
ending with a resetting transition;

– ε2((E; r̂), w) = r̂∩
⋂
i<k êi if w = e1 . . . ek ∈ Uid

∗ is a sequence of consecutive
non-resetting transitions.

Letting Jr̂ = { 7→0, r̂} ∪ {ê | e ∈ Uid}, it follows that ε2((E; r̂), w) ∈ Jr̂. for
any (E; r̂) and any w. Thus ε(M) can be written as a finite union of atomic
timed markings.

Regularity. To prove regularity, we first introduce some more formalism:

– we let Ĝid = {ê | e ∈ Uid} and Ĝid = {ê | e ∈ Uid}. We thus have Jr̂ =

{ 7→0, r̂} ∪ Ĝid;

– for r̂ ∈ R̂≥0 and e ∈ U , we write Φ(r̂, e) for the interval r̂ ∩ ê ∩ ê;
– we define a mapping Jr̂ : U∗ → NJr̂×U0 that counts the number of occur-

rences of certain timing constraints at resetting transitions along a path:
precisely, it is defined inductively as follows (where d represents addition of
an element to a multiset):

Jr̂(⊥) = {0}Jr̂×U0

Jr̂(w · e) = Jr̂(w) d {(ε2(r̂, w), e)} if e ∈ U0

Jr̂(w · e) = Jr̂(w) if e ∈ Uid.

By induction on w, we prove:

Lemma 14. Let (E; r̂) be a timed set with E ⊆ R≤0, and w ∈ U∗. Then

ε1((E; r̂), w) = E −
∑

J=(ĝ,e)∈Jr̂

Jr̂(w)(J)× Φ(ĝ, e) ⊆ R≤0.
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Now, we fix an atomic regular timed marking M(s,E,r̂). For any state s′ of Aε,
we let L(s, s′) be the set of all sequences of consecutive transitions from s to s′

in Aε. Then

(M(s,E,r̂))
ε =

⊔
s′∈S

ε(M(s,E,r̂),L(s, s′)).

Hence we need to prove that ε1(M(s,E,r̂),L(s, s′)) is regular.
For any set L of sequences of consecutive transitions, and for any r̂ and r̂′

in R̂≥0, we let Lr̂′r̂ = {w ∈ L | r̂′ = ε2(r̂, w)}. One easily observes that for

any r̂ ∈ R̂≥0 and any L, it holds L =
⋃
r̂′∈Jr̂ L

r̂′

r̂ , so that

ε1(M(s,E,r̂),L(s, s′)) =
⋃
r̂′∈Jr̂

ε1(M(s,E,r̂), [L(s, s′)]r̂
′

r̂ ).

The following property entails that this set is a regular union of intervals:

Lemma 15. Let E be a regular union of intervals, r̂ and r̂′ be two elements
of R̂≥0, and L ⊆ L(Aε) be a regular language. Then ε1(M(s,E,r̂),Lr̂

′

r̂ ) is a regular
union of intervals.

5 Experimentations

In order to evaluate the possible improvement of our approach compared to the
diagnoser proposed in [26], we implemented and compared the performances of
both approaches. Sources can be downloaded at http://www.lsv.fr/~jaziri/
DOTA.zip

5.1 Comparison of the approaches

In the approach of [26], the set of possible current configurations is stored as a
marking. If an action l occurs after some delay d, the diagnoser computes the
set of all possible configurations reached after delay d (possibly following silent
transitions), and applies from the resulting markings the set of all available
transitions labelled l. This amounts to computing the functions Od and Ol at
each observation. There is also a timeout, which makes the diagnoser update the
marking (with Od) regularly if no action is observed. The computation of Od is
heavily used, and has to be performed very efficiently so that the diagnoser can
be used at runtime.

In our approach, we use timed markings to store sets of possible configura-
tions. Given a timed marking, when an action l is observed after some delay d,
we can easily compute the set of configurations reachable after delay d, and have
to apply Ol and recompute the ε-closure. Following [7], Ol can be performed as a
series of set operations on intervals. The ε-closure can be performed as a series of
subtractions between an interval and regular unions of intervals (see Lemma 14).
Those regular unions can be precomputed; while this may require exponential
time and space to compute and store, this makes the simulation of a delay tran-
sition very efficient.
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5.2 Implementation

In our experimentations, in order to only evaluate the benefits of the precom-
putation and of the use of ε-closures in our approach compared to that of [26],
we use the same data structure for both diagnosers. In particular, both diag-
nosers are implemented as automata over timed domains [7], where the timed
domain is the set of timed markings. The only difference lies in the functions
computing the action- and the delay transitions. As a consequence, both im-
plementations benefit from the data structure we chose for representing timed
intervals, which allows us to compute basic operations in linear time. Also, both
structures use the same reachability graphs for either computing the sets of
reachable configurations or the Parikh images.

Our implementation is written in Python3. One-clock timed automata and
both diagnosers are instances of an abstract class of automata over timed mark-
ings; timed markings are implemented in a library TILib. Simulations of those
automata are performed using an object called ATDRunner, which takes an au-
tomaton over timed markings and simulates its transitions according to the ac-
tions it observes on a given input channel. It may also write what it does on an
output channel. A channel is basically a way of communicating with ATDRunners.

In order to diagnose a given one-clock timed automaton, stored in an ob-
ject OTAutomata, we first generate a diagnoser object, either a DiagOTA or a
TripakisDOTA, depending of which version we want to use. Then we launch two
threads: one is an ATDRunner simulating the timed automaton, listening to some
channel object Input, and writing every non-silent action it performs on some
other channel object Comm. The other one is another ATDRunner simulating the
diagnoser and listening to the Comm channel.

In a DiagOTA object, which corresponds to our approach, we have already
precomputed the relevant timed intervals; action transitions are then made by
operations over timed markings, and delay transitions are encoded by increasing
a padding information on the timed markings, which is applied when performing
the next action transition. In such a simulation, we can thus keep track of which
states may have been reached, but also predict which states may be reached in
the future and the exact time before we can reach them.

In a TripakisDOTA object, which corresponds to the approach of [26], action
and delay transitions are simulated by computing all configurations reachable
through that action or delay, also allowing arbitrarily many silent transitions.
This does not allow for prediction.

5.3 Results

Table 3 reports on the performances of both implementations on a small set of
(randomly generated) examples. Those examples are given in Appendix B, and
are distributed with our prototype. In Table 3, we give the important character-
istics of each automaton (number of states and of silent transitions), the amount
of precomputation time used by our approach, and the average time (over 400
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Example2 Example3 Example4 Example6 Example8

#State/#Silent Trans 3/6 4/6 4/7 7/10 7/5
Precomputation Time 173.25s 0.38s 791.06s 11.01s 4.96s

Actions DiagOTA 0.014s 0.019s 0.029s 0.17s 0.15s
Actions TripakisDOTA 0.020s 0.078s 0.049s 0.26s 0.042

Ratio (actions) 0.73 0.25 0.59 0.64 3.71

Delays DiagOTA 0.000012s 0.0000011s 0.000011s 0.000011s 0.000012s
Delays TripakisDOTA 0.032s 0.057s 0.049s 0.30s 0.033s

Ratio (delays) 0.0004 0.0002 0.0002 0.00003 0.0004

Fig. 3. Bench for 5 examples over 400 runs with 10 to 20 actions

random runs) used in the two approaches to simulate action- and delay transi-
tions.

As could be expected, our approach outperforms the approach of [26] on
delay transitions by several orders of magnitude in all cases. The performances
of both approaches are comparable when simulating action transitions.

The precomputation phase of our approach is intrinsically very expensive.
In our examples, it takes from less than a second to more than 13 minutes, and
it remains to be understood which factors make this precomputation phase more
or less difficult. We may also refine our implementation of the computation of
Parikh images, which is heavily used in the precomputation phase.

6 Conclusion and future works

In this paper, we presented a novel approach to fault diagnosis for one-clock
timed automata; it builds on a kind of powerset construction for automata over
timed domains, using our new formalism of timed sets to represent the evo-
lution of the set of reachable configurations of the automaton. Our prototype
implementation shows the feasibility of our approach on small examples.

There remains space for improvements in many directions: first, our imple-
mentation can probably be made more efficient on the precomputation phase,
and at least we need to better understand why some very small examples are so
hard to handle.

A natural continuation of this work is an extension to n-clock timed au-
tomata. This is not immediate, as it requires a kind of timed zone, and an
adaptation of our operator ./. Another possible direction of research could tar-
get priced timed automata, with the aim of monitoring the cost of the execution
in the worst case.
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15. Sahika Genc and Stéphane Lafortune. Predictability of event occurrences in
partially-observed discrete-event systems. Automatica, 45(2):301–311, February
2009.

16



16. Thomas A. Henzinger and Joseph Sifakis. The embedded systems design challenge.
In Jayadev Misra, Tobias Nipkow, and Emil Sekerinski, editors, Proceedings of
the 14th International Symposium on Formal Methods (FM’06), volume 4085 of
Lecture Notes in Computer Science, pages 1–15. Springer-Verlag, August 2006.

17. Charles Antony Richard Hoare. An axiomatic basis for computer programming.
Communications of the ACM, 12(10):576–580, October 1969.
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A Appendix

A.1 Proof of Proposition 6

Proposition 6. Let E and E′ be regular unions of intervals, K be an interval,
and d ∈ Q. Then E ∪ E′, E, E + d and E −K are regular unions of intervals.

Proof. Write E = (I, J, p, q) and E′ = (I ′, J ′, p′, q′), so that

E = I ∪
+∞⋃
k=q

J − k · p E′ = I ′ ∪
+∞⋃
k=q′

J ′ − k′ · p′.

We can write p = a
b and p′ = a′

b′ , with a, b, a′ and b′ in N. Let

N = min{n ∈ N | n · b · a′ ≥ q and n · b′ · a ≥ q′}.

Then we can write

E =

I ∪ N ·b·a′−1⋃
k=q

J − k · p

 ∪ +∞⋃
k=N

b·a′−1⋃
r=0

J − r · p

− k · a · a′
 .

and

E′ =

I ′ ∪ N ·b′·a−1⋃
k=q′

J ′ − k · p′
 ∪ +∞⋃

k=N

b′·a−1⋃
r=0

J ′ − r · p′
− k · a · a′

 .
Since J ⊆ (−p; 0], we have

⋃b·a′−1
r=0 J − r · p ⊆ (−b · a′ · p; 0] = (a · a′; 0], and

similarly for J ′. Taking the union of the equalities above, we get an expression
of E ∪E′ under the form I ′′ ∪

⋃+∞
k=N (J ′′ − k · (a · a′), which proves that E ∪E′

is a regular union of intervals.

We now prove the result for E: again writing E = I ∪
⋃+∞
k=q J − k · p, thanks

to the constraints imposed on I and J , we have

E = ( 7→(−q · p) \ I) ∪
+∞⋃
k=q

((−p; 0] \ J)− k · p.

The proofs for E + d and E −K follow similar arguments. �

A.2 Proof of Lemma 9

Lemma 9. – If E ≤ F (in particular, if E ⊆ R≤0 and F ⊆ R≥0), then
E ./ F = E − F .

– if E > F , then E ./ F = ∅.
– If E and F are two intervals, then E ./ F is an interval.
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– IF E is a regular union of intervals and J is an interval, then E ./ F is a
regular union of intervals.

– If F ′ ⊆ R≥0, then (E ./ F ) ./ F ′ = (E ./ F )− F ′.
Proof. The first three claims are trivial from the definition of E ./ F . The fourth
claim follows from Prop. 6. Finally, the last claim is a consequence of the first
one (because E ./ F ⊆ R≤0). �

A.3 Proof of Lemma 12

Lemma 12. ε(M,w) ≡Mw for all w ∈ U∗ and all linear timed marking M .

Proof. For d ∈ R≥0 and s ∈ S, we have

Mw(d)(s) = {v ∈ R≥0 | ∃s′ ∈ S. ∃do ≤ d. ∃v′ ∈M(d0)(s′). (s′, v′)
d−d0−−−→w (s, v)}.

Hence clearly Mw(d)(s) ≡ (∅, 7→0) if s 6= tgt(w). When s = tgt(w), we have

Mw(d)(s) = {v ∈ R≥0 | ∃d0 ≤ d. ∃v′ ∈ M(d0)(src(w)). (s′, v′)
d−d0−−−→w (s, v)}.

By Lemma 10, this corresponds to ε(M,w)(s)(d). �

A.4 Proof of Lemma 14

Lemma 14. Let (E; r̂) be a timed set with E ⊆ R≤0, and w ∈ U∗. Then

ε1((E; r̂), w) = E −
∑

J=(ĝ,e)∈Jr̂

Jr̂(w)(J)× Φ(ĝ, e) ⊆ R≤0.

Proof. The proof is by induction on w. The result is straightforward for w = ⊥.
Now, assume the result holds for some w ∈ U∗, and consider w′ = w · e.

First, if e ∈ Uid, then ε1((E; r̂), w · e) = ε1((E; r̂), w) ∩ ê (by definition of ε).
Since ε1((E; r̂), w) ⊆ R≤0 ⊆ ê, we have ε1((E; r̂), w · e) = ε1((E; r̂), w). Since
Jr̂(w · e) = Jr̂(w) when e ∈ Uid, our result follows.

For e ∈ U0, we have

ε1((E; r̂), w · e) = ε1((E; r̂), w) ./ (ε2(r̂, w)) ∩ ê ∩ ê).

Since ε1((E; r̂), w) ⊆ R≤0 and r̂ ⊆ R≥0, Lemma 9 entails

ε1((E; r̂), w · e) = ε1((E; r̂), w)− ((ε2(r̂, w)) ∩ ê ∩ ê).

This precisely corresponds to the effect of adding {(ε2(r̂, e), e)} to the multiset
Jr̂(w). �

A.5 Proof of Lemma 15

Lemma 15. Let E be a regular union of intervals, r̂ and r̂′ be two elements
of R̂≥0, and L ⊆ L(Aε) be a regular language. Then ε1(M(s,E,r̂),Lr̂

′

r̂ ) is a regular
union of intervals.

Proof. The proof of this result is in two parts: we first express Lr̂′r̂ as the language

of a finite automaton, and then—by a tedious proof—express ε1(M(s,E,r̂),Lr̂
′

r̂ )
as a regular union of intervals.
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Finite automaton for Lr̂′r̂ . We assume that L is accepted by the automa-
ton B = (S, {s}, U, {s′}) obtained from Aε by imposing an initial state s and a
single accepting state s′; this is enough for our purpose, and is easily generalized
to any regular L ⊆ L(Aε). We decorate all states with elements of R̂≥0 in or-

der to derive a finite automaton accepting Lr̂′r̂ . More precisely, we consider the

automaton Br̂′r̂ = (S × Jr̂, (s, r̂), U ′, (s′, r̂′)) where

U ′ ={([q, ĝ], ê, ê, (ĝ, e, 7→0), 0, [q′, 7→0]) | e = (q, ê, ê, 0, ε, q′) ∈ U and ĝ ∩ ê 6= ∅}
∪ {([q, ĝ], ê, ê, (ĝ, e, ĝ′), id, [q′, ĝ′]) | e = (q, ê, ê, id, ε, q′) ∈ U and ĝ ∩ ê 6= ∅}.

This automaton accepts words in (R̂≥0×U × R̂≥0)∗. Writing πU : R̂≥0×U ×
R̂≥0 → U for the projection on the second element of this alphabet (and extend-

ing it to sequences in the natural way), it is easily observed that πU (L(Br̂′r̂ )) =

L(B)r̂
′

r̂ .

Defining ε1(M(s,E,r̂), [L(s, s′)]r̂
′

r̂ ) as a regular union of intervals. We now

focus on ε1(M(s,E,r̂), [L(s, s′)]r̂
′

r̂ ) = ε1((E, r̂), [L(s, s′)]r̂
′

r̂ ), which we write η for
the sake of readability.

For any ĝ ∈ Jr̂ = { 7→0, r̂} ∪ Ĝid and any ĝ′ ∈ Ĝid, we define

W id
ĝ,ĝ′ = {w = (ĝ1, e1, ĝ

′
1) · (ĝ2, e2, ĝ′2) · · · (ĝn, en, ĝ′n) | ĝn = ĝ and min

1≤i≤n
êi = ĝ′}.

We decompose [L(s, s′)]r̂
′

r̂ as the union of⋃
ĝ′∈Ĝid

[L(s, s′)]r̂
′

r̂ ∩W id
r̂′,ĝ′

(all runs that do not contain resetting transitions) and⋃
ĝ′∈Ĝid

⋃
(ĝ,e)∈Jr̂×U0

[L(s, s′)]r̂
′

r̂ ∩
[
W id
ĝ,ĝ′ × {(ĝ, e, 7→0)} × (Jr̂ × U × Jr̂)∗

]
where the right-hand side of the intersection contains all paths containing at least
one resetting transition labelled (ĝ, e, 7→0). Using this decomposition, we get

η =
⋃

ĝ′∈Ĝid

⋃
w∈[L(s,s′)]r̂′

r̂
∩W id

r̂′,ĝ′

ε1((E, r̂), πU (w)) ∪

⋃
ĝ′∈Ĝid

⋃
(ĝ,e)∈Jr̂×U0

⋃
w∈[L(s,s′)]r̂′

r̂
∩W id

r̂′,ĝ′×{(ĝ,e, 7→0)}×(Jr̂×U×Jr̂)
∗

ε1((E, r̂), πU (w))

In the first part, πU (w) contains only non-resetting transitions, so that we have
ε1((E, r̂), πU (w)) = E ∩ ĝ′. This is a finite union of regular intervals.

As for the second part, decomposing w ∈W id
r̂′,ĝ′×{(ĝ, e, 7→0)}×(Jr̂×U×Jr̂)∗

as u · (ĝ, e, 7→0) · v, we have

ε1((E, r̂), πU (w)) = ε1(ε(ε((E, r̂), πU (u)), e), πU (v)).
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Since πU (u) contains non-resetting transitions, we have ε((E, r̂), πU (u)) = E ∩
ĝ′ ⊆ R≤0, and since e is a resetting transition, we get

ε1((E, r̂), πU (w)) = ε1(((E ∩ ĝ′) ./ Φ(ĝ, e), 7→0), πU (v)).

Hence it remains to prove that for all ĝ′ ∈ Ĝid, the set

η′ =
⋃

(ĝ,e)∈Jr̂×U0

ε1

(
((E ∩ ĝ′) ./ Φ(ĝ, e), 7→0), πU (Q)

)
,

where Q = (W id
ĝ,ĝ′ × {(ĝ, e, 7→0)})\[L(s, s′)]r̂

′

r̂ is the left-quotient of [L(s, s′)]r̂
′

r̂ by

W id
ĝ,ĝ′ × {(ĝ, e, 7→0)}, is a regular union of intervals.
Write Ee,ĝ,ĝ′ = (E ∩ ĝ′) ./ Φ(ĝ, e) ⊆ R≤0. From Lemma 14, we derive

ε1((Ee,ĝ,ĝ′ , 7→0), πU (w)) = Ee,ĝ,ĝ′ −
∑

J∈Jr̂×U0

J 7→0(πU (w))(J)× Φ(J).

Hence

η′ =
⋃
w∈Q

Ee,ĝ,ĝ′ −
∑

J∈Jr̂×U0

J 7→0(πU (w))(J)× Φ(J)

= Ee,ĝ,ĝ′ −
⋃
w∈Q

∑
J∈Jr̂×U0

J 7→0(πU (w))(J)× Φ(J)

= Ee,ĝ,ĝ′ −
⋃

P∈p(Q)

∑
(n̂,e)∈Jr̂×U0

∑
n̂′∈Jr̂

P (n̂, e, n̂′)× Φ(n̂, e),

where p(Q) is the set of Parikh vectors of Q (i.e., for each w ∈ Q, p(w) is the
multiset of states visited along w, and p(Q) is the set of all those multisets).
The latter equality is obtained by observing that J 7→0(πU (w))(n̂, e) is the number

of occurrences of a state of the form (n̂, e, n̂′) (for some n̂′) along w.
Now, the set Q = (W id

ĝ,ĝ′ × {(ĝ, e, 7→0)})\[L(s, s′)]r̂
′

r̂ is regular, so that by

Parikh’s theorem, p(Q) is a semi-linear set; it can be written p(Q) =
⋃c
i=1(pi0 +∑di

j=1 pij × N), where pij ∈ NJr̂×U0×Jr̂ for all 1 ≤ i ≤ c and 0 ≤ j ≤ di. Then:

η′ = Ee,ĝ,ĝ′ −
c⋃
i=1

( ∑
(n̂,e)∈Jr̂×U0

∑
n̂′∈Jr̂

pi0(n̂, e, n̂′)× Φ(n̂, e) +

⋃
(nj)1≤j≤di

∈Ndi

di∑
k=1

∑
(n̂,e)∈Jr̂×U0

∑
n̂′∈Jr̂

nk · pij(n̂, e, n̂′)× Φ(n̂, e)
)

We write Γe,ĝ,ĝ′ for the second term, so that η′ = Ee,ĝ,ĝ′ − Γe,ĝ,ĝ′ . For 1 ≤ i ≤ c
and 0 ≤ j ≤ di, we let

Ki
j =

∑
(n̂,e)∈Jr̂×U0

∑
n̂′∈Jr̂

pij(n̂, e, n̂
′)× Φ(n̂, e).

We now consider two cases:
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– first assume that for some i0 and j0 and some (n̂0, e0) ∈ Jr̂ × U0, it holds
pi0j0(n̂0, e0, 7→0) > 0 and Φ(n̂0, e0) has positive length. Let Ln = Ki0

0 +n ·Ki0
j0

for any n ∈ N. Then clearly Ln ⊆ Γe,ĝ,ĝ′ for all n. Moreover, by definition

of i0 and j0, the length of Ki0
j0

is positive, so that the length of n ·Ki0
j0

tends
to infinity. It follows that for some α ∈ R≥0, 7→α ⊆

⋃
n∈N Ln ⊆ Γe,ĝ,ĝ′ .

Then Γe,ĝ,ĝ′ ∩

7→

α ⊆ [0;α], and it has finite granularity, so that it is a finite
union of intervals.

– We now assume that for all i and j and all (n̂, e) ∈ Jr̂×U0, either pij(n̂, e, 7→0) =

0, or Φ(n̂, e) has length 0. All Then for all 1 ≤ i ≤ n and 1 ≤ j ≤ di, Ki
j is a

finite union of punctual intervals, so that η′ is a regular union of intervals.
�

B Examples definition

B.1 Example2

# States. Size : 3

q0;q1;q2

# Transitions

q0;[0,2];0;q0;a

q0;[1,1];0;q1;a

q1;[1,2];0;q1;a

q1;[2,2];0;q2;a

q2;[0,inf[;0;q0;a

q0;]0,2];0;q0;b

q0;[0,inf[;0;q1;b

q1;]1,2];0;q0;b

q1;[0,2[;0;q1;b

q2;[0,0];0;q1;b

q2;]0,1];0;q2;b

q0;]2,inf[;0;q0;e

q0;[1,2[;0;q1;e

q0;[0,2[;1;q2;e

q1;]0,2];0;q0;e

q1;]2,inf[;0;q1;e

q2;[1,1];0;q0;e

B.2 Example3

# States. Size : 4

q0;q1;q2;q3

# Transitions

q0;]1,2];0;q1;a

q0;[2,2];1;q3;a

q1;[0,1];0;q1;a
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q2;]1,2[;1;q1;a

q2;]0,2];0;q2;a

q2;[1,2];0;q3;a

q3;[1,1];1;q2;a

q0;[2,inf[;0;q0;b

q0;[2,2];1;q2;b

q2;[0,0];0;q3;b

q3;]1,2];1;q0;b

q3;]0,inf[;1;q1;b

q3;[0,0];1;q3;b

q0;[0,inf[;1;q0;e

q0;[2,inf[;1;q1;e

q0;[0,1[;1;q3;e

q1;]0,2];1;q1;e

q1;]0,inf[;1;q2;e

q2;[1,inf[;1;q0;e

B.3 Example4

# States. Size : 4

q0;q1;q2;q3

# Transitions

q0;[0,2[;0;q0;a

q0;]0,2[;1;q1;a

q0;]1,inf[;1;q2;a

q0;]1,2[;0;q3;a

q1;]1,2];0;q0;a

q1;[0,1];1;q1;a

q1;[0,2[;0;q2;a

q1;]0,1[;0;q3;a

q2;[1,inf[;1;q0;a

q2;[1,2[;0;q3;a

q3;[2,inf[;0;q0;a

q3;[1,2];0;q2;a

q0;]1,2];1;q1;b

q1;[0,1[;1;q2;b

q1;[0,2];0;q3;b

q2;[0,0];1;q0;b

q2;[0,0];0;q2;b

q3;[0,2[;1;q0;b

q3;]1,2];1;q2;b

q3;[0,2];1;q3;b

q0;]0,inf[;1;q0;e

q0;]0,2];1;q1;e

q0;[1,1];0;q2;e

q0;]2,inf[;0;q3;e
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q1;[0,inf[;1;q0;e

q1;[0,2[;0;q1;e

q2;[0,inf[;0;q0;e

B.4 Example6

# States. Size : 7

q0;q1;q2;q3;q4;q5;q6

# Transitions

q0;]0,1[;1;q0;a

q0;]0,2];1;q4;a

q0;[2,2];1;q6;a

q1;[0,0];1;q0;a

q1;[1,2];0;q4;a

q1;[0,0];0;q5;a

q2;[1,2];1;q1;a

q2;[0,3[;0;q2;a

q2;]0,2[;0;q5;a

q3;[0,inf[;1;q0;a

q3;]0,3];1;q4;a

q4;[3,3];1;q1;a

q4;]1,2];0;q3;a

q4;[0,2[;0;q4;a

q4;[2,3];0;q6;a

q5;]0,2[;0;q0;a

q5;]1,3[;0;q3;a

q5;[0,3[;1;q6;a

q6;]1,2[;1;q0;a

q6;[3,inf[;0;q1;a

q6;[1,2];1;q2;a

q6;]0,3[;0;q3;a

q6;[3,3];1;q5;a

q0;]2,inf[;1;q3;b

q0;]0,2[;0;q4;b

q0;[0,2];1;q5;b

q1;[1,3];0;q0;b

q1;[3,inf[;0;q2;b

q1;[0,1];1;q6;b

q2;[0,1[;0;q0;b

q2;[2,3[;0;q1;b

q3;[0,2];0;q3;b

q3;]0,2[;1;q4;b

q3;]2,3[;1;q6;b

q4;[3,inf[;1;q2;b

q4;[0,3];1;q6;b

q5;[0,0];0;q0;b
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q5;[1,1];1;q2;b

q5;]1,3[;1;q4;b

q5;[3,3];1;q6;b

q6;[1,3];1;q1;b

q6;]1,2];1;q3;b

q0;[1,inf[;1;q0;e

q0;[0,0];1;q2;e

q0;[1,2];0;q4;e

q1;]0,3];1;q0;e

q1;]2,3[;0;q1;e

B.5 Example8

# States. Size : 7

q0;q1;q2;q3;q4;q5;q6

# Transitions

q0;[2,2];0;q0;a

q0;[0,3[;1;q1;a

q0;[2,2];1;q3;a

q0;[1,3];1;q5;a

q1;]0,3];1;q0;a

q1;]0,2[;0;q5;a

q1;]2,3];1;q6;a

q2;]3,inf[;1;q1;a

q2;[2,2];1;q2;a

q2;]0,3[;1;q4;a

q2;]1,3[;1;q5;a

q3;]1,3[;0;q1;a

q3;]1,2[;0;q3;a

q4;[1,3];0;q0;a

q4;[0,3];0;q2;a

q4;[0,3[;1;q3;a

q4;]2,3];0;q4;a

q4;[0,3[;0;q5;a

q4;[2,inf[;0;q6;a

q5;[2,inf[;1;q0;a

q5;[0,0];1;q1;a

q5;]1,2[;1;q2;a

q5;]0,1];1;q5;a

q6;]1,2[;1;q1;a

q6;]1,2[;1;q3;a

q6;[0,1];0;q5;a

q6;]2,3[;0;q6;a

q0;[3,3];1;q2;b

q0;]2,3[;0;q4;b

q0;]2,3[;0;q5;b
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q0;]2,3];1;q6;b

q1;]1,inf[;1;q4;b

q1;]0,2];0;q6;b

q2;[1,inf[;1;q0;b

q2;]3,inf[;0;q1;b

q2;[1,3[;1;q4;b

q2;[0,3[;0;q5;b

q3;[1,3[;1;q0;b

q3;]3,inf[;1;q2;b

q3;[2,inf[;1;q4;b

q4;]0,2[;1;q1;b

q4;]0,inf[;1;q2;b

q4;]0,2[;1;q3;b

q4;[1,3[;1;q4;b

q4;]3,inf[;0;q5;b

q5;[0,2];1;q1;b

q6;]1,3];1;q3;b

q6;[1,2[;1;q4;b

q6;]1,2];0;q5;b

q6;[0,1];1;q6;b

q0;[0,3[;1;q1;e

q0;]1,3];1;q3;e

q0;]0,3[;0;q5;e

q0;]3,inf[;1;q6;e

q1;]1,2[;0;q0;e

q1;]2,3];0;q2;e

q1;[1,2[;1;q3;e

q1;[0,1[;0;q5;e

q1;]0,3];1;q6;e

q2;[1,inf[;1;q0;e
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