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IRAMIS, CEA-Saclay, Université Paris-Saclay, 91191 Gif-sur-Yvette, France

Sunghun Park and A. Levy Yeyati
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We have performed microwave spectroscopy of Andreev states in superconducting weak links
tailored in an InAs-Al (core-full shell) epitaxially-grown nanowire. The spectra present distinctive
features, with bundles of four lines crossing when the superconducting phase difference across the
weak link is 0 or π. We interpret these as arising from zero-field spin-split Andreev states. A
simple analytical model, which takes into account the Rashba spin-orbit interaction in a nanowire
containing several conduction channels, explains these features and their evolution with magnetic
field. Our results show that the spin degree of freedom is addressable in Josephson junctions, and
constitute a first step towards its manipulation.

Introduction. The Josephson supercurrent that flows
through a weak link between two superconductors is a
direct and generic manifestation of the coherence of the
many-body superconducting state. The link can be a
thin insulating barrier, a small piece of normal metal,
a constriction or any other type of coherent conductor,
but regardless of its specific nature the supercurrent is a
periodic function of the phase difference δ between the
electrodes [1]. However, the exact function is determined
by the geometry and material properties of the weak link.
A unifying microscopic description of the effect has been
achieved in terms of the spectrum of discrete quasipar-
ticle states that form at the weak link: the Andreev
bound states (ABS) [2–4]. The electrodynamics of an
arbitrary Josephson weak link in a circuit is not only
governed by the phase difference but depends also on the
occupation of these states. Spectroscopy experiments on
carbon nanotubes [5], atomic contacts [6–8] and semi-
conducting nanowires [9–11] have clearly revealed these
fermionic states, each of which can be occupied at most
by two quasiparticles. The role of spin in these excita-
tions is a topical issue in the rapidly growing fields of
hybrid superconducting devices [12, 13] and of topologi-
cal superconductivity [14–17]. It has been predicted that
for finite length weak links the combination of a phase
difference, which breaks time-reversal symmetry, and of
spin-orbit coupling, which breaks spin-rotation symme-
try, is enough to lift the spin degeneracy, giving therefore
rise to spin-dependent Josephson supercurrents [18–21].
Here we report the first observation of transitions be-
tween zero-field spin-split ABS.

ABSs and spin-orbit interaction. Andreev bound

states are formed from the coherent Andreev reflections
that quasiparticles undergo at both ends of a weak link.
Quasiparticles acquire a phase at each of these Andreev
reflections and while propagating along the weak link of
length L. Therefore, the ABS energies depends on δ, on
the transmission probabilities for electrons through the
weak link and on the ratio λ = L/ξ where ξ is the super-
conducting coherence length. Assuming ballistic propa-
gation, ξ = ~vF /∆ is given in terms of the velocity vF
of quasiparticles at the Fermi level within the weak link
and of the energy gap ∆ of the superconducting elec-
trodes. In a short junction, defined by L� ξ, each con-
duction channel of the weak link, with transmission prob-
ability τ, gives rise to a single spin-degenerate Andreev

level at energy EA = ∆
√

1− τ sin2 (δ/2) [2–4]. This sim-

ple limit has been probed in experiments on aluminum
superconducting atomic contacts, using three different
methods: Josephson spectroscopy [6], switching current
spectroscopy [7] and microwave spectroscopy in a circuit-
QED setup [8]. The spectrum of Andreev states in a weak
link with a sizable spin-orbit coupling has already been
probed in two experiments on InAs nanowires [10, 11].
Both experiments were performed in the limit L . ξ.
In Ref. [11], the zero field spectrum was probed using a
circuit-QED setup and no effect of spin-orbit interaction
was reported. In Ref. [10], where spectra at finite field
were obtained by Josephson spectroscopy, spin-orbit in-
teraction enters in the interpretation of the spectra when
the Zeeman energy is comparable to the superconducting
gap [22].

In a one-dimensional weak link, spin-orbit interaction



2

1.0

0.5

0.0

E
A

/
∆

2.01.00.0

δ / π

𝜏

𝑘𝑥

AR AR

(a)

m1 m2

1

2

1

2

E

↓

↑

↑

↓

(b)

(c)

L 𝑥
𝑦

𝛿/2−𝛿/2

-∆

∆

AR AR

µ

(f)(e)

even odd

(d)

even

odd

↑ ↓

↑↓

↓

↓

↓

↓

1.0

0.5

0.0

E
ex

c
/∆

2.01.00.0

δ / π

FIG. 1. Effect of the Rashba spin-orbit coupling on Andreev levels. (a) Nanowire of length L forming a weak link between
superconductors with phase difference δ. Magenta star symbolizes a scatterer. (b) Dispersion relation for a nanowire considering
just two transverse subbands in the presence of Rashba spin-orbit (RSO) coupling. A first effect of RSO is to spin-split the
parabolic dispersion relations along the kx axis (grey solid lines labelled 1↑↓ and 2↑↓ with ↑ and ↓ indicating the spin in
the y-direction). In addition, RSO couples states of different subbands and opposite spins leading to avoided crossings. The
resulting bands (black solid lines) have an energy-dependent spin texture. The Fermi level µ is such that only the lowest energy
bands m1 and m2 are occupied. The density of states of the superconducting electrodes is sketched at both ends of the wire.
Andreev reflection (AR) on the superconductors couples electrons (full circles) with holes (open circles) with opposite spin and
opposite velocities, i.e. time-reversed partners. This is illustrated for right-moving electrons which have different velocities:
a fast electron (in black) from m2 and a slow electron (light blue) from m1. (c) Andreev reflections at both ends lead to the
formation of Andreev bound states (ABS), which in the absence of normal scattering form two distinct families. The spin of
these electrons, schematized with red arrows, is pointing in a different direction as a consequence of the spin texture of the
bands. (d) Energy of ABS. Thin black and light blue lines correspond to ballistic case. In (c) and (d), thin solid lines correspond
to right-moving electrons and left-moving holes, and dashed lines the opposite. Backscattering in the nanowire (indicated with
magenta arrows in (c)) couples right- and left-moving electrons (holes) within each band m1 or m2, leading to the lifting of
degeneracy at the crossings highlighted with magenta circles in (d). The resulting Andreev levels (black solid lines) group in
two manifolds. (e) Energy spectrum at a particular phase difference indicated with a black arrow in the bottom axis of (d),
and possible microwave-induced transitions. The pair of red arrows correspond to an even transition in which the system is
initially in the ground state and two quasiparticles are created in the first ABS manifold. The green arrows correspond to
odd transitions where a trapped quasiparticle is promoted from the first to the second ABS manifold. (f) Expected excitation
spectrum as a function of the phase.

does not break the spin degeneracy of ABSs since the
spatial phase acquired by the electron and the Andreev-
reflected hole is the same for both spin directions [23, 24].
This is no longer the case in presence of a second trans-
verse subband, even if just the lowest one is actually oc-
cupied [24–28]. In Fig. 1 we consider a weak link de-
scribed by two subbands and show the effect of a strong
spin-orbit coupling. Rashba spin-orbit interaction lifts
the spin degeneracy and couples the subbands, leading
to four spinful bands (Fig. 1(b)). We focus on a situation
in which the Fermi level is such that only the two lowest
ones (m1 and m2 in the figure) are occupied. Quasiparti-
cles at the Fermi level have different velocities and differ-
ent spin textures in each band. Imposing that the phase
accumulated along the closed paths depicted in Fig. 1(c)
is a multiple of 2π, one obtains the ABSs represented by
the thin lines in Fig. 1(d). In presence of backscattering
in the nanowire, due either to impurities or to the spa-
tial variation of the electrostatic potential along the wire,
electrons (as well as holes) travelling in opposite direc-
tions are coupled, opening gaps at the points indicated
by the open circles in Fig. 1(d). The resulting ABSs

group in manifolds of spin-split states represented by the
thick black lines. In the absence of a magnetic field, the
states remain degenerate at δ = 0 and π, as expected
by time-reversal symmetry. Figure 1(e) shows parity-
conserving transitions that can be induced by absorption
of a microwave photon, at a given phase. The red arrows
correspond to an even transition in which the system is
initially in the ground state and two quasiparticles are
created in the first ABS manifold. The green arrows cor-
respond to odd transitions where a trapped quasiparticle
[29] occupying the first ABS manifold is excited to the
second one [24, 30]. The corresponding transition ener-
gies in the absorption spectrum for both the even and
odd cases are shown in Fig. 1(f), as a function of the
phase difference. The even transition does not carry in-
formation on the spin structure. On the contrary, the
peculiar feature formed by the possible odd transitions,
as a bundle of four distinct lines all crossing at δ = 0 and
δ = π, is a direct signature of the spin splitting of the
states.

Figure 2 shows a spectrum measured on an InAs weak
link with aluminum electrodes. The plot shows at which
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FIG. 2. Microwave excitation spectrum measured at a gate
voltage Vg = −0.89 V. The grey scale represents the frequency
change f − f0 of a resonator coupled to the weak link when a
microwave excitation at frequency f1 is applied, as a function
of the phase difference δ across the weak link. In the right
half of the figure, some transition lines are highlighted. Red
line corresponds to an even transition, green lines are odd
transitions.

frequency f1 microwave photons are absorbed, as a func-
tion of the phase difference δ across the weak link (see
description of the experiment below). This is a very rich
spectrum, but here we point two salient features high-
lighted with color lines on the right half side of the fig-
ure. The red line corresponds to an even Andreev tran-
sition, with extrema at δ = 0 and δ = π. The frequency
f1(δ = 0) = 26.5 GHz is much smaller than twice the
gap of aluminum 2∆/h = 88 GHz, as expected for a
junction longer than the coherence length. To the best
of our knowledge, this is the first observation of a dis-
crete Andreev spectrum in the long-junction limit. The
observation of the bundle of lines (in green) with cross-
ings at δ = 0 and δ = π that clearly correspond to the
odd transitions shown in Fig. 1(f) is the central result of
this work.

Experimental setup. The measurements are obtained
using the circuit-QED setup shown in Fig. 3(d), and per-
formed at ∼ 40 mK in a pulse-tube dilution refrigerator.
The superconducting weak link was obtained by etching
away, over a 370-nm-long section, the 25-nm-thick alu-
minum shell that fully covers a 140-nm-diameter InAs
nanowire [31, 32] (see Figs. 3(a) and (b)). A side-gate
allows tuning the charge carrier density and the electro-
static potential in the nanowire and therefore the An-
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FIG. 3. Experimental setup. (a) False-color scanning electron
microscope image of the InAs-Al core-shell nanowire. The
Al shell (grey) was removed over 370 nm to form the weak
link between the superconducting electrodes. A close-by side
electrode (Au, yellow) is used to gate the InAs exposed region
(green). (b),(c) The nanowire is connected to Al leads that
form a loop. This loop is located close to the shorted end
of a coplanar wave guide (CPW) resonator. (d) The CPW
resonator is probed by sending through a bus line a continuous
microwave tone at its resonant frequency f0 = 3.26 GHz and
demodulating the transmitted signal, yielding quadratures I
and Q. Microwaves inducing Andreev transitions are applied
through the side gate (frequency f1) using a bias tee, the DC
port being used to apply a DC voltage Vg.

dreev spectra [10]. The weak link is part of an aluminum
loop of area S ∼ 103 µm2, which has a connection to
ground to define a reference for the gate voltage (see
Fig. 3(c)). The phase δ across the weak link is imposed by
a magnetic field Bz perpendicular to the sample plane:
δ = BzS/ϕ0, with ϕ0 = ~/2e the reduced flux quan-
tum. Two additional coils are used to apply a magnetic
field in the plane of the sample. The loop is inductively
coupled to the shorted end of a λ/4 microwave resonator
made out of Nb, with resonance frequency f0 ≈ 3.26 GHz
and internal quality factor Qint ≈ 106. A continuous sig-
nal at frequency f0 is sent through a coplanar transmis-
sion line coupled to the resonator (coupling quality factor
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FIG. 4. Excitation spectra at Vg = 0.5 V. (a) Large scale spectrum at zero magnetic field. (b) Zoom on the same data, with
fits (see text). (c) Dependence of the spectrum with the amplitude B of an in-plane magnetic field applied at an angle of −45◦

with respect to the nanowire axis. Green lines are fits (see text).

Qc ≈ 1.7× 105), and the two quadratures I and Q of the
transmitted signal are measured using homodyne detec-
tion (see Fig. 3(d)). Andreev excitations in the weak
link are induced by a microwave signal of frequency f1
applied on the side gate. The corresponding microwave
source is chopped at 3.3 kHz, and the response in I and
Q is detected using two lock-ins, with an integration time
of 0.1 s. The fact that odd transitions are observed (see
Fig. 2) means that during part of the measurement time
Andreev states are occupied by a single quasiparticle.
This is in agreement with previous experiments, in which
the fluctuation rates for the occupation of Andreev states
by out-of-equilibrium quasiparticles were found to be in
the 10 ms-1 range [8, 11, 29]. Note that in contrast to an
excitation that couples to the phase across the contact
[8, 22, 24], exciting through the gate allows transitions
away from δ = π and at frequencies very far detuned
from that of the resonator.

Spectroscopy at zero magnetic field. Figure 4(a)
presents another spectrum taken at zero magnetic field
(apart from the tiny perpendicular field Bz < 5 µT
required for the phase biasing of the weak link), at
Vg = 0.5 V. In comparison with the spectrum in Fig. 2,
even transitions are hardly visible in Fig. 4. Bundles of
lines corresponding to odd transitions have crossings at
7.1, 14.0 and 22.4 GHz at δ = 0 and 9, 21.5 and 26.0 GHz
at δ = π. Here, as in Fig. 2, replica of transition lines
shifted by f0 are also visible. They correspond to transi-

tions involving the absorption of a photon from the res-
onator. We focus on the bundle of lines between 13 and
23 GHz for which the effect of a magnetic field B was also
explored. Green lines in Fig. 4(b) are fits of the data at
B = 0 with a simple model that accounts for two bands
with different Fermi velocities v1 and v2, and the pres-
ence of a single scatterer in the wire (see Appendix). The
model parameters are λj=1,2 = L∆/(~vj) and the posi-
tion x0 ∈ [−L/2, L/2] of the scatterer of transmission τ .
ABSs are found at energies E = ε∆, with ε solution of
the transcendental equation:

τ cos ((λ1 − λ2)ε∓ δ) + (1− τ) cos((λ1 + λ2)εxr) =

cos(2 arccos ε− (λ1 + λ2)ε) (1)

where xr = 2x0/L. The fit in Fig. 4(b) corresponds to
λ1 = 1.3, λ2 = 2.3, τ = 0.295 and xr = 0.525 (we take
∆ = 182µeV= h × 44 GHz for the gap of Al). These
values can be related to microscopic parameters, in par-
ticular to the intensity α of the Rashba spin-orbit inter-
action entering in the Hamiltonian of the system as HR =
−α(kxσy − kyσx) (with σx,y Pauli matrices acting in the
spin) [24]. Assuming a parabolic transverse confinement
potential, an effective wire diameter of W = 140 nm, and
an effective junction length of L = 370 nm, the values
of λ1,2 are obtained for µ = 422µeV (measured from
the bottom of the band) and α = 38 meV nm, a value
consistent with previous estimations [34, 35]. However,
we stress that this estimation is model-dependent: very
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similar fits of the data can be obtained using a double-
barrier model (with scattering barriers located at the left
(x = −L/2) and right (x = L/2) edges of the wire) with
λ1 = 1.1 and λ2 = 1.9, leading to α = 32 meV nm. For
both models, we get only two manifolds of Andreev levels
in the spectrum, and only these four odd transitions are
expected in this frequency window (transitions within a
manifold are all below 3.5 GHz). The other bundles of
transitions are attributed to other conduction channels:
although we considered till now only one occupied trans-
verse subband, the same effect of spin-dependent veloc-
ities is found if several subbands cross the Fermi level.
A more elaborate model, together with a realistic mod-
elling of the bands of the nanowire, is required to treat
this situation and obtain a quantitative fit of the whole
spectra.

Spin character of ABS. While the splitting of the
ABSs and the associated transitions in the absence of
a Zeeman field reveals the difference in the Fermi veloci-
ties v1 and v2, arising from the spin-orbit coupling in the
multi-channel wire, it does not shine a light on the ABSs
spin structure. This information can be inferred from the
behavior of the bound states under a finite magnetic field,
and in particular as a function of the orientation of the
field with respect to the nanowire axis [24]. Figure 4(c)
shows the spectrum in presence of an in-plane magnetic
field with amplitudes B = 0, 2.6 and 4.4 mT applied at
an angle of −45◦ with respect to the wire axis. The sym-
metry around δ = 0 and δ = π is lost. This is accounted
for by an extension of the single-barrier model at finite
magnetic field (green lines) assuming a g-factor g = 12
(see Appendix).

The specific effects of a parallel and of a perpendicular
magnetic field on the ABS are shown in Fig. 5. When the
field is perpendicular to the wire (B ⊥ x), the ABS spec-
trum becomes asymmetric (this is related to the physics
of ϕ0 junctions [26]), as observed in Fig. 5(b,d). The field
is directly acting in the quantization direction of the spin-
split transverse subbands (gray parabolas in Fig. 1(b))
from which the ABS are constructed, leading to Zeeman
shifts of the energies. Green lines are the result from the
theory using the same parameters as in Fig. 4. When the
field is along the wire axis B//x, and thus perpendicular
to the spin quantization direction, it mixes the spin tex-
tures and lifts partly the degeneracies at δ = 0 and δ = π
(see Fig. 6 in Appendix). The spectrum of ABS is then
modified, but remains symmetric [36], around δ = 0 and
π, see Fig. 5(a,c).

Concluding remarks. The results reported here show
that the quasiparticle spin can be a relevant degree of
freedom in Josephson weak links, even in the absence of
a magnetic field. This work leaves several open ques-
tions. Would a more realistic model allow for a precise
characterization of spin-orbit interaction in the nanowire
from the measured spectra? How to understand the cou-
pling between the microwave photons and the ABS when
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FIG. 5. Effect of an in-plane magnetic field on the ABS excita-
tion spectrum around δ = 0. The Andreev states correspond
to the same gate voltage as in Fig. 4. Field is applied parallel
(a,c) or perpendicular (b,d) to the wire. Green lines are the
result from the theory (see text).

the excitation is induced through electric field, as done
here, instead of phase modulation [24, 30, 38]? In par-
ticular, what are the selection rules? Are transitions be-
tween ABS belonging to the same manifold allowed? Can
one observe even transitions leading to states with quasi-
particles in different manifolds? What determines the
signal amplitude? Independently of the answer to these
questions, the observation of spin-resolved transitions be-
tween ABSs is a first step towards the manipulation of
the spin of a single superconducting quasiparticle [18, 24].
It raises the question whether the spin coherence time of
a localized quasiparticle is different from that of a prop-
agating one [41]. Finally, we think that the experimen-
tal strategy used here could allow probing a topological
phase with Majorana bound states at larger magnetic
fields [30].
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Appendix: Details on the theoretical model and the fitting parameters

The nanowire is described by 4 transverse subbands denoted by nσ, with n = 1, 2 and σ =↑, ↓, arising from a
confining harmonic potential in the transverse direction (gray parabolas in Fig. 1(b)) under the effect of Rashba spin-
orbit coupling with intensity α. The energy dispersion relations of the resulting lowest subbands (black lines labelled
m1 and m2 in Fig. 1(b)) are

Es(kx) =
~2k2x
2m∗

+
E⊥1 + E⊥2

2
−

√(
E⊥1 − E⊥2

2
− sαkx

)2

+ η2, (2)

where s = −1 corresponds to m1 and s = +1 to m2, and E⊥n = 4~2n/(m∗W 2) where W is the effective diameter of
the nanowire and m∗ is the effective mass. η =

√
2α/W is the strength of the subband mixing due to the Rashba

spin-orbit coupling. Particle backscattering within the nanowire is accounted for by either a single delta-like potential
barrier located at some arbitrary position x0 or by potential barriers localized at both ends (x = ±L/2).

The linearized Bogoliubov-de Gennes equation around the chemical potential µ is(
H0 +Hb ∆(x)eiδ(x)

∆(x)e−iδ(x) −H0 −Hb

)
Ψ(x) = EAΨ(x) (3)

with the basis Ψ(x) = (ψe+,R(x), ψe+,L(x), ψe−,R(x), ψe−,L(x), ψh+,R(x), ψh+,L(x), ψh−,R(x), ψh−,L(x)), where R(L) refers to
the right-moving (left-moving) electron (e) or hole (h) in the bands m1(−), m2(+). Here H0 is the Hamiltonian for
electrons in the nanowire

H0 =


−i~v1∂x − ~v1kF1 0 0 0

0 i~v2∂x − ~v2kF2 0 0
0 0 −i~v2∂x − ~v2kF2 0
0 0 0 i~v1∂x − ~v1kF1

 , (4)

where vj=1,2 are the Fermi velocities given by

vj =
~kFj
m∗

+ (−1)j
α
(
E⊥1 /2− (−1)jαkFj

)√(
E⊥1 /2− (−1)jαkFj

)2
+ η2

, (5)

and kFj are the Fermi wave vectors satisfying Es(kFj) = µ. The potential scattering term Hb is modeled as

Hb = Ub(x)


1 cos[(θ1 − θ2)/2] 0 0

cos[(θ1 − θ2)/2] 1 0 0
0 0 1 cos[(θ1 − θ2)/2]
0 0 cos[(θ1 − θ2)/2] 1

 , (6)

where

Ub(x) =

{
U0δ(x− x0) for a single barrier at x = x0

ULδ(x+ L/2) + URδ(x− L/2) for barriers at x = −L/2 and x = L/2,
(7)

and θj=1,2 = arccos[(−1)j(~kFj
/m∗ − vj)/α] characterize the spin orientations of the modified subbands. The super-

conducting order parameter ∆(x)eiδ(x) in Eq. (3) is given by ∆e−iδ/2 at x < −L/2, ∆eiδ/2 at x > L/2, and zero
otherwise, where δ is the superconducting phase difference.

Ballistic regime. In the absence of particle backscattering, the phase accumulated in the Andreev reflection
processes at x = −L/2 and x = L/2, as illustrated in Fig. 1(c), leads to the following transcendental equation for the
energy ε = EA/∆ of the ABSs as a function of δ :

sin(ελ1 − sδ/2− arccos ε) sin(ελ2 + sδ/2− arccos ε) = 0, (8)
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where λj=1,2 = L∆/(~vj). For ε� 1, there are two sets of solutions given by{
ε↑(δ) = 1

1+λ1

[
δ
2 +

(
l + 1

2

)
π
]

ε↓(δ) = 1
1+λ1

[
− δ2 +

(
l′ + 1

2

)
π
] ,{

ε↙(δ) = 1
1+λ2

[
δ
2 +

(
l + 1

2

)
π
]

ε↗(δ) = 1
1+λ2

[
− δ2 +

(
l′ + 1

2

)
π
] ,

with integers l and l′. The ballistic ABSs are represented by the thin lines (black and light-blue) in Fig. 1(d).
Single barrier model. In this case, the effect of the barrier can be taken into account as an additional boundary

condition at x = x0,

Ψ(x0 + 0+) =


M12 0 0 0

0 M21 0 0
0 0 M12 0
0 0 0 M21

Ψ(x0 − 0+), (9)

where 0+ is a positive infinitesimal and Mij is the 2× 2 matrix given by

Mij =
1

t′

 tt′ − rr′
√
vj
vi
r′eiϕ

−
√
vi
vj
re−iϕ 1

 (10)

with ϕ = ((kF1 + kF2) + (λ1 + λ2)ε/L)x0. The reflection and transmission coefficients are determined by

te−iua = t′eiua =

(
cos d+ ius

sin d

d

)−1
,

re−iϕ = r′eiϕ = −i
√
u1u2

sin d

d
cos

(
θ1 − θ2

2

)√
tt′,

d =
1

2

√
u21 + u22 − 2u1u2 cos(θ1 − θ2), (11)

where v0 = ~v1v2/U0, uj = vj/v0, us = (u1 + u2)/2, and ua = (u1 − u2)/2. From the continuity conditions at
x = ±L/2 and Eq. (9) we find the transcendental equation (1) where τ = |t|2.

Double barrier model. In this case, there are two boundary conditions similar as Eq. (9) at the NS interfaces,
which results in the transcendental equation

sin(ε̃1 − arccos ε) sin(ε̃2 − arccos ε) =(2− τL − τR) sin(ε̃1) sin(ε̃2)

− (1− τL)(1− τR) sin(ε̃1 + arccos ε) sin(ε̃2 + arccos ε)

− 2
√

(1− τL)(1− τR) cos(ϕtot)(1− ε2), (12)

where ε̃j = ελj+(−1)jsδ/2, τL,R are the transmission probabilities at x = ∓L/2, θν are the scattering phases acquired
at the interfaces (ν ≡ L,R):

θν = arg

(
cos dν + i

sin dν
dν

vs
vν

)
, (13)

where dν and vν are defined as d in Eq. (11) replacing U0 by Uν . Finaly, we note ϕtot = (kF1 + kF2)L − (θL + θR)
the total accumulated phase. For the estimations quoted in the main text we have assumed two identical barriers,
i.e. τL = τR = τ .

Magnetic field effect. Information on the ABSs spin structure can be inferred from their behavior in the presence
of a finite magnetic field. This behavior depends strongly on the orientation of the field with respect to the nanowire
axis [24]. We consider a magnetic field lying in the xy-plane. The y-component By (parallel to the spin states of the
transverse subbands without RSO) shifts the energy of the subbands depending on the spin states and modifies the
Fermi wave vectors as illustrated in Fig. 6(c). They thus satisfy

Es(kF ) =
~2k2F
2m∗

+
E⊥1 + E⊥2

2
−

√[
E⊥1 − E⊥2

2
− s

(
αkF −

gµB
2
By

)]2
+ η2 = µ. (14)
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FIG. 6. Effect of an in-plane magnetic field on the band structure (top row), the Andreev levels (middle row) and the excitation
spectrum (bottom row). (b) reference graphs at zero field; (a) field applied along the wire axis; (c) field applied perpendicularly
to the wire axis.

On the other hand, the x-component Bx mixes opposite-spin states thus opening a gap at the crossings points as
illustrated in Fig. 6(a). We include this effect perturbatively[24]. For both, B//x and B ⊥ x cases, the resulting ABS
and the corresponding transition lines are shown in the middle and bottom rows of Fig. 6. In order to fit the data
shown in Fig. 4 and Fig. 5, we used g = 12, which is within the range of values reported in the literature [39, 40].
Whereas this value gives the best fits of the data at B ⊥ x, better agreement for the data at B//x are obtained with
g = 10. This could indicate a small anisotropy of the g-factor [40].

Fitting strategy The transcendental equations (Eqs. (1) and (12)) for the single and double barrier models contain
dimensionless parameters with which we fit the experimental data:

• λ1, λ2, τ , and xr for the single barrier model,

• λ1, λ2, τ , and ϕtot for the double barrier model.

We then deduce the physical parameters, α, µ (measured from the bottom of the lowest band), L, and U0 (or UL/R)
using Eqs. (2), (5) and (11), and assuming that the nanowire diameter is fixed at W = 140 nm according to the
experimental observation. We further set m∗ = 0.023me where me is the bare electron mass. For the experimental
data in Fig. 4, the single barrier model gives λ1 = 1.3, λ2 = 2.3, τ = 0.295, and xr = 0.52, resulting in the microscopic
parameters α = 53 meV nm, µ = 255µeV, U0 = 92 meV nm, L = 332 nm. Using the double barrier model, we get
λ1 = 1.1, λ2 = 1.9, τ = 0.52, ϕtot = 0.93 (Mod 2π), α = 36 meV nm, µ = 427µeV, UL = UR = 130 meV nm, L =
314 nm. Another possibility is to fix the length of the junction L to the length of the uncovered section of the InAs
nanowire, 370 nm, which leads to α = 38 meV nm and µ = 422µeV for the single barrier model (α = 32 meV nm
and µ = 580µeV for the double barrier model). However, in the single barrier model one cannot find values of U0

leading to the corresponding τ . This is due to the fact that in our simplified model for the scattering matrix, processes
involving the higher subbands are neglected, thus limiting its validity to small values of U0.

∗ Corresponding author : hugues.pothier@cea.fr
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P. Bertet, P. Joyez, D. Vion, D. Esteve, M. F. Goffman,
H. Pothier, and C. Urbina, “Coherent manipulation of
Andreev states in superconducting atomic contacts”, Sci-
ence 349, 1199 (2015).

[9] E. J. H. Lee, X. Jiang, M. Houzet, R. Aguado, C. M.
Lieber, and S. De Franceschi, “Spin-resolved Andreev
levels and parity crossings in hybrid superconductor-
semiconductor nanostructures”, Nat. Nanotech. 9, 79
(2014).

[10] D. J. van Woerkom, A. Proutski, B. van Heck, Daniël
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