
HAL Id: hal-01888983
https://hal.science/hal-01888983

Submitted on 5 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

End-to-End Active Learning for Computer Security
Experts

Anaël Beaugnon, Pierre Chifflier, Francis Bach

To cite this version:
Anaël Beaugnon, Pierre Chifflier, Francis Bach. End-to-End Active Learning for Computer Security
Experts. KDD Workshop on Interactive Data Exploration and Analytics (IDEA), Aug 2018, Londres,
United Kingdom. �hal-01888983�

https://hal.science/hal-01888983
https://hal.archives-ouvertes.fr

End-to-End Active Learning for Computer Security Experts
Anaël Beaugnon

ANSSI, INRIA, ENS Paris
anael.beaugnon@ssi.gouv.fr

Pierre Chifflier
ANSSI

pierre.chifflier@ssi.gouv.fr

Francis Bach
INRIA, ENS Paris
francis.bach@ens.fr

ABSTRACT
Supervised detection models can be deployed in computer security
detection systems to strengthen detection. However, acquiring a
training dataset is particularly expensive in this context since expert
knowledge is required to annotate. Some research works rely on
active learning to reduce human effort, but they often assimilate
annotators to mere oracles providing ground-truth labels. Most of
them completely overlook the user experience while active learning
is an interactive procedure. In this paper, we introduce an end-to-
end active learning system, ILAB, tailored to computer security
experts needs. We have designed the active learning strategy and
the user interface jointly to effectively reduce annotation effort.
Our user experiments show that ILAB is an efficient active learning
system that computer security experts can deploy in real-world
annotation projects.

CCS CONCEPTS
• Security and privacy → Intrusion/anomaly detection and
malwaremitigation; Usability in security and privacy; •Human-
centered computing → Interactive systems and tools;

KEYWORDS
Active Learning, Interactive Systems, Anomaly Detection

ACM Reference Format:
Anaël Beaugnon, Pierre Chifflier, and Francis Bach. 2018. End-to-End Ac-
tive Learning for Computer Security Experts. In Proceedings of KDD 2018
Workshop on Interactive Data Exploration and Analytics (IDEA’18) (IDEA @
KDD’18). ACM, New York, NY, USA, 10 pages.

1 INTRODUCTION
The performance of supervised detection models, deployed in com-
puter security detection systems, depends deeply on the quality of
the training data. However, good training datasets are extremely
difficult to acquire in the context of threat detection.

Some annotated datasets related to computer security are public,
but they quickly become outdated and they often do not account
for the idiosyncrasies of each deployment context. Besides, crowd-
sourcing cannot be exploited to get annotated datasets at low cost
since the data are often sensitive and expert knowledge is required
to annotate.

Security experts can deploy annotation systems to build repre-
sentative training datasets in-situ. The annotation system picks

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
IDEA @ KDD’18, August 20th, 2018, London, United Kingdom
© 2018 Copyright held by the owner/author(s).

some instances from a pool of unlabeled data originating from the
deployment environment, displays them to security experts, and
gathers their answers.

Security experts are essential for annotating but they are an
expensive resource. The labeling process must thus exploit their
time efficiently. Active learning [19] has been introduced in the ma-
chine learning community to reduce human effort. Most research
works on active learning focus on query strategies to minimize the
number of manual annotations. These works assume that annota-
tors are mere oracles providing ground-truth labels while active
learning is an interactive procedure where user experience should
not be overlooked [3, 20, 22]. A user interface is needed to gather
the annotations and it must be suitable for security experts who
may have little or no knowledge about machine learning. Besides,
some feedback must show the usefulness of their annotations, and
they should not wait too long while the next annotation queries
are computed.

In this paper, we define an active learning system as an annota-
tion system that leverages an active learning strategy to select the
instances to be annotated. It is crucial to design both components
jointly to effectively reduce annotation effort and to foster the adop-
tion of active learning in annotation projects [14]. Security experts
do not want to minimize only the number of manual annotations,
but the overall time spent annotating.

We introduce an end-to-end active learning system, ILAB, de-
signed to help computer security experts to build annotated datasets
with a reduced effort. We have described ILAB active learning strat-
egy and extensively compared it to state-of-the-art methods [2, 8,
21] in [6]. In this paper, we integrate ILAB active learning strat-
egy in an annotation system to bridge the gap between theoretical
active learning and real-world annotation projects.

We make the following contributions:

• We integrate ILAB active strategy in an annotation system
tailored to security experts needs. We have designed the
graphical interface for annotators whomay have little knowl-
edge about machine learning, and it can manipulate any data
type (e.g. PDF files, Android applications, or system event
logs). Moreover, it helps security experts provide consistent
annotations even if they delineate the detection target and
the alert taxonomy as they annotate.
• We ask intended end-users, computer security experts, to
use ILAB on a large unlabeled NetFlow dataset coming from
a production environment. These user experiments validate
our design choices and highlight potential improvements.
• We provide an open source implementation of the whole
active learning system [1] to foster comparison in future
research works, and to allow computer security experts to
annotate their own datasets.

IDEA @ KDD’18, August 20th, 2018, London, United Kingdom Anaël Beaugnon, Pierre Chifflier, and Francis Bach

The rest of the paper is organized as follows. First, Section 2
introduces the context and formalizes the problem, and Section 3
presents some related works. Then, Section 4 describes ILAB, an
end-to-end active learning system. Finally, Section 5 explains the
protocol of the user experiments, while the results are set out in
Sections 6 and 7.

2 PROBLEM STATEMENT
2.1 Context

Pool-Based Active Learning. In this paper, we consider pool-based
active learning [19] as a way to train detection models in-situ. The
unlabeled pool is composed of unlabeled data acquired from de-
ployment environments (e.g. files, network traffic captures, or logs).

Annotation: Binary Label and Family. Annotating consists in
assigning a binary label, malicious or benign, and optionally a
family detailing the binary label. Instances sharing the same family
behave similarly and have the same level of criticality. For example,
malicious instances belonging to the same family may exploit the
same vulnerability, they may be polymorphic variants of the same
malware, or they may be email messages coming from the same
spam campaign.

The family information is critical in the context of threat detec-
tion. A binary answer indicating only whether an alert has been
triggered is not satisfactory. Detection methods must provide in-
formation about the cause of alerts to ease their exploitation by
security experts. Tagging alerts with malicious families can ease
their analysis.

Detection Target and Alert Taxonomy. The annotations determine
both the detection target and the alert taxonomy of the detection
system. The binary labels determine the detection target, i.e. in
which circumstances an alert should be triggered, while the mali-
cious families establish the alert taxonomy, i.e. how the alerts are
tagged.

The detection target and the alert taxonomy are generally not
perfectly delineated at the beginning of annotation projects. Secu-
rity experts have usually vague specifications in mind that they
refine as they examine new instances queried by the active learning
strategy.

2.2 Notations
Let D = {xi ∈ Rm }1≤i≤n be the dataset we want to annotate par-
tially to train a supervised detection modelM. It contains n in-
stances described by m real-valued features. For example, each
instance x ∈ D could represent a PDF file or the traffic of an IP
address.

Let L = {Malicious,Benign} be the set of labels and Fy be the
set containing the user-defined families of the label y ∈ L. Our aim
is to create an annotated dataset

DL ⊆
{
(x ,y,z) | x ∈ D, y ∈ L, z ∈ Fy

}

maximizing the accuracy of the detection model M trained on
DL . The annotated datasetDL is built with an iterative pool-based
active learning strategy. At each iteration, a security expert anno-
tates, with a label and a family, b ∈ N instances selected from the
pool of remaining unlabeled instances denoted by DU . During the

whole process, the expert cannot annotate more instances than the
annotation budget B ∈ N.

2.3 Objective
Our goal is to conceive an end-to-end pool-based active learning
system tailored to security experts needs to streamline annotation
projects. We assume that no adversary attempts to mislead the an-
notation process: a trusted security expert performs the annotations
offline before the detection model is deployed in production.

The two components of the active learning system, the active
learning strategy and the annotation system, must fulfill the fol-
lowing constraints to effectively reduce human effort in annotation
projects.

Active Learning Strategy. The objective of the active learning
strategy is to build the annotated dataset DL that maximizes the
accuracy of the detection model M while asking the expert to
annotate at most B instances. Besides, the strategy must be scalable
to work on large datasets while maintaining short waiting-periods.

The real challenge faced by active learning strategies is to avoid
sampling bias [6, 17] to ensure a well-performing detection model,
while keeping short waiting-periods to guarantee a good expert-
model interaction.

Annotation System. The annotation system must provide an er-
gonomic user interface to streamline the annotation process. It must
be suitable for non-machine learning experts since the intended
end-users may have little or no knowledge about this data analysis
technique.

First of all, the annotation system must provide an annotation in-
terface to display and gather the answers to the annotation queries.
It must be generic enough to be workable on any threat detection
annotation project. As a result, the annotation interface should be
able to display different data types such as PDF files, Windows
Office documents, Android applications, or Windows event logs.

Moreover, the annotation system should not be reduced to an
annotation interface. It should provide feedback frequently to show
experts the benefit of their annotations, and that they are on track to
achieve their goal. Besides, it should help security experts provide
consistent annotations, even if they delineate the detection target
and the alert taxonomy throughout the annotation process.

3 RELATEDWORK
Specific Annotation Systems. Some annotation systems have been

especially designed for text [7], image [11], or video [4] annotations.
These annotation systems are not flexible enough to operate with all
the data types processed by computer security detection systems.

Structured Labeling [11]. Machine learning is based on the idea
that similar inputs should have similar outputs. Annotators must
thus provide consistent labels to avoid degrading the performance
of the resulting classification model. Kulesza et al. [11] have in-
troduced structured labeling to help annotators define and refine
their concept, i.e. the abstract notion of the target class annotators
are labeling for, as they annotate data. Thanks to structured la-
bels, annotators can organize their concept definition by grouping
and tagging data. Structured labeling increases label consistency
by helping annotators recall labeling decisions. The structure is

End-to-End Active Learning for Computer Security Experts IDEA @ KDD’18, August 20th, 2018, London, United Kingdom

malleable (annotators can create, delete, split and merge tags), it is
well suited for situations where annotators are likely to frequently
refine their concept definition as they observe new data.

In the context of detection systems, the concept corresponds to
the detection target, i.e. the abstract notion of benign behavior, and
suspicious behaviors that should trigger alerts. Besides, we can
draw a parallel between the tags defined in structured labeling and
the benign and malicious families. Structured labeling can be very
convenient in annotation projects aiming to build computer security
detection models. Indeed, at the beginning of annotation projects,
security experts have a vague idea of their detection target, and it
may evolve throughout the annotation process. Some annotation
queries may puzzle them: they may wonder whether an alert should
be triggered or not. Some annotation queries can even question
previous annotations.

Active Learning vs. Random Sampling. There are some reassess-
ment about the benefit of active learning strategies over random
sampling [7]. Some consider it is not worth deploying active learn-
ing strategies in annotation systems: it may be complex and lead
to a computation overhead. Computer vision and natural language
processing annotation projects can take advantage of low-cost an-
notators on crowd-sourcing market places. In this scenario, there
is no need for active learning since annotations are cheap. How-
ever, crowd-sourcing does not suit detection systems since the data
they process are often sensitive, and annotating requires expert
knowledge.

Moreover, the data is often unbalanced, with a tiny portion of
malicious instances, and the less common malicious behaviors are
often the most interesting. If the annotation system queries in-
stances selected uniformly, it is likely to query only benign and
very common malicious behaviors.

To sum up, in the context of threat detection, annotation systems
must leverage an active learning strategy to be effective. The active
learning strategy should, nevertheless, be designed carefully to
minimize the computation overhead.

Applications to Computer Security. Stream-based active learn-
ing [19] has been applied to computer security detection prob-
lems [18, 23] to follow threat evolution. In this setting, the detec-
tion model in production has been initially trained on an annotated
dataset representative of the deployment environment. In our case,
such a representative annotated dataset is unavailable and the ob-
jective is to acquire it offline to train the initial detection model.

Some works focus on pool-based active learning to build anno-
tated datasets for detection systems [2, 6, 8, 21]. However, most
research works [2, 8] have only run simulations on fully annotated
datasets: an oracle answers the annotation queries automatically
with the ground-truth labels. They have not set up their strategy in
real-world annotation projects, and they have not mentioned any
user interface.

Stokes et al. [21] have carried out user experiments with com-
puter security experts. Aladin includes a graphical user interface
but the authors do not provide any detail about it. Besides, the
interactions between the expert and the model are poor due to a
high execution time. The expert is asked to annotate a thousand in-
stances each day, and new queries are computed every night. Their
solution reduces the waiting-periods, but it significantly damages

the expert-model interaction since the expert feedback is integrated
only once a day.

In brief, the user experience is often overlooked: research works
focus mostly on active learning strategies and not on their integra-
tion in annotation systems. User interfaces designed to set up active
learning strategies in real-world annotation projects have, however,
a significant impact on the overall user experience [3, 19, 20] and
on the actual application of such methods in practice [14].

4 ILAB
4.1 Active Learning Strategy
ILAB active learning strategy has been presented in [6] and com-
pared to state-of-the-art methods [2, 8, 21]. We describe it briefly
to allow the reader to understand the design of the whole active
learning system.

The active learning strategy relies on a two-level annotation
hierarchy: binary labels (Malicious vs. Benign) and families of
instances sharing similar behaviors.

At each iteration, a binary detection modelM is trained from
the binary labels of the currently annotated instances (see Figure 1).
By default a logistic regression model is trained as the coefficients
allow to easily interpret the predictions and training is fast. If this
model class is not complex enough for a given annotation project,
other model classes can be plugged into ILAB but may result in
longer waiting-periods and a loss of understandability.

OnceM has been trained, theb annotation queries are computed:
1) the buncertain instances the closest to the decision boundary
are queried as in uncertainty sampling [13], and 2) bfamilies (=
b − buncertain) instances are queried by means of rare category
detection [16].

Not all families are present in the initial annotated dataset and
rare category detection fosters the discovery of yet unknown fami-
lies to avoid sampling bias. Rare category detection is applied on
the instances that are more likely to be Malicious and Benign
(according to the detection modelM) separately. One might think
that we could run rare category detection only on the malicious
instances since it is the class of interest in threat detection. How-
ever, a whole malicious family may be on the wrong side of the
decision boundary, and thus, running rare category detection on the
predicted benign instances is necessary. Hereafter, we only detail
the rare category detection run on the Malicious predictions since
the analysis of the Benign ones is performed similarly.

Let DMalicious
U be the set of instances whose predicted label by

M is Malicious and DMalicious
L be the set of malicious instances

already annotated by the expert. First, a multi-class logistic regres-
sion model is trained from the families specified in DMalicious

L to
predict the family of the instances inDMalicious

U . Then, the families
are modeled with Gaussian Naive Bayes and two kinds of instances
are queried from each family: 1) low likelihood instances to fos-
ter the discovery of yet unknown families, and 2) high likelihood
instances to make sure the model is not confidently wrong.

More and more families are discovered and added to the anno-
tated dataset across iterations. When a new family is discovered,
rare category detection takes it into account at the next iteration:
the additional family is included in the training of the multi-class
logistic regression and the Gaussian Naive Bayes models.

IDEA @ KDD’18, August 20th, 2018, London, United Kingdom Anaël Beaugnon, Pierre Chifflier, and Francis Bach

Detection model M

Uncertainty sampling

Uncertain queries

Rare category detection on DMalicious
U

Malicious queries

Rare category detection on DBenign
U

Benign queries

Figure 1: Parallelization of the Computations of the Annotation Queries.

Short Waiting-Periods. The generation of the different kinds of
queries (uncertain, malicious and benign) are completely indepen-
dent (see Figure 1). This reduces the expert waiting-periods in two
ways: 1) the computations can be parallelized, and, 2) the expert
can start annotating while the remaining queries are generated.

4.2 Annotation System
ILAB annotation system obviously includes an Annotation Inter-
face to display and gather the answers to the annotation queries.
Moreover, it offers additional graphical user interfaces to ease data
annotation: aMonitoring Interface, a Family Editor and anAnnotated
Instances Interface.

4.2.1 Annotation Interface. Security experts answer ILAB queries
from the graphical user interface depicted in Figure 2. It is intended
for non-machine learning experts, and the layout of the panels
is designed to ensure a logical reading order. Experts can select
a type of queries with one of the top buttons: Uncertain for the
instances near the decision boundary, Malicious and Benign for
the queries generated by rare category detection. The Annotation
Queries panel displays the queries. Malicious and benign queries
are grouped by families. The bottom panel displays the queried in-
stances (Description panel), and gathers the annotations (Annotation
panel).

Description Panel. The Description panel contains information
about the instance that the security expert must annotate. It consists
of a standard visualization depicting the instance features, and of
optional problem-specific visualizations. Figure 2 shows the custom
visualization we have implemented for NetFlow data1.

We strongly encourage security experts to design and implement
convenient problem-specific visualizations, since they can consid-
erably ease the annotations. They should display the most relevant
information to help annotators make decisions. Security experts
can implement several custom visualizations to show the instances
from different angles.

Annotation Panel. Experts can annotate the selected instance
with the Annotation panel. For each label, it displays the list of the
families already discovered. Experts can pick a family among a list
or add a new one.

The interface suggests a family for high likelihood queries and
pre-selects it. It helps experts since the model is confident about
these predictions. On the contrary, ILAB makes no suggestion for
uncertain and low likelihood queries. The model is indeed unsure
about the family of these instances and unreliable suggestions may
mislead experts [5].
1We have hidden the IP addresses for privacy reasons.

The next query is displayed automatically after each annotation
validation. Experts can click on the Next Iteration button to
generate the next queries after answering all the queries of the
current iteration. If some queries have not been answered, a pop-up
window asks the annotator to answer them.

4.2.2 Monitoring Interface. ILAB Monitoring Interface (see Fig-
ure 3) displays information about the current detection model (coef-
ficients of the logistic regression model, and performance indicators
computed on the annotated dataset through cross validation), and
feedback about the annotation progress.

Annotation systems must provide feedback to experts to show
them the benefit of their annotations, and that they are on track to
achieve their goal [3]. In simulated experiments, where an oracle
answers the queries automatically with the ground-truth labels,
the performance of the detection model M on an independent
validation dataset is usually reported. Nevertheless, this approach
is not applicable in a real-world setting: when security experts
deploy an annotation system to build a training dataset they do not
have access to an annotated validation dataset.

ILAB displays two kinds of feedback that do not require an
annotated validation dataset: 1) the number of malicious and benign
families discovered so far, and, 2) the accuracy of the suggested
labels and families. At each iteration, ILAB suggests a family for
the high likelihood queries. At the next iteration, ILAB computes
the accuracy of these suggestions according to the last annotations
performed by the expert.

This feedback can provide insight into the impact of new anno-
tations. If the number of families discovered and the accuracy of
the suggestions are stable for several iterations, the security expert
may stop annotating.

4.2.3 Annotated Instances and Family Editor. ILAB offers two
user interfaces to help security experts refine the detection tar-
get and the alert taxonomy while remaining consistent with their
previous annotations: a Family Editor and an Annotated Instances
Interface.

Family Editor. The family editor, similar to the one introduced
by Kulesza et al. [11], enables annotators to perform three actions
over the families:

(1) Change Name to clarify the name of a family ;
(2) Merge Families to regroup similar families ;
(3) Swap Malicious / Benign to change the label corresponding

to a given family.

End-to-End Active Learning for Computer Security Experts IDEA @ KDD’18, August 20th, 2018, London, United Kingdom

Figure 2: ILAB Annotation Interface.

Annotated Instances Interface. This interface enables experts to
review their previous annotations. It displays the currently an-
notated instances grouped according to their associated label or
family.

Security experts can leverage this interface to examine the in-
stances of a given family, or to rectify previous annotations. Thanks
to the Family Editor, they can perform high-level changes on the
families, but they cannot split them. They can split a family thanks
to the Annotated Instances Interface by going through all its in-
stances and updating the annotations.

Security experts work on diverse data types. A strength of ILAB
is to be generic, so that they can use a unique annotation system.
Once they get used to ILAB on a given detection problem, they will
be more efficient at using it on other detection problems.

4.3 Deployment
4.3.1 Settings of the Parameters. Security experts need to set

three parameters to deploy ILAB in annotation projects. First, all
active learning strategies share two parameters: 1) the global anno-
tation budget B, and 2) the number of annotation queries answered
at each iteration, b. Besides, ILAB strategy has one specific parame-
ter, buncertain, the number of uncertain queries.

Setting the Parameter b. This parameter controls the trade-off
between reducing waiting-periods and integrating expert feedback
frequently. One the one hand, simulations where oracles answer
annotation queries with ground-truth labels are often carried out
with b = 1. This setting does not suit real-world annotation projects
since it would induce too frequent waiting-periods for security ex-
perts. One the other hand, Stokes et al. [21] have set b to 1000 in
their user experiments. This high iteration budget damages the

expert-model interaction : security experts spend their day anno-
tating, and their feedback is taken into account only every night to
improve the detection model.

Security experts should set the value of the parameter b on the
following principle: experts should not spend more time waiting for
queries than annotating, but their feedback must still be integrated
rather frequently to show them the benefit of their annotations.
The value of b is therefore data dependent: it must be set according
to the average time required to answer annotation queries.

Setting the Parameter buncertain. This parameter fixes the por-
tion of the iteration budget b dedicated to uncertain queries. Some
instances near the decision boundary are annotated to help the
detection model make decision about these instances, but not too
many since they are often harder to annotate [20], and they may
lead to sampling bias [17].

Setting the Parameter B. The global annotation budget B spec-
ifies the stop condition of the annotation process. It can be set
to a maximum number of annotations, or to a global time spent
annotating.

In the case of an unlimited budget, security experts can end the
annotation process when convergence is reached: several iterations
have not led to the discovery of a new family, and the model predic-
tions are consistent with the expert annotations. ILAB Monitoring
Interface informs security experts about the state of convergence of
the annotation procedure with the number of families discovered
and the accuracy of the suggested annotations.

4.3.2 Initialization. The active learning process needs some
initial annotated instances to train the first supervised detection
model. This initial supervision can be difficult to acquire for com-
puter security detection problems. The Malicious class is usually

IDEA @ KDD’18, August 20th, 2018, London, United Kingdom Anaël Beaugnon, Pierre Chifflier, and Francis Bach

Figure 3: ILAB Monitoring Interface.

underrepresented for uniform random sampling to be effective at
collecting a representative annotated dataset.

If a public annotated dataset is available for the detection problem
considered, it can serve as initial supervision. Otherwise, misuse
detection techniques widely deployed in detection systems can
provide Malicious examples at low cost, and random sampling
can provide Benign examples. In both cases, the initial annotated
dataset does not contain all the malicious families we want to
detect, and it is not representative of the data in the deployment
environment. We use ILAB to enrich the initial annotated dataset
withmore diverse malicious behaviors and tomake it representative
of the environment where the detection system is deployed.

5 USER EXPERIMENTS
In this section, we ask security experts to use ILAB to acquire
an annotated dataset from unlabeled NetFlow data. The primary
objective is to collect feedback from intended end-users to vali-
date our design choices. Another objective is to highlight possible
improvements that will be beneficial to other annotation projects.

The competing active learning methods [2, 8, 21] compared to
ILAB with simulations in [6] have not designed or they provide
too few details about the user interface. As a result, they are not
considered during the user experiments.

Day 1 Day 2

Number of flows 1.2 · 108 1.2 · 108
Number of IP addresses 463,913 507,258
Number of features 134 134
Number of TRW alerts 72 82

Table 1: NetFlow Datasets

5.1 Annotation Project
The annotation project consists in acquiring an annotated dataset
from unlabeled NetFlow data in order to train a supervised detection
model detecting IP addresses with an anomalous behavior.

The flows are recorded at the border of a defended network.
They are described by attributes and summary statistics: source
and destination IP addresses, source and destination ports, protocol
(e.g. TCP, UDP, ICMP, ESP), start and end time stamps, number of
bytes, number of packets, and aggregation of the TCP flags for TCP
flows.

We compute features describing each external IP address com-
municating with the defended network from its flows during a
24-hour time window. We compute the mean and the variance of
the number of bytes and packets sent and received at different levels:
globally, for some specific port numbers (80, 443, 53 and 25), and for
some specific TCP flags aggregates (e.g.S, .A..S., .AP.SF).

End-to-End Active Learning for Computer Security Experts IDEA @ KDD’18, August 20th, 2018, London, United Kingdom

Besides, we compute other aggregated values: number of contacted
IP addresses and ports, number of ports used, entropy according
to the contacted IP addresses and according to the contacted ports.
In the end, each external IP address is described by 134 features
computed from its list of flows.

The NetFlow data are recorded during two consecutive working
days in 2016 (see Table 1). The Day 1 dataset constitutes the unla-
beled pool from which some instances are queried for annotation,
and the Day 2 dataset serves as a validation dataset to analyze the
alerts triggered by the resulting detection model.

The active learning process is initialized with some annotated
instances. The alerts triggered by the Threshold Random Walk
(TRW) [10] module of Bro [15] provide the initial anomalous exam-
ples and the normal examples are drawn randomly. All the initial
annotations are checked manually. The initial annotated dataset is
composed of 70 obvious scans detected by TRW, and of 70 normal
examples belonging to the Web, SMTP and DNS families. Malicious
activities in well-established connections cannot be detected with-
out the payload, which is not available in NetFlow data, that is why
we consider the familiesWeb, SMTP and DNS to be normal.

ILAB is deployed to enrich this initial annotated dataset. The
detection model should not be restricted to the detection of obvious
scans, additional anomalous behaviors must be identified from the
NetFlow data with ILAB.

5.2 Experimental Protocol
Four computer security experts take part in the experiments. They
are used to working with NetFlow data, but they have no or little
knowledge about machine learning. They have never used ILAB or
any other annotation system before.

The experiments are carried out independently with each expert
for half a day, and are divided into three parts. First, the users ac-
quire an annotated dataset with ILAB from the unlabeled pool Day
1. Second, they analyze the alerts triggered on Day 2 by the detec-
tion model trained on the annotated instances with DIADEM [1].
Finally, we collect their feedback.

All the experiments are run on a dual-socket computer with 64
Go RAM. Processors are Intel Xeon E5-5620 CPUs clocked at 2.40
GHz with 4 cores each and 2 threads per core. We timestamp and
log all the users’ actions in ILAB graphical interface to assess the
time required for annotating and the waiting-periods.

ILAB Deployment. We set the parameters of ILAB active learning
strategy according to the guidelines presented in Section 4.3.1:
b = 100 and buncertain = 10. We do not set the global annotation
budget B to a number of manual annotations, but we stop the
annotations after 90 minutes while letting annotators complete
their current iteration.

The first two participants have no information about the features
of the detection model for the purposes of hiding the machine
learning complexity. This approach may lead annotators to create
families that the detection model cannot properly discriminate
due to a lack of information about the features extracted from the
NetFlow data. The last two participants know the features of the
model, and we briefly explain the implications on the families they
may create. Port numbers are a relevant example. The features
include the number of bytes and packets sent and received globally,

and for the port numbers 80, 443, 53 and 25. We emphasize that it
is therefore counterproductive to create families corresponding to
scans on specific services such as Telnet scans (port 23) or SSH scans
(port 22).

Before launching the annotation process, we ask the experts to
check the initial annotated instances, and tell them that them may
change the assigned labels and families as they wish. This step is
crucial to ensure that the annotations they perform afterwards are
consistent with the initial ones.

Alerts Analysis. Once experts have annotated a dataset with
ILAB, we leverage DIADEM [1] to apply the resulting detection
model to Day 2 data. Then, the security expert analyzes the alerts
triggered on Day 2 data from DIADEM alert visualization interface.
This step is crucial: the objective of security experts is not to acquire
an annotated dataset, but to build a detection model and to assess
its performance.

Feedback Collection. Once the users have achieved the task, we
collect their feedback through an informal discussion that cov-
ers the following topics: the relevance of the alerts triggered by
the resulting detection model, the ease of use of the interface, the
waiting-periods, the usefulness of the Family Editor and Annotated
Instances interfaces, and the feedback provided across iterations.

6 VALIDATION OF ILAB DESIGN
Accessible to Non-Machine Learning Experts. The participants

have not faced any difficulty in building a detection model with
ILAB even if they have little or no knowledge about machine learn-
ing. They have reported some minor ergonomic problems not re-
lated to machine learning especially. We will address these issues to
further improve the user experience. Globally, the participants have
been pleased with ILAB, and convinced that it will be beneficial to
other annotation projects.

Detection Target and Alert Taxonomy. Across the iterations, ILAB
has queried stealthier scans than the ones detected by TRW: slow
scans (only one flow with a single defended IP address contacted
on a single port), and furtive scans (a slow scan in parallel with
a well-established connection). Besides, it has detected TCP Syn
flooding activities designed to exhaust the resources of the defended
network. Finally, ILAB has asked the participants to annotate IP
addresses with anomalous behaviors which are not malicious: mis-
configurations and backscatters.

To sum up, the detection target has evolved across the iterations
thanks to ILAB queries. At the beginning of the annotation pro-
cess, the annotated dataset contains only obvious scan activities,
and ILAB queries other anomalous behaviors. The rare category
detection analyses carried out by ILAB are effective for pointing
out new anomalous behaviors.

Table 4a presents the number of families created by each par-
ticipant, and the number of families at the end of the annotation
process. It reveals that the participants begin by creating specific
families and they end up merging some of them with the Family
Editor to remove needless detail. The participants have declared
that the Family Editor and the Annotated Instances Interface help
them provide consistent annotations throughout the annotation

IDEA @ KDD’18, August 20th, 2018, London, United Kingdom Anaël Beaugnon, Pierre Chifflier, and Francis Bach

process. Furthermore, they have stated that these tools are crucial
if the annotation process lasts several days.

In brief, the participants rely on ILAB to define the malicious and
benign families. At the beginning of the annotation project, they
have a vague idea of how to group the benign and malicious behav-
iors into families. Then, ILAB queries bring them to change their
families definitions. The user experiments show that the Family
Editor and the Annotated Instances Interface are critical components
of ILAB to define the families interactively.

Annotation Cost. The cost of the annotation process is usually
reported as the number of manual annotations [2, 8, 21]. However,
all the annotations do not have the same cost in terms of time for
making a decision and experts have their own annotation speed. We
report the average annotation cost, i.e. the average time required to
answer annotation queries, with the corresponding 95% confidence
interval, for each participant, at each iteration (see Figure 4c) and
for each query type (see Figure 4d).

Figure 4c shows that the annotation speed varies significantly
from participant to participant, and the annotation cost always
decreases across the iterations. The experts get used to the data
they annotate and to ILAB user interface and so they answer queries
faster. Moreover, they get a more precise idea of the detection target
and of the malicious and benign families as they annotate, so they
spend less time making decision.

Uncertain queries, close to the decision boundary, are often con-
sidered harder to annotate [5, 9, 20]. The statistics presented in
figure 4d support this statement for only two participants out of
four. This low agreement may be explained by the fact that we
have run only a few iterations, and therefore the model has not yet
converged and is still uncertain about instances easy to annotate
for security experts.

Figure 4d also points out that the benign queries are harder to
annotate than the malicious ones for two out of four participants.
One explanation is that security experts are not used to analyzing
benign behaviors and to group them into families. They analyze
malicious behaviors when they design misuse detection techniques,
and they are accustomed to grouping malicious behaviors into
families when they define alert taxonomies.

Resulting Detection Model. The participants have assessed that
the triggered alerts on Day 2 are consistent with their malicious
annotations and that the number of false positives is low enough
to meet operational constraints. The top N alerts are obvious scans
where many ports are scanned on many IP addresses. The randomly
selected alerts correspond to the most common anomalies, i.e. slow
Syn scans on port 23.

The participants have pointed out that grouping alerts according
to their predicted malicious families eases their analysis, and reveals
more interesting alerts, i.e. less common malicious behaviors, than
top N and random. The families of some alerts have, however, been
wrongly predicted due to a lack of annotated instances for some
malicious families. Some families have been discovered only at the
last iteration and too few examples are in the annotated dataset
for the detection model to generalize properly. More iterations are
required to improve the automatic qualification of the alerts.

Short Waiting-Periods. Table 4b presents an analysis of the cu-
mulated computation times and waiting-periods throughout the
whole annotation process. The column Computations stores the du-
ration of the computation of all the annotation queries. The column
Waiting-Periods corresponds to the cumulated waiting-periods : the
time during which the users are waiting for the active learning strat-
egy to compute new annotation queries. Efficiency represents the
percentage of time allocated to the improvement of the detection
model (annotating, editing families, inspecting annotated instances)
during the annotation process.

The cumulated waiting-periods are smaller than the cumulated
computation times since ILAB parallelizes the annotations and the
computations: experts can annotate some instances while the re-
maining annotation queries are computed. Experts wait only while
the detection model is trained on the current annotated instances,
and the uncertain queries are generated. Then, they start answering
the uncertain queries while ILAB generates the malicious and be-
nign queries. During our experiments, ILAB has always completed
the computation of the malicious and benign queries before the
experts have finished answering the uncertain queries. As a result,
the participants have waited less than 5 seconds between each iter-
ation. All the participants have declared that the waiting-periods
are short enough not to damage the expert-model interaction.

ILAB divide-and-conquer approach ensures a good expert-model
interaction: the detection model is updated frequently with expert
feedback without inducing long waiting-periods.

Feedback to Annotators. Three out of the four participants have
declared that they have perceived the benefit of their annotations
across the iterations. In their view, they appreciate the improvement
of the detection model thanks to the clustering of the queries ac-
cording to labels and families. They assess the false negatives while
annotating the Benign queries, and the false positives while anno-
tating the Malicious ones. Moreover, they evaluate the relevance
of the predicted families with the suggestions.

The participants have not mentioned the two feedback graphs
displayed by ILAB (the number of discovered families and the ac-
curacy of the suggestions), as a means of seeing the benefit of their
annotations. These graphs depict a global evolution over several
iterations, while the method used by the participants grasps local
evolutions between two consecutive iterations. The number of iter-
ations performed during the user experiments may be too low to
show the relevance of these graphs.

7 FURTHER FEEDBACK
Security Experts Annotate Differently. The participants answer

the queries very differently. In particular, they disagree on the label
corresponding to the misconfigurations. Some consider they are
anomalous, while others think they are too common in network
traffic. Besides, they annotate the instances with different levels of
detail. Some create families based on combinations of services (e.g.
Web-DNS, Web-SMTP, Web-SMTP-DNS), while others differentiate
the services depending on whether the external IP address is the
client or the server (e.g. Web-from-external and Web-from-internal).
In short, at the end of the annotation project, the participants have
neither the same detection target, nor the same alert taxonomy.

End-to-End Active Learning for Computer Security Experts IDEA @ KDD’18, August 20th, 2018, London, United Kingdom

User # Queries # Created Families # Final Families

1 300 15 10
2 200 16 15
3 200 29 26
4 200 22 17

(a) Number of Created and Final Families.

User Whole Process Computations Waiting-Periods

1 1h28min 197.53 sec 10.81 sec
2 1h29min 91.56 sec 7.32 sec
3 1h36min 87.54 sec 7.31 sec
4 1h57min 93.56 sec 7.37 sec

(b) Computations and Waiting-Periods.

Us
er
1

Us
er
2

Us
er
3

Us
er
4

0

20

40

60

Av
er
ag
e
A
nn

ot
at
io
n
Co

st
(s
ec
on

ds
) Iter 1

Iter 2
Iter 3

(c) Average Annotation Cost across Iterations.

Us
er
1

Us
er
2

Us
er
3

Us
er
4

0

20

40

60

80

Av
er
ag
e
A
nn

ot
at
io
n
Co

st
(s
ec
on

ds
) benign

malicious
uncertain

(d) Average Annotation Cost for each Query Type.

Figure 4: Results of the User Experiments.

These discrepancies are not surprising since the participants
have annotated independently, but we can draw lessons from these
user experiments for future annotation projects involving several
annotators. The main difficulty with several annotators is the def-
initions of the detection target and the alert taxonomy. They are
usually not well delineated at the beginning of annotation projects,
and security experts refine their specifications as they annotate
queried instances.

One way is to ask the annotators to agree on the detection target
and the alert taxonomy during a preliminary stage. During the first
iterations, the annotators answer the annotation queries together.
Once the iterations do not lead to the identification of new families,
we can stop the preliminary stage. At the end of the preliminary
stage, the detection target and the alert taxonomy are better delin-
eated. The annotators can then use ILAB alternately to gather more
annotations. If they discover a new family, or they are uncertain
about an annotation, they can consult each other to make decision.
An interesting avenue of research is to adapt ILAB to work with
multi-annotators operating in parallel.

Data Annotation and Feature Extraction are Intertwined. The first
two participants have no information about the features of the
detection model to hide the machine learning complexity. This lack
of information has led to the creation of families that the detection
model could not discriminate. The first participant has ended up
merging these too specific families, there has therefore been no
negative impact on the resulting detection model. On the contrary,
the second participant has kept the specific families until the end

of the annotation process. It has damaged the performance of the
detection model.

The last two participants know the features, and they have not
created families that the detection model could not discriminate
properly by the detection model. They have had no difficulty under-
standing the features included in the model, nor their implications
on the families they can create. They have, however, confirmed their
desire to build more specific families that necessitate additional
features.

ILAB, as the state-of-the-art active learning strategies, assumes
that the features are set at the beginning of the annotation process
and do not change across the iterations. The user experiments have,
nevertheless, shown that the discovery of new families may necessi-
tate adding new features so that the detection model discriminates
them properly. The detection target and the alert taxonomy are usu-
ally not well delineated at the beginning of the annotation process,
so it is hard to anticipate which features should be extracted.

A new avenue of research is to consider active learning strate-
gies where the features change across iterations. Human annotators
could change the features manually, or they could be updated auto-
matically according to the new annotations with a method similar
to [12]. In both cases, a particular care shall be taken to maintain
short waiting-periods and to avoid numerical instabilities.

Security Experts are More Than Oracles. Annotation projects
where security experts build detection models differ significantly
from crowd-sourcing annotation projects. Security experts involved
in annotation projects are not mere oracles. At each iteration, they
domore than answering queries. They delineate the detection target

IDEA @ KDD’18, August 20th, 2018, London, United Kingdom Anaël Beaugnon, Pierre Chifflier, and Francis Bach

and the alert taxonomy, and they want to understand the behavior
of the detection model.

During the user experiments, some participants have wondered
why the detection model is uncertain or wrong about a prediction.
Security experts are willing to follow the evolution of the detection
model across the iterations.

In order to address this need, ILAB annotation system is not
reduced to an Annotation Interface. It also offers a Monitoring Inter-
face to help security experts understand the behavior of detection
models. Moreover, the Family Editor and the Annotated Instances
Interface assist security experts in delineating the detection target
and the alert taxonomy.

To sum up, ILAB active learning system is not a mere annotation
system, it helps security experts build detection models interac-
tively.

8 CONCLUSION
We have designed and implemented an end-to-end active learning
system, ILAB, to bridge the gap between theoretical active learning
and real-world annotation projects. We provide an open source im-
plementation to foster research in this area, and to allow computer
security experts to annotate their own datasets [1].

First, we present ILAB active learning strategy that minimizes
experts waiting-periods: it optimizes the time spent on annotating
to compute queries. Then, we integrate this strategy in a flexible
graphical user interface tailored to security experts needs. Our user
experiments show that ILAB in an efficient solution that security ex-
perts can deploy in real-world annotation projects. They also point
out some avenues of research to further improve user experience.

REFERENCES
[1] 2018. SecuML. https://github.com/ANSSI-FR/SecuML. (2018).
[2] Magnus Almgren and Erland Jonsson. 2004. Using active learning in intrusion

detection. In CSFW. 88–98.
[3] Saleema Amershi, Maya Cakmak, William Bradley Knox, and Todd Kulesza. 2014.

Power to the people: The role of humans in interactive machine learning. AI
Magazine 35, 4 (2014), 105–120.

[4] Stéphane Ayache and Georges Quénot. 2008. Video corpus annotation using
active learning. Advances in Information Retrieval (2008), 187–198.

[5] Jason Baldridge and Alexis Palmer. 2009. How well does active learning ac-
tually work?: Time-based evaluation of cost-reduction strategies for language
documentation. In EMNLP. 296–305.

[6] Anaël Beaugnon, Pierre Chifflier, and Francis Bach. 2017. ILAB: An Interactive
Labelling Strategy for Intrusion Detection. In RAID.

[7] Seamus Clancy, Sam Bayer, and Robyn Kozierok. 2012. Active Learning with a
Human In The Loop. Technical Report. MITRE CORP BEDFORD MA.

[8] Nico Görnitz, Marius Micha Kloft, Konrad Rieck, and Ulf Brefeld. 2013. Toward
supervised anomaly detection. JAIR (2013).

[9] Ben Hachey, Beatrice Alex, and Markus Becker. 2005. Investigating the effects of
selective sampling on the annotation task. In CoNLL. 144–151.

[10] Jaeyeon Jung, Vern Paxson, Arthur W Berger, and Hari Balakrishnan. 2004. Fast
portscan detection using sequential hypothesis testing. In S&P. 211–225.

[11] Todd Kulesza, Saleema Amershi, Rich Caruana, Danyel Fisher, and Denis Charles.
2014. Structured labeling for facilitating concept evolution in machine learning.
In CHI. 3075–3084.

[12] Hoang Thanh Lam, Johann-Michael Thiebaut, Mathieu Sinn, Bei Chen, Tiep Mai,
and Oznur Alkan. 2017. One button machine for automating feature engineering
in relational databases. arXiv preprint arXiv:1706.00327 (2017).

[13] David D Lewis and William A Gale. 1994. A sequential algorithm for training
text classifiers. In SIGIR. 3–12.

[14] Oisin Mac Aodha, Vassilios Stathopoulos, Gabriel J Brostow, Michael Terry, Mark
Girolami, and Kate E Jones. 2014. Putting the Scientist in the Loop–Accelerating
Scientific Progress with Interactive Machine Learning. In ICPR. 9–17.

[15] Vern Paxson. 1999. Bro: a system for detecting network intruders in real-time.
Computer networks 31, 23 (1999), 2435–2463.

[16] Dan Pelleg and Andrew W Moore. 2004. Active learning for anomaly and rare-
category detection. In NIPS. 1073–1080.

[17] Hinrich Schütze, Emre Velipasaoglu, and Jan O Pedersen. 2006. Performance
thresholding in practical text classification. In CIKM. 662–671.

[18] D Sculley, Matthew Eric Otey, Michael Pohl, Bridget Spitznagel, John Hainsworth,
and Yunkai Zhou. 2011. Detecting adversarial advertisements in the wild. In
KDD. 274–282.

[19] Burr Settles. 2010. Active learning literature survey. University of Wisconsin,
Madison 52, 55-66 (2010), 11.

[20] Burr Settles. 2011. From theories to queries: Active learning in practice. JMLR
16 (2011), 1–18.

[21] Jack W Stokes, John C Platt, Joseph Kravis, and Michael Shilman. 2008. Aladin:
Active learning of anomalies to detect intrusions. Technical Report. Microsoft
Network Security Redmond, WA (2008).

[22] Kiri L Wagstaff. 2012. Machine Learning that Matters. In ICML. 529–536.
[23] Colin Whittaker, Brian Ryner, and Marria Nazif. 2010. Large-Scale Automatic

Classification of Phishing Pages.. In NDSS, Vol. 10.

https://github.com/ANSSI-FR/SecuML

	Abstract
	1 Introduction
	2 Problem Statement
	2.1 Context
	2.2 Notations
	2.3 Objective

	3 Related Work
	4 ILAB
	4.1 Active Learning Strategy
	4.2 Annotation System
	4.3 Deployment

	5 User Experiments
	5.1 Annotation Project
	5.2 Experimental Protocol

	6 Validation of ILAB Design
	7 Further Feedback
	8 Conclusion
	References

