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Ultra-weak gravitational field theory

Introduction

Under the effect of gravitation, gas and stars have assembled in the Universe in billions of large-scale structures: galaxies, themselves composed of hundreds of billions of stars. The force that holds the stars in the galaxies should be only the gravity produced by the gas and the stars that make up these galaxies, but this is apparently not the case. Indeed, stars move too fast and should be ejected from galaxies. It would take more force to hold them, and therefore much more matter than what we observe, to such an extent that nine tenths of the mass of galaxies should be composed of what is called dark matter; unless it is the law of gravitation, as formulated by Newton and Einstein, that must be revised to produce a greater gravitational force on the galactic and extra-galactic scale.

Plan of the article

The first part of the paper focuses on the notions of inertial and gravitational masses and their equivalence principle, keystone of the GR; the problem of missing mass is then 1 The ΛCDM model is a parametrization of the Big Bang cosmological model in which the Universe contains a cosmological constant, denoted by Λ, associated with dark energy, and cold dark matter (abbreviated CDM). This model assumes that General Relativity correctly describes gravity on a cosmological scale.

2 GR is a relativistic theory of gravitation developed by Einstein between 1907 and1915 in order to derive all the physical consequences of Special Relativity. In GR, gravitation is the manifestation of the curvature of space-time. By construction the GR equations converge to Newton's universal gravitation for weak gravitational fields.

clarified. The concordance model ΛCDM , adopted by cosmologists, is briefly presented in Chapter 3; the weaknesses of ΛCDM in explaining the formation of galaxies are discussed in this chapter. Chapter 4 states the remarkable Tully-Fisher relationship and presents the phenomenological model MOND recognized for its qualities in reproducing the rotational curves of spiral galaxies. The reader familiar with these topics will prefer to start reading at Chapter 5, from there the new theory presented in this article is discussed. Chapter 5 introduces the graviton, the intermediate boson of gravitation, and attempts to demonstrate its role at the origin of the relativistic mass of baryonic particles. The next chapter focuses on calculating the resulting field of n graviton sources, also at the origin of the gravitational field. Chapter 7 lists the hypotheses on which the quantum gravity model proposed in this paper is based and specifies the calculation steps of the theoretical model. Chapter 8 presents a two-dimensional particle simulator that reproduces the dynamics of the equations of this quantum theory of gravitation; two simulations are presented in the appendix: a first simulation on a galactic scale that reproduces the circular velocities flat curve of a spiral galaxy and a second simulation on the scale of clusters of galaxies that highlights the phenomenon of the homogeneous and isotropic "cutting" of matter, resulting from the interference of the fields of gravitons. The penultimate chapter analyses the consequences of this paradigm on the expansion of the Universe and the last chapter summarizes the results and concludes this article.

Gravitational and inertial masses

Throughout its history, physics revisits notions that are essential for it, sometimes even changing the meaning given to these notions. Mass is an essential notion of physics whose meaning have profoundly evolved since the 17th century leading to the discovery of massenergy equivalence and the Higgs boson.

About the masses

Mass is both a notion measurable by a number in a certain unity: the gram, the kilogram and it is also a measurable notion, in general, it is said that the mass measures the quantity of matter contained in a body. Newton is the first physicist to distinguish between mass and weight, he understands that mass is a property of massive bodies that connects them to an external solicitation called gravitation. For Newton, having a mass couples you to the local gravitational field and leads you to endure a force called weight. He also understands that the motion of a body in a gravitational field does not depend on its mass and distinguishes the inertial mass from the gravitational mass:

• The inertial mass which measures the difficulty of modifying the movement of a body. The more massive an object is, the harder it is to set it in motion when at rest and immobilize it when moving. The inertia of a body is measured by its mass.

• The gravitational mass is the mass of the body that contributes to the gravitational force.

Newton shows that these two notions, which have seemingly nothing in common, are equal if we correctly choose the unit system. Newton notes this equality without interpreting it, he will never draw a conclusion.

The equivalence principal

Since Newton many experiments have been carried out to measure the difference between the gravitational mass and the inertial mass and all have confirmed the equivalence principal which postulates the equality of these two masses. Eötvös measured the difference between these two physical quantities using a high precision torsion scale; his experiments led to the conclusion that the two masses were equal to the ninth decimal place. Einstein used this result to postulate the equivalence principal at the base of the theory of GR. Later even more precise experiments (Branginsky and Panov, 1971) made it possible to gain three orders of magnitude in the precision of the measurements and confirmed the equality of the two masses. Until now the GR remains supported by the available measures.

The problem of the missing mass

A physical system that obeys Newton's gravitation should exhibit a rotation curve that, as in our solar system, should decrease according to Kepler's laws 3 : V c α 1 √ r . However, the observations indicate that the rotation curves of the spiral galaxies seem to flatten out and reach a constant speed: V c = constante (Fig. 1). To explain these curves, the model ΛCDM considers that there is a halo of dark matter, invisible to the instruments, which enshrines the galaxy 4 . According to the same model, dwarf galaxies with only a few million stars, should be surrounded by a super massive halo to explain the very high circular speeds observed [START_REF] Simon | A complete spectroscopic survey of the milky way satellite segue 1: The darkest galaxy[END_REF] while giant elliptical galaxies composed of several hundreds of billions stars would not have a significant halo. Astronomers consider that the weaker the density of surface light observed is, the more the halo of dark matter is necessary [START_REF] De Block | Testing the hypothesis of modified dynamics with low surface brightness galaxies and other evidence[END_REF].

Fig. 1: The rotation curves of spiral galaxies [START_REF] Sofue | Central rotation curves of spiral galaxies[END_REF] flatten rather than decreasing in 1 √ r

3 According to Newton's second law, the object undergoes a force F (r) = -m∇ Φ(r) thus F (r) = -md Φ/dr = m a = -mω 2 r er = -m(v 2 circ /r) er where a is the acceleration vector, vcirc is the circular speed and er is the unit vector in the radial direction pointing outwards. These equations provide a very simple expression for the circular speed:

V 2 circ = GM (r) r
. This relation indicates that the circular velocity of the object of mass m decreases in 1 √ r . 4 The dark matter halo density is often simply described by the model ρ(r) = ρ 0 1+( r rc ) 2 where ρ0 is the central density and rc the heart radius of this halo.

The dynamic mass / baryonic mass ratio

In astronomy, the dynamic mass / inertial mass ratio can be defined by the speed ratio V 2 V 2 b [START_REF] Mcgaugh | The mass discrepancy-acceleration relation: Disk mass and the dark matter distribution[END_REF] where V is the observed circular velocity and V b the velocity attributable to the visible baryon mass. If we consider spherical systems, the velocity square ratio is equivalent to the mass ratio. No dark matter is required when V = V b , but it is necessary as soon as V > V b : the amplitude of the ratio increases with the decrease of the acceleration. Fig. 3: Zoom on the ratio of the dynamic / baryonic masses on more than one hundred spiral galaxies as a function of the acceleration g N =

V 2 b r predicted by the observation of the surface density [START_REF] Famaey | Modified newtonian dynamics (mond): Observational phenomenology and relativistic extensions[END_REF].

These two graphs show that there is a threshold acceleration a 0 ≈ 10 -10 ms -2 below which it is necessary to invoke the presence of dark matter to explain the ratio of speeds > 1. This threshold acceleration a 0 is very low, much lower than that encountered in our solar system; which indicates the absence of dark matter in our solar system. Equivalently, the dark matter becomes necessary when the baryonic surface density is very low Σ 0 < a 0 G5 .

Baryonic matter

In the standard model of particle physics, the four fundamental forces are transmitted by particles called bosons (the photon is a boson, vector of the electromagnetic interaction), while ordinary matter is composed of particles called fermions. The fact that a particle is a boson or a fermion has important consequences on the observable statistical properties in the presence of a large number of particles. Fermions break down into two types, leptons that are not subject to strong interaction (e.g. electrons) and quarks that are subject to all interactions of nature. Quarks combine in triplets to form protons and neutrons; they are called baryons and their mass varies, but in all cases, this mass is much greater than that of the electron. Baryons make up the vast majority of ordinary matter around us, baryonic matter 6 .

The ΛCDM model

It is often called a standard model or concordance model because it is the simplest model that accounts for the properties of the cosmos:

• the existence and structure of the cosmic microwave background,

• the large-scale structure of the observable Universe and the distribution of galaxies,

• the abundance of light elements (hydrogen, helium and lithium),

• the acceleration of the expansion of the Universe. This model represents a homogeneous and isotropic universe, whose spatial curvature is zero, and which contains dark matter and dark energy in addition to ordinary matter. Dark matter is composed of very massive WIMP particles 7 , which should be detected. Many experiments of direct and indirect detection of Wimps have, however, been unsuccessful to date 8 . The successful explanation of the structure of the cosmic microwave background (see Fig. 4) is to be credited to the model ΛCDM .

Fig. 4: Spectral power density of the cosmic microwave background. In blue the Planck satellite data and in red the best-fit of the ΛCDM [START_REF]Planck 2013 results. xv. cmb power spectra and likelihood[END_REF] model. The cosmological model is able to faithfully reproduce Planck's data. 6 In cosmology, baryonic matter refers to protons, neutrons, with which we implicitly associate electrons (which are not baryons, but leptons ) and photons (which are bosons). The term non-baryonic matter is frequently used to describe any form of exotic matter other than baryons, leptons and photons. So it is said that dark matter must be non-baryonic. 7 Weakly Interacting Massive Particles are hypothetical particles that interact very weakly with baryons. This very weak interaction, associated with a large mass (of the order of an atomic nucleus), makes it a credible candidate for the ΛCDM model. 8 WIMP detection experiments are in progress in the world: CDMS, CRESST, EDELWEISS, HDMS, PICO, DAMA, ZEPLIN, PICASSO, XENON, SIMPLE, DEAP

The cosmological constant

Λ is usually the symbol of the cosmological constant, which is the simplest form of "dark energy". Introduced and rejected by Einstein, the cosmological constant is very useful to explain the acceleration of the Universe. This constant translates into Einstein's equation the effect of a kind of anti-gravity, generating a repulsion between galaxies, and which moreover does not dilute in the expansion (or is created continuously). The nature of this dark energy remains entirely enigmatic: it can not be the energy of the quantum vacuum because it is weaker than 120 orders of magnitude [START_REF] Carroll | Dark energy and the preposterous universe[END_REF], [START_REF] Huterer | Dark energy and the accelerating universe[END_REF].

The problems of the ΛCDM model

On a very large scale, when the Universe appears homogeneous, the ΛCDM model seems to correctly describe the astronomical observations. However, on the scale of the galaxies, we realize that this paradigm is far from accounting for all the observations. Numerous studies are devoted to the ΛCDM model problems [START_REF] Perivolaropoulos | Six puzzles for lcdm cosmology[END_REF], [START_REF] Kroupa | Local-group tests of dark-matter concordance cosmology: Towards a new paradigm for structure formation[END_REF], [START_REF] Combes | Galaxy formation and baryonic dark matter[END_REF], [START_REF] Peebles | Clues from nearby galaxies to a better theory of cosmic evolution[END_REF], [START_REF] Anderson | Do hot haloes around galaxies contain the missing baryons?[END_REF], [START_REF] Disney | Galaxies appear simpler than expected[END_REF], [START_REF] Trippe | The missing mass problem in astronomy and the need for a modified law of gravity[END_REF] :

1. The problem of cusps in the center of galaxies. The galaxy formation simulations of the ΛCDM model predict too much dark matter in the center of the galaxies, in total disagreement with the observations. Observations of the effects of gravitational microlenses towards the galactic center tend to show that there are enough stars in the center of the Milky Way to explain the dynamics of the central 5 kiloparsecs. So there is almost no dark matter in the center of our Galaxy [START_REF] Binney | Modified newtonian dynamics in the milky way[END_REF], [START_REF] De Blok | The core-cusp problem[END_REF], [START_REF] Ogiya | The core-cusp problem in cold dark matter halos and supernova feedback: Effects of mass loss[END_REF], [START_REF] Block | Dark and luminous matter in things dwarf galaxies[END_REF], [START_REF] Kroupa | Density profiles of dark matter haloes on galactic and cluster scales[END_REF], [START_REF] Richtler | The dark halo of the hydra i galaxy cluster: core, cusp, cosmological? dynamics of ngc 3311 and its globular cluster system[END_REF], [START_REF] Newman | The distribution of dark matter over 3 decades in radius in the lensing cluster abell 611[END_REF], [START_REF] Newman | The dark matter distribution in abell 383: Evidence for a shallow density cusp from improved lensing, stellar kinematic and x-ray data[END_REF].

2. The problem of missing satellite galaxies. Galactic formation simulations of the ΛCDM model predict a plethora of satellite galaxies that are not observed [START_REF] Governato | At the heart of the matter: the origin of bulgeless dwarf galaxies and dark matter cores[END_REF], [START_REF] Bullock | Notes on the missing satellites problem[END_REF], [START_REF] Klypin | Where are the missing galactic satellites ?[END_REF]. There is a factor of ten between the observations and the model.

3.

The problem of angular momentum. The numerical simulations of the ΛCDM model provide a transfer of the angular momentum of the galactic disk to the dark matter halo. This results in an angular momentum of the baryonic material lower than that observed. This problem is related to that of cusps [START_REF] Primack | The origin and distribution of angular momemtum in galaxies[END_REF], [START_REF] Steinmetz | The angular momentum problem in cosmological simulations of disk galaxy formation[END_REF].

The Tully-Fisher relationship.

There is a relation, called Tully-Fisher relation (see §4.1), which states that the amount of baryonic matter M b of a galaxy is directly proportionate to the fourth power of the circular velocity V of the stars at great distance from the center [START_REF] Mcgaugh | The baryonic tully-fisher relation of galaxies with extended rotation curves and the stellar mass of rotating galaxies[END_REF]. The asymptotic circular velocity V is supposed to be entirely determined by the total mass of the galaxy, and thus not only by the baryonic mass as observed. The ΛCDM model is not able to explain this relationship [START_REF] Mcgaugh | The baryonic tully-fisher relation of gas rich galaxies as a test of lcdm and mond[END_REF].

5.

The "conspiracy" between dark matter and baryonic matter. A close relationship is observed between the distribution of baryonic matter and dark matter inside galaxies [START_REF] Gentile | Universality of galactic surface densities within one dark halo scale-length[END_REF], [START_REF] Salucci | A constant dark matter halo surface density in galaxies[END_REF], [START_REF] Gavazzi | The phenomenology of disk galaxies[END_REF], [START_REF] Mcgaugh | The mass discrepancy-acceleration relation: Disk mass and the dark matter distribution[END_REF], and to such an extent that the irregularities of the rotational speed curves occur precisely where the distribution of light (that is to say of baryonic matter) presents the same irregularities [START_REF] Broeils | The mass distribution of the dwarf spiral ngc 1560[END_REF], [35] [36]. This correspondence is difficult to understand in the context of the ΛCDM model, since it is supposed to interact little with baryonic matter.

6. The problem of the overabundance of galaxies without a central nucleus.

The galaxies formation simulations of the ΛCDM model predict a majority of nucleus galaxies, in total disagreement with the observations. Dark energy seems to play a preponderant role in the equilibrium and stability of galaxies see [START_REF] Perivolaropoulos | Six puzzles for lcdm cosmology[END_REF], [START_REF] Kormendy | Bulgeless giant galaxies challenge our picture of galaxy formation by hierarchical clustering[END_REF], [START_REF] Governato | At the heart of the matter: the origin of bulgeless dwarf galaxies and dark matter cores[END_REF].

7. The problem of the missing baryonic matter. The study of the cosmic microwave background indicates that according to the model ΛCDM , the Universe consists of Ω m = 27% dark matter and Ω b = 4.6% of baryonic matter. But if this proportion f b = Ω b /Ω m = 17% is globally respected on the scale of the galaxy clusters, it is not observed at all on the scale of the galaxies where dark matter is much more important. The question then arises of knowing where the missing baryonic matter is. It appears that the more massive the object is, the less it is dominated by dark matter. This correlation confirmed by the observations is not predicted by the ΛCDM model. The problem of missing baryonic matter is to be correlated with the Tully-Fischer relationship [START_REF] Mcgaugh | The baryon content of cosmic structures[END_REF], [START_REF] Mcgaugh | Baryons and their halos[END_REF], [START_REF] Anderson | Do hot haloes around galaxies contain the missing baryons?[END_REF], [START_REF] Bregman | On the baryon fractions in clusters and groups of galaxies[END_REF].

As we have seen in this chapter, the black matter halos of the ΛCDM model are indifferent to the physical scale. The density profile of the dark matter halos is independent of the size of the halo, there is no threshold of acceleration nor threshold of surface density contrary to the astronomical observations. The Tully-Fisher relationship is essential in astronomy, it represents a real challenge for the ΛCDM model that can not explain it.

The Tully-Fisher relation and the MOND phenomenology 4.1 The Tully-Fisher relation

In astronomy, the Tully-Fisher law is an established empirical relation between the intrinsic luminosity of a spiral galaxy (proportionate to its stellar mass) and the amplitude of its rotation curve. This relation makes it possible to calculate the absolute magnitude of a spiral galaxy and subsequently its distance (Fig. 5). The Tully-Fisher relation relates the speed of rotation of stars around the center of a spiral galaxy to its luminosity. The brightness of a galaxy can not be determined without the knowledge of its distance, and conversely, the knowledge of its luminosity makes it possible to deduce the distance once the apparent magnitude of the galaxy is known. The speed of rotation of the galaxy is itself easily measurable by Doppler effect. Finally, with the Tully-Fisher relation the distance of galaxies can be determined. In a log-log space, this relation can be written:

log M b = α log V f -log β (1)
With a slope α = 4 and a constant β = Ga where a =

V 4 f GM b ≈ 10 -10 ms -2 .
V f is the circular speed at the flat part of the rotation curve [START_REF] Mcgaugh | The baryonic tully-fisher relation of galaxies with extended rotation curves and the stellar mass of rotating galaxies[END_REF].

The MOND phenomenology (Modified Newtonian Dynamics)

In 1983, the physicist M. Milgrom [START_REF] Milgrom | A modification of the newtonian dynamics as a possible alternative to the hidden mass hypothesis[END_REF] proposed a small modification of Newton's theory which solved the problem of over-fast rotation of stars and galaxies. The proposed change was: instead of F = m a, he postulated that we have :

F = m.µ a a 0 . a, with a = | a| and µ(x) = 1 if x 1 and µ(x) = x if |x| 1 (2)
The term a 0 is supposed to be a new constant of physics having the dimension of an acceleration. From astrophysical observations, Milgrom deduced a value from its constant : a 0 = 1, 2 10 -10 ms -2 . The exact definition of µ is not specified, only its behavior is specified for the extreme values of x. The interesting point of this approach is that MOND tackles Newton's second law and more precisely acceleration. This law is well known, and has always been confirmed in all classical physics experiments; however, this law has never been tested in situations where the acceleration is extremely low, which is the case on the galactic scale: the distances are so great that the gravitational attraction is tiny. Contrary to the paradigm of dark matter, the MOND hypothesis makes it possible to explain naturally the relation of Tully-Fisher [START_REF] Mcgaugh | A novel test of the modified newtonian dynamics with gas rich galaxies[END_REF] linking the quantity of baryonic matter M b of a galaxy to the fourth power of the circular speed V of stars at great distance from the center 9 . The theory also predicts the formation of galactic bars statistically more consistent with observations than is predicted in the dark matter paradigm [START_REF] Combes | Evolution of spiral galaxies in modified gravity[END_REF], and reproduces the dynamics of small groups and superclusters of galaxies without resorting to dark matter [START_REF] Mcgaugh | Modified newtonian dynamics as an alternative to dark matter[END_REF].

The first four chapters are devoted to presentations of concepts, astronomical data and known theoretical relations, the next chapter introduces a new notion that will be the thread of the theoretical model of ultra-weak gravitational fields.

9 V 4 r 2 = gN a0 ⇔ V 4 = GM b a0
5 Quantum interpretation of the relativistic mass Special relativity postulates the equivalence between mass and energy. The energy of a mass particle (at rest) m = m 0 going at speed v is E(v) = γm 0 c 2 and its relativistic mass is then defined by m(v) = E(v) c 2 = γm 0 10 . After a brief presentation of the graviton and the relativistic Doppler effect this chapter aims to give a quantum interpretation to the relativistic mass.

The graviton

According to quantum mechanics, for there to be an interaction between particles of ordinary matter, at least one elementary particle (a boson) must be emitted, absorbed or exchanged. The photon is the intermediate boson of the electromagnetic interaction, the W + , W -, Z are the intermediate bosons of the weak interaction, and the gluons are those of the strong interaction at the quark level. As for graviton, the supposed vector of gravitational interaction, its existence has not been confirmed experimentally. If gravitational effects are negligible in particle physics measurements, they become dominant at astronomical scales. Of infinite scope, the graviton with a zero mass at rest would be responsible for the force of attraction of two masses to each other and the fall of the bodies. In the rest of the document we will assume the existence of this intermediate vector. We will assume that the baryons continuously emit a large amount of gravitons of zero mass at rest and very low energy < 10 -29 eV [START_REF] Goldhaber | Photon and graviton mass limits[END_REF], [START_REF] Desai | Limit on graviton mass from galaxy cluster abell 1689[END_REF] i.e. with a very large associated Compton wavelength λ g > 4 Mpc, much larger than the size of a galaxy.

Reminders on the transverse relativistic Doppler effect

Frames of reference

Let's set the case where the frame of reference R is animated with a uniform v speed relative to the frame of reference R. The O x axis of R coincides with the Ox axis of R and the v speed direction, the other two axes remaining constantly parallel. The origin of the time t = 0 is taken at the moment when the points O and O coincide 11 .

Fig. 6: The two frames of reference R and R

Invariance of the phase of a wave

The wave equation is invariant by Lorentz transformation. Indeed if: 11 All the notation in "'" will refer to the R repository and the simple notation to the repository R for a wave A(x, y, z, t) = A 0 cos ωt -k r + Φ where ω and k are the pulsation and the wave vector and with ω 2 /c 2 -k 2 = 0 in the frame of reference R, A (x , y , z , t

( 1 c 2 ∂ 2 ∂t 2 -∇ 2 )A(x, y, z, t) = 0 ( 3 
)
10 γ = 1 1-v 2 c 2
) = A 0 cos ω t -k r + Φ verify ( 1 c 2 ∂ 2
∂t 2 -∇ 2 )A (x , y , z , t ) = 0 in the frame of reference R . The invariance of the phase results in: ωt -k r = ω t -k r . Let us choose a wave propagation direction parallel to the x-axis common to both frames. In these conditions: ωt -kx = ω t -k x . The transformation of Lorentz 12 allows substitution:

ωt -kx = ω γ(t -vx c 2 ) -k γ(x -vt) = γ(ω + k v)t -γ( ω v c 2 + k )x.
By identifying term to term it comes:

k = γ(k + ω v c 2 ) ω = γ(ω + k v) (4) 
This shows that ck and ω obey the Lorentz transformation, the equations are covariant.

Transformation of the pulsation

The source has a speed lower than c and emits waves that move at the speed of light. The expression of the transformation of the pulsation can also be written in a vectorial way [START_REF] Einstein | Zur elektrodynamik bewegter körper[END_REF] :

ω = γ(ω + k v) = γ(1 + e k v c )ω = γ(1 + cos(θ)β)ω ( 5 
)
where e k is the unit vector in the direction of the wave vector k and θ the angle between the vectors e k and v. 

ν relativistic graviton = γ(1 + β cos(θ))ν graviton = γ(1 + β cos(θ)) c λ graviton (6) with β = v c et γ = 1 √ 1-β 2 the Lorentz factor. 12                x = γ(x -vt) t = γ(t -vx c 2 ) y = y z = z γ = 1 1-v 2 c 2

Calculation of the average frequency of a graviton

The average frequency of gravitons perceived by observers uniformly distributed on the surface of a sphere of radius R 0 is :

ν graviton mean = 1 N 0 Sphere γ(1 + βcos(θ))ν graviton R 2 0 ρ 0 sin(φ) dθ dφ (7) = 1 N 0 2π 0 dθ π 0 γR 2 0 ρ 0 sin(φ)(1 + βcos(θ))ν graviton dφ (8) 
= γν graviton

With N 0 = 4πR 2 0 ρ 0 the total number of observers and ρ 0 the surface density of the observers on the radius sphere R 0 .

The average energy of gravitons perceived by observers uniformly distributed on the surface of a sphere of radius R 0 is:

E average graviton = γhν graviton (10) 
This formula tells us that the average energy of a graviton is independent of the distance from the source and is proportionate to the Lorentz factor. If we consider the formula of the mass-energy equivalence E = hν = mc 2 , the equation ( 10) is comparable to that of the relativistic mass of inertia m(v) = γm 0 of special relativity where m 0 is the mass at rest. These results seem to indicate that the inert mass of a body is proportionate to the intensity of the graviton field created by this same body and that gravitons are locally responsible for the relativistic mass of baryons. Moreover, according to the hypotheses of the model, which will be exposed in chapter 7.1, the gravitons pursue a rectilinear and uniform trajectory and deform the space-time on their way, in accordance with the equations of the GR which results in creating gravitation. We can at this stage make several remarks:

• At rest the average graviton energy is hν graviton • In the absence of a graviton field, the source would have zero inertia

• When approaching the speed of light, the source tends to get closer to the gravitons it emits, the gravitons accumulate and deform space-time locally

• The relativistic Doppler effect increases the mean frequency of the graviton field proportionately to the Lorentz factor at the origin of the relativistic inertial mass

• In this model, the graviton field is at the origin of inertial and gravitational masses.

The principle of equivalence appears as a direct consequence of the model

The mass would not be a property of physical objects but rather something that we observers have the impression it possesses. Mass would no longer be an intrinsic property but a secondary property that derives from the interaction of particles with the quantum vacuum and whose graviton is the intermediate boson. If we consider that the relativistic mass is the result of a relativistic Doppler effect and that the principle of equivalence between the inertial mass and the gravitational mass is applied, it is possible to conclude that gravitons are also at the origin of the gravitational field. In this context, it is interesting to compute the field resulting from the graviton fields created individually by each of the sources. The following chapter details the steps of this calculation.

6 Calculating the graviton field

Spherical field

We assume that baryonic sources generate spherical graviton fields of wavelength, λ, described by the monochromatic wave equation:

( 1 c 2 ∂ 2 ∂t 2 -∇ 2 )ψ(r, t) = 0 (11) 
where ψ(r, t) represents the amplitude of the wave and c the phase velocity. We perform a Fourier transformation of the temporal dependence in order to describe the spatial dependence by the Helmholtz equation.

ψ(r, t) = ∞ -∞ 1 2π e -iωt φ k (r)dω (12) 
The Helmholtz equation represents the stationary form of the wave equation [START_REF] Combes | Galaxy formation and baryonic dark matter[END_REF].

(∇ 2 + k 2 )φ k (r) = 0 ( 13 
)
where k = ω c is the wave number.

Computation of the field resulting from n sources and interferences of the fields of gravitons

We suppose that the gravitational sources S i are numerous, and distributed inside a spherical envelope. The sources are mutually coherent and interfere at point P. Gravitational interferences consist of a modulation of the spatial energy induced by the superposition of the gravitational fields which present a phase difference at point P. e -iωt ρ ω (r)dω [START_REF] Disney | Galaxies appear simpler than expected[END_REF] ρ ω (r) is the stationary form of the surface distribution density of the sources. The number of baryonic sources contained in a sphere of radius R is:

S b (R) = 4π R 0 r 2 ρ ω (r)dr (15) 
In the context of multiple sources, we introduce the inhomogeneous Helmholtz equation, which is the analog of the wave equation (in the frequency domain) of the Poisson equation 13 (when k = 0), We consider that each source generates a spherical field φ k (r). The sources have a wavelength λ (the wave number k = 2π λ ).

φ k (r) = e ik r (16) 
We suppose that the sources are numerous, analogous and distributed in a spherical envelope. The resulting complex field Φ k (r) is

Φ k (r) = v ρ ω (r') e -jk|r-r'| |r -r'| dv (17) 
where r = a point in the field and r = a source point, ρ ω (r) describes the spatial distribution of the sources.

The resulting complex field can be written as a convolution product:

ρ ω (r') e -jk|r| |r| (18) 
e -jk|r| 4π|r| is the function of Green of the operator (∇ 2 + k 2 ) so we have:

(∇ 2 + k 2 ) e -jk|r| 4π|r| = δ(r) (19) 
Consequently :

(∇ 2 + k 2 )Φ k (r) = (∇ 2 + k 2 )ρ ω (r') e -jk|r| |r| = 4πρ ω (r)δ(r) (20) 
The distribution of Dirac δ(r) is the neutral element of the convolutional algebra, so we finally have:

(∇ 2 + k 2 )Φ k (r) = 4πρ ω (r) (21) 
The formulation of the field resulting from n sources allows us to build our quantum model of ultra-weak gravitational fields.

7 Presentation of the theoretical model 2. Baryonic matter radiates, at any moment, a large quantity of gravitons in an isotropic way 3. The extremely low energy of the graviton (< 10 -29 eV) gives it a probability of zero interaction, the graviton interferes only with itself. Gravitons do not carry any energy and do not deposit any energy in the quantum vacuum.

4. Gravitons are all identical and move in a rectilinear and uniform path at the speed of light and have a single Compton wavelength λ g (> 4 Mpc). The energy of a graviton is the product of the frequency of the wave associated with the boson by the Planck constant.

5. The quantum vacuum is sensitive to the gradient of the density of probability of presence of gravitons14 .

6. The quantum vacuum is able to detect gravitons, it contains the energy necessary for the deformation of space-time in accordance with the equations of the GR15 .

7. The quantum vacuum graviton detection mechanisms saturate rapidly and process only a fraction of the density of probability of presence of gravitons 16 .

8. Below a threshold of density of probability of presence of gravitons17 the quantum vacuum detection mechanisms desaturate and the quantum vacuum regains its capacity to process more information. This desaturation explains the astronomical observations of the extragalactic systems (see Fig. 9) 18 .

The calculation steps of the theoretical model

The steps for calculating the gravitational acceleration are based on the assumptions set out above:

1. The inertial mass whose spatial distribution ρ(r) is known allows the field of gravitons and the corresponding interferences to be calculated. The function Φ represents the field of gravitons, a solution of the Helmholtz equation [START_REF] Richtler | The dark halo of the hydra i galaxy cluster: core, cusp, cosmological? dynamics of ngc 3311 and its globular cluster system[END_REF]. To calculate the equivalent gravitational field, simply multiply the right part of the Helmholtz equation by the gravitational constant G.

(∇ 2 + k 2 )Φ(r) = 4πGρ(r) (22) 
The term k 2 Φ(r) of the equation ( 21) is an interference term that takes into account the wave nature of the graviton field.

2. We will note the Density of Probability of the Gravitational field (DPG):

Φ(r)Φ(r) (23) 
3. The quantum vacuum is sensitive to DPG but is not able to process it completely and saturates quickly beyond a threshold that we translate as an acceleration a 0 . Beyond this threshold a 0 , the quantum vacuum deals only with the square root of the DPG:

Φ(r)Φ(r) = |Φ(r)| i.e. the module of Φ(r) (24) 
The quantum vacuum triggers a process that results in the curvature of space and time in accordance with the GR equations.

4. The acceleration threshold a 0 can be tested by calculating the gradient of the fraction of the DPG actually treated:

∇ Φ(r)Φ(r) = ∇|Φ(r)| (25) 
5. For accelerations < a 0 = 10 -10 m/s 2 , the quantum vacuum begins to desaturate, it is able to process a larger part of the DPG. µ [Φ(r)] is a function that explains this desaturation as:

Ψ(r) = µ [Φ(r)] |Φ(r)| (26) 
Ψ(r) represents the DPG actually treated by the quantum vacuum ∀ acceleration.

6. The desaturation function µ [Φ(r)] can be deduced from the Tully-Fischer relation and thus from the linear form of the phenomenological theory MOND: QUMOND 19 . One possible form of this function is [START_REF] Combes | Evolution of spiral galaxies in modified gravity[END_REF]:

µ [Φ(r)] = 1 2 1 + 1 + 4a 0 ∇|Φ(r)| (27) 
The function µ [Φ(r)] of desaturation is a dimensionless number.

7. If we put 'a' as the acceleration and 's' as the size of the studied system, if a a 0 and s λ g (for example the solar system) then: lim a a 0 s λg

Ψ(r) = Φ(r) ⇒ ∇ 2 Φ = 4πGρ ⇒ Equation of P oisson (28) 
8. The actual acceleration is the gradient of the fraction of the DPG actually treated by the quantum vacuum multiplied by the saturation function µ [Φ(r)]:

a real = µ [Φ(r)] ∇|Φ(r)| (29) 
9. The gravitational mass (dynamic mass) is deducted from a real . The gravitational mass curves space and time according to the equations of the GR 20 . The inertial mass and the gravitational mass are no longer equivalent.

Discussion

If locally the principle of equivalence is always respected, this principle no longer applies in large structures. In this paradigm, the gravitational mass or dynamic mass that represents the mass of the body that contributes to the gravitational force is no longer equivalent to the energetic mass or inertial mass which represents the quantification of the resistance of a body to acceleration. At great distances and at low accelerations there is a decoupling between these two masses and the principle of equivalence no longer applies. This decoupling is particularly visible in the figures 2 and 3.

The galactic regime

When s λ g and a a 0 , for example in a spiral galaxy then:

|Φ(r)| = Φ(r) and thus a real = µ [Φ(r)] ∇Φ(r) (30) 
∇Φ(r) = a N ewton is Newton's acceleration and lim

a a 0 s λg µ [Φ(r)] = a 0 a N ewton thus lim a a 0 s λg a 2 real = a 0 a N ewton (31) 
which is equivalent to the phenomenological theory MOND. A direct application of this equation consists in calculating the circular speed limit V f reached in galaxies and galaxy clusters (the limit circular speed is not necessarily the maximum speed reached Fig. 1).

a 2 real = a 0 a N ewton = GM b r 2 a 0 and a real = V 2 f r so V 4 f = GM b a 0 ( 32 
)
V f is a constant independent of r. As we saw in §4.1, the speed limit ( 32) is observed on structures whose mass is very variable and involves the threshold of acceleration a 0 . Two new constants appear in this model. A parameter λ g linked to a spatial dimension and a second parameter related to an acceleration a 0 . If the value of a 0 is perfectly known, the value λ g is more difficult to determine accurately.

Acceleration threshold and threshold surface density

The equations 21 and 22 are linked by the gravitational constant G. The gradient of the gravitational field makes it possible to calculate an acceleration and the gradient of the graviton field makes it possible to deduce a density of surface. If there is an acceleration threshold a 0 below which the quantum vacuum desaturates, their should be the equivalent of a threshold density Σ 0 = a 0 G below which we observe a comparable phenomenon. Recent observations of rotational curves [START_REF] Gentile | Universality of galactic surface densities within one dark halo scale-length[END_REF], [START_REF] Salucci | A constant dark matter halo surface density in galaxies[END_REF] have confirmed that galaxies require a surface density of dark matter (Fig. 10) equal to a 0 2πG = 138M pc -2 (a 0 = 1, 2 10 -10 ms -2 )21 in accordance with the theory [START_REF] Milgrom | The central surface density of "dark halos" predicted by mond[END_REF]. This remarkable correspondence between the astronomical observation and the model has no equivalent in ΛCDM which is not able to account for the universality of this surface density. 

Gravitational interferences

If the interference term k 2 Φ(r) is not significant when s λ g (with s the size of the studied system) it becomes essential and helps to attenuate the density of probability of gravitons, which in turn paradoxically increases acceleration. Given the very long wavelength of the graviton, the interference phenomena appear in the clusters of galaxies and strongly contribute to the increase of the acceleration and therefore to the observed velocities. This remarkable point does not appear in the MOND phenomenology because the principle of gravitational interference is absent.

Potential gravitational mass

The potential dynamic mass is colossal, if the quantum vacuum had the possibility to treat the totality of the DPG as defined by the equation [START_REF] Newman | The dark matter distribution in abell 383: Evidence for a shallow density cusp from improved lensing, stellar kinematic and x-ray data[END_REF], it would decrease in 1 r and all the stars would collapse under their own weight to end up as black holes. At the time of the formation of large structures, the gas clouds, like dwarf galaxies that reveal a very high ratio V V b 22 > 3400 [START_REF] Simon | A complete spectroscopic survey of the milky way satellite segue 1: The darkest galaxy[END_REF], probably showed accelerations below threshold a 0 . The gravitational force within these clouds must have been much higher than that of Newton and the first structures must have collapsed faster and therefore earlier than expected by the ΛCDM model. 

   ∂ t f (t, x, v) + v.∇ x f (t, x, v) + F (t, x).∇ x f (t, x, v) = 0 ∆Φ(x) + k 2 Φ(x) = aρ(x) := a f (x, v)dv ( 33 
)
22 V is the observed circular velocity and V b velocity attributable to visible baryonic mass 23 You can use, modify and / or redistribute the code of Vlasov-Helmholtz particle-in-cell 2D Simulator and its documentation under the terms of CeCILL-B license as circulated by CEA, CNRS and INRIA at www.cecill.info For further information contact Martin Campos Pinto, LJLL (CNRS / UPMC) -campos@ann.jussieu.fr

The unknowns factors are :

• The position of the sources x = (x, y) ∈ R 2

• The velocity of the sources v = (v x , v y ) ∈ R 2

• The time t ≥ 0

• f (t, x, v) : the density of the sources in the phase space • Φ(t, x) : the complex potential of Helmholtz generated by the sources • F (t, x) := µ [Φ(t, x)] ∇|Φ(t, x)| : the gravitational force with µ [Φ(t, x)] the desaturation function :

µ [Φ(t, x)] = 1 2 1 + 1 + 4a 0 ∇|Φ(t,x)| • The spatial frequency k ∈ R • The constant a = 4πG
The fields are exponentially amortized on the edges of the simulated system to avoid any rebound effect. Each source represents a number of configurable solar masses.

8.1.1 Dynamics of simulated system parameters P.I.C. 2D software is able to produce animated sequences of the parameters of the simulated system and in particular:

• The average density of the sources 24

ρ (t, r) = 1 2π 2π 0 ρ(t, x r,θ ) dθ = 1 2π f (t, x r,θ , v)dv dθ (34) 
• Average speed of sources

|v| (t, r) = |v|f (t, x r,θ , v)dv dθ f (t, x r,θ , v)dv dθ (35) 
Tangential and radial speeds are also available

• The real part of the graviton field

Φ Re (t, r) = 1 2π 2π 0 Φ(t, x r,θ ) dθ (36) 
• The DPG, the calculation is identical to the equation [START_REF]Insight into the baryon-gravity relation in galaxies[END_REF] with the modulus of the field squared

|Φ| 2 = Φ 2 Re + Φ 2 Im ( 37 
)
• Gravitational field acceleration A(t, x) = µ [Φ(t, x)] ∇|Φ(t, x)| |A| (t, r) = 1 2π 2π 0 |A(t, x r,θ )| dθ (38) 
Tangential and radial forces are also available 24 The average of a function u(x) is calculated on a circle of radius r: u (r) := 1 2π 2π 0 u(x r,θ ) dθ with x r,θ := (r cos θ, r sin θ)

Setting the initial conditions

• Initial density of sources f (t = 0, x, v) = ρ 0 (r)δ v 0 (r,θ) (v) [START_REF] Mcgaugh | Baryons and their halos[END_REF] with x = (r cos θ, r sin θ), ρ 0 (r) = N 0 2πσ 2 e -r 2 2σ 2 and N 0 := f 0 (x, v)dxdv the total density of the sources of the initial distribution, σ the variance of the initial density.

• Initial velocities of sources

v 0 (r, θ) = α 0 + α 1 √ r + α 2 r (r + β 1 )(r + β 2 ) -sin θ cos θ (40) 
with α 0 , α 1 , α 2 , β 1 , β 2 free parameters

Simulations : Cases studies

The P.I.C. 2D simulator is highly configurable, it allows us to fix the size of the simulated system, the weight of the sources, the initial conditions of density and speed of the sources, and thus simulate virtually any type of galaxy. Two simulations are exposed: a first simulation on a galactic scale that reproduces a curve of the circular velocities of a spiral galaxy and a second simulation on the scale of clusters of galaxies. The settings and results of the simulations are presented in the appendix.

9 The acceleration of the expansion of the Universe

Dark energy

The ΛCDM model invokes two unknown components. Indeed, the comparison of the recession velocity of distant galaxies with their distance based on the observation of type Ia supernovae (whose intrinsic brightness is considered as known and compared to the apparent brightness) suggests that the expansion of the Universe is accelerating [START_REF]Measurements of omega and lambda from 42 high-redshift supernovae[END_REF]. These distances are greater than what is expected for a Universe expanding at a constant rate, meaning that we must go back further in the past to find a given speed of expansion, and therefore that the expansion of the Universe was slower at the beginning. In other words, the acceleration of the expansion of the Universe was discovered by measuring the distance of the brightness of stars whose absolute magnitude is known. The relationship between the luminosity distance and the redshift of these objects has made it possible to reconstruct the history of the Universe's expansion over several billion years, and to conclude that it has accelerated [START_REF] Kowalski | Improved cosmological constraints from new, old and combined supernova datasets[END_REF].

A dynamic pseudo-demonstration of the expansion of the Universe

Without using the formalism of the GR equations, we can estimate the effect of this new theory on the expansion of the Universe in a simple way. For the sake of simplicity we can scrap the effect of interferences, which would be difficult to calculate dynamically, and use the equation of acceleration of the galactic regime a 2 real = a 0 a N ewton i.e. the phenomenological theory MOND. The field of gravity at any point can be calculated using

The curve of the scale factor of the Einstein-de Sitter model is always lower than that of the model with MOND. This curve makes it possible to calculate the propagation of a photon in an expanding universe. The path of a photon in comobile coordinates is :

dx = c dt R(t) ⇒ ∆x = c tr te dt R(t) (47) 
with t e the time at photon emission and t r the time at photon reception. To simplify we take R(t r ) = 1 (the time at photon reception is the present time) and R(t e ) = 1 1+z with z the redshift 27 . We calculate the distance modulus used by astronomers:

r(z) = 5 log ∆x(z)(1 + z) ∆x(z 10pc )(1 + z 10pc ) (48) knowing that z 10pc = λ-λ 0 λ 0 = ν 10pc c = H 0 10 -5 c
= 2.43 10 -9 28 . In Einstein-de Sitter model the distance modulus is :

r(z) = 44.57 + 5 log (1 - 1 √ 1 + z )(1 + z) (49) 
For each type Ia supernova, the apparent magnitude can be observed by photometry and z by spectroscopy. In our model the equation ( 48) has no known analytical solution but it can be can tested numerically Fig. 11. The philosopher of sciences Thomas Kuhn, in his major work, The Structure of Scientific Revolutions, develops the thesis of a science progressing in a fundamentally discontinuous way, that is to say not by accumulation but by rupture. The dominant scientific theories are confronted with experimental anomalies, which they try to explain by successive alterations but end up succumbing to a series of experimental facts that a new scientific theory would have been able to predict. Kuhn also argues that scientific theories are not rejected once they have been refuted, but only when they have been replaced. We then witness a paradigm shift leading to a new interlude, until the scenario reoccurs. The passage from Ptolemy's vision to that of Galileo, from Newtonian physics to GR, are good examples of such breaks. Now a scientific revolution is perhaps under way, this time to describe gravitation in large-scale structures. 27 the redshift z = λ-λ 0 λ 0 with λ the observed wavelenght and λ0 the photon wavelenght at rest 28 H0 ≈ 73 km sec -1 M pc -1 10.2 A theory of augmented GR This theory of augmented GR is based on several fundamental pillars:

1. Baryon particles continuously emit gravitons, intermediate bosons of gravitation.

The relativistic mass of a particle is the result of a relativistic Doppler effect between this field of gravitons and the quantum vacuum. The principle of equivalence leads us to formulate the hypothesis that gravity must be calculated from this field of gravitons.

2. The graviton field and its interferences are computed from the Helmholtz equation: (∇ 2 + k 2 )Φ(r) = 4πGρ(r) with λ g = 2π k the wavelength of the graviton.

3. The actual acceleration is calculated by multiplying the gradient of the modulus of the graviton field with the saturation/desaturation function of the quantum vacuum:

a real = µ [Φ(r)] ∇|Φ(r)|.
The saturation/desaturation function of the quantum vacuum, whose threshold a 0 = 10 -10 ms -2 is the tipping point, can be expressed simply by µ [Φ(r)] = 1 2 1 + 1 + 4a 0 ∇|Φ( r)| . This function without unity allows the Tully-Fisher relation to be found.

4. The deformation of space-time is described by the equations of the GR but the mass must be previously deduced using the equation ( 29) before the deformation is calculated.

The Poisson equation (∇ 2 Φ = 4πGρ) appears as a special case applicable to systems whose physical size is very small compared to the Compton wavelength of graviton λ g and whose acceleration is much higher than a 0 as in our solar system. Although the principle of equivalence is perfectly verified in our solar system, it is no longer valid in large scale structures. The principle of equivalence is a special case characteristic of small structures where the gravitational field is greater than the acceleration threshold a 0 = 10 -10 ms -2 . In large structures (clusters of galaxies) and when the acceleration falls below the threshold a 0 , the interference effects of the graviton fields and the desaturation of the quantum vacuum significantly increase the spatio-temporal deformation and therefore the truly perceived acceleration which gives the impression of the presence of an invisible matter: the dark matter. The GR, based on the principle of equivalence, can no longer be used as such to study large structures but must be coupled with a quantum vision of gravitation. Indeed, the gravitational potential is infinitely greater than suspected, but the limited capacity of the quantum vacuum to manage the density of probability of presence of gravitons forces it to manifest the square root of the theoretical potential. The interference term k 2 Φ(x) behaves like a "matter cutting wire". As the Universe expands and the dimensions exceed λ g , the matter is "cut up". This process makes it possible to obtain a homogeneous and isotropic universe whatever the conditions at the origin. This point is remarkable in the sense that it establishes a direct link between the two infinites: the infinitely small and the gravitons and the infinitely large with its galaxy clusters. In this theory, the physical interaction responsible for the attraction of massive bodies can be much stronger than of Newton, which may explain why structures formed faster and therefore earlier than the ΛCDM theory.

Annexes

• λ s = 2π k is the wavelength of the sources

• λ Ω is the size of the simulated domain Simulations λ s λ Ω (very low frequency) and a a 0

Simulation of a giant spiral galaxy on a 200 kpc side with 10 6 sources each representing 10 5 M . The equation [START_REF] Mcgaugh | The baryonic tully-fisher relation of gas rich galaxies as a test of lcdm and mond[END_REF] of §(7.3) reminds us that we are in a QUMOND type regime without interference effect of graviton fields. We can simulate spiral galaxies and visualize the dynamics of the rotation curves. The average acceleration of the sources is < 10 -10 m/s 2 as soon as the distance is > 15 kpc, the desaturation of the quantum vacuum increases the real acceleration. This simulation shows that after a peak speed around 210 km / s, the average circular speed of the sources stabilizes around 190 km / s. The curve is flat over a very long distance (100 kpc).

In this simulation, the central density of the simulated galaxy is very high ( ∼ = 10 10 M pc -2 ), it has a pronounced bulb.

Simulations λ s

λ Ω (very high frequency) and a a 0 This is the case of a simulation of large structures (clusters of galaxies) where interference is present and "cuts" the matter. The simulator calculates gravitational fields on a 60 Mpc side with 10 6 sources each representing 10 8 M . The simulation begins with a virtually uniform distribution density of sources.

The matter is cut by interference and the sources are concentrated around compact structures positioned homogeneously and isotropically. The density of probability of gravitons shows interferences at the origin of the matter cutting.

Fig. 2 :

 2 Fig. 2: Dynamic / baryonic mass ratio as a function of acceleration a = V 2 r [5]

Fig. 5 :

 5 Fig. 5: The Tully-Fisher baryonic relation. M b represents the observed baryonic mass which is the combination of stellar masses and gases. The selected galaxies are those for which the interferometric observation gives reliable measurements of the velocity V f [5]. The dotted line of Tully-Fisher has a slope of 4 and the broken line provided by the ΛCDM model has a slope of 3.

Fig. 7 :

 7 Fig. 7: Relativistic doppler effect Consider a baryon S that moves at velocity V in the direction M and an observer O. This baryon S emits bosons in all directions. The transverse relativistic Doppler effect allows us to calculate the frequency of the boson field, emitted by the source S and perceived by the observer O, as a function of the angle between the observer and the direction of the source.

Fig. 8 :

 8 Fig. 8: Resulting field ρ(r, t) defines the surface distribution density of localized sources in time and space. Like the ψ(r, t) field we perform a Fourier transformation of the time dependency of ρ(r, t).

7. 1

 1 Hypotheses of the quantum model of gravitation 1. Like electromagnetism, strong force and weak force there is an intermediate vector boson of gravitation: the graviton.

Fig. 9 :

 9 Fig. 9: The ∼ V 4 f /(GM b ) acceleration parameter of extragalactic systems with baryonic masses covering 10 orders of magnitude.

Fig. 10 :

 10 Fig.10: Surface density of the central dark matter halo in galaxies (dotted interpolation curve: Σ ≈ 140 M pc -2 ). Observations covering 10 orders of magnitude[START_REF] Gentile | Universality of galactic surface densities within one dark halo scale-length[END_REF].

8

  The 2D Particle-In-Cell Vlasov-Helmholtz simulator 8.1 Presentation of the simulator This simulator has been developed 23 to obtain a dynamic vision of the new equation. This simulator solves the following equation system :

Fig. 11 :

 11 Fig. 11: Distance modulus of a flat Universe = 0. Dots are type Ia supernova observations [50]. The Mond curve is above the Einstein-de Sitter curve and better fit the astronomical observations.

Fig. 12 :Fig. 13 :Fig. 14 :

 121314 Fig. 12: Distribution of sources at t = 0 according to normal density law

Fig. 15 :

 15 Fig. 15: Rotational curves of a spiral galaxy. The simulation highlights the flat part of the curve.

Fig. 16 :

 16 Fig. 16: Average density of sources in M pc -2

Fig. 17 :

 17 Fig. 17: Density of distribution of the sources at t = 0.

Fig. 18 :Fig. 19 :

 1819 Fig. 18: Large structure simulated with the software P.I.C. 2D

  

  

An acceleration divided by the constant G has the dimensions of a surface density. This last point will be developed in the chapter 7.3.2

In vector analysis, the Poisson equation connects the gravitational potential φ to the density by a universal relation: ∇ 2 φ = 4πGρ. This very practical relation makes it possible to quickly calculate a potential whose source is axisymmetric.

if φ represents the expression of the complex field of gravitons then φ φ is the density of probability of presence of gravitons.

There is an equivalence between the density of probability of gravitons and the gravitational acceleration.

[START_REF] Binney | Modified newtonian dynamics in the milky way[END_REF] In the presence of a strong or weak field the quantum vacuum saturates very quickly and only deals with the square root of the density of probability of gravitons φ φ. This property allows the model to converge to the Poisson equation just like the

GR.[START_REF] De Blok | The core-cusp problem[END_REF] Given the equivalence between the probability density of gravitons and acceleration, it is possible to define this threshold in terms of

acceleration.[START_REF] Ogiya | The core-cusp problem in cold dark matter halos and supernova feedback: Effects of mass loss[END_REF] The desaturation function µ [φ] expresses the capacity of the quantum vacuum to treat a larger part of the density of probability of gravitons.

Acronym of Quasi Linear Mond

Gµν = 8πG c 4 Tµν

The denominator 2πG comes from the integration of the surface density of the "dark matter" halo surrounding the mass[START_REF] Milgrom | The central surface density of "dark halos" predicted by mond[END_REF] 

the Gauss theorem 25 and equation [START_REF] Salucci | A constant dark matter halo surface density in galaxies[END_REF] 26 . r (t) = -a 0 GM (r(t)) r(t) with M (r(t)) = 4π 3 ρ(t)r(t) 3 ⇒ r (t) = -a 0 4π 3 Gρ(t)r(t) [START_REF] Milgrom | A modification of the newtonian dynamics as a possible alternative to the hidden mass hypothesis[END_REF] In an expanding Universe the physical distance dl is related to the comoving distance dx by the scale factor R (t): dl 2 = R(t) 2 (dx 2 + dy 2 + dz 2 ). The physical distance between 2 points located at a comoving distance ∆x is:

• At the moment, by definition: r(t 0 ) = ∆x and R(t 0 ) = 1

• At time t, past or future:

Thus R(t) = r(t) r(t 0 ) , we can rewrite the equation ( 41) for the scale factor:

By writing the conservation of mass in a comoving volume:

with M (t) the mass of the Universe at time t and M 0 the initial mass of the Universe. Thus :

If we put a 0 = a N ewton , the equation ( 44) is that of the Einstein-de Sitter model. The temporal integration of this equation is:

is the curvature constant of the Universe. For a flat Universe ( = 0) and if a 0 = a N ewton (Einstein-de Sitter) then the solution of the equation ( 44) is :

Given the expansion of the Universe, the general expression of R (t) ≥ 0 is :

25 The gravitational field flux across a closed surface is equal to the sum of the masses inside that area multiplied by -4πG:

S gd s = -4πG V ρmdV = -4πGMint where S is the closed surface delimiting the volume V. 26 a 2 real = a0aNewton = -a0 GM (r(t)) r(t) 2