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Abstract 

Waste such as contaminated biomass, which contain potentially high level of heavy 

metals, are widely available resources. One of the drawbacks of using this biomass in 

gasification processes is that some heavy metals might be transferred in the 

produced syngas, and requires then specific further cleaning steps. Thermodynamic 

equilibrium calculations are a relevant tool to estimate the behavior of those heavy 

metals to manage the syngas treatment. The calculations were made with the 

commercial software FactSage. Due to the several thousands of produced compounds, 

a specific methodology was set up to choose the stable compounds of the database 

for the simulations. As an illustrative example, the results of the thermodynamic 

equilibrium calculations of lead are presented in this paper.   

Keywords: Biomass, Heavy metals, Thermodynamic equilibrium, Simulation, 

Gasification. 

1. Introduction

Biomass is considered to be the only natural and renewable carbon resource that 

can effectively be a substitute to fossil fuels. This is why current researches focus 

on the development of the use of this alternative renewable fuel in many processes in 

order to produce energy. Gasification has recently been receiving increasing attention 

thanks to the success of the first plants for the production of electricity from 

biomass. In fact, gasification is the partial oxidation of biomass, which transforms the 

organic matter into energy carrier gas. The synthesis gas (CO and H2) allows a wide 

range of application: power production or biofuel. Most of research works in literature 

are focused on process using clean biomass as opposed to contaminated biomass 

which is available in significant quantities. However it is used to a much smaller 

extent as a source of energy due to their potentially high level of heavy metals.  

An example of such biomass is phytoextraction plants which are used to extract 

contaminants from polluted soils. Heavy metals are then accumulated inside the roots, 

stems and leaves of these plants (Gupta and Sinha 2007). Following the 

thermochemical process of biomass gasification, these metals are found in the ash, gas 

and tar products which make them difficult to use and may increase risks to 

human health and the environment (Nzihou and Stanmore, 2013). Recent works have 

shown that heavy metals can have a significant influence on reaction kinetics 

and on thermodynamics equilibrium. The aim of this work is to contribute in 

understanding the behavior of heavy metals during the gasification process of 

contaminated biomass by modeling the 



thermodynamic equilibrium. This study aims at  predicting the partitioning of heavy 

metals in the gasification products (gas, tar or ash fractions) (Al Chami et al. 2014). 

This is an important scientific challenge for optimizing the thermochemical conversion 

processes applied to the contaminated biomass. 

2. Materials and method

2.1. Biomass characterization 

The biomass considered in this study is willow, which is the most used plant in 

phytoextraction thanks to its high absorption capacity of heavy metals. Willow is 

composed of 55% cellulose, 28% hemicellulose and 17% lignin (Phyllis Database, 

2012). The elementary composition of willow is indicated in Table1 (Phyllis Database, 

2012). 

Table 1 

Elementary composition of dry contaminated willow. 

Element mol/kg Element mol/kg Element mol/kg 

C 41.25 S 0.012 Pb 6.51 10
-4

 

H 58.40 F 5.30 10
-3

 Ti 1.87 10
-4

 

O 27.56 Na 5.20 10
-3

 Sr 1.59 10
-4

 

N 0.300 Al 3.70 10
-3

 Mn 1.46 10
-4

 

Ca 0.090 Fe 1.97 10
-3

 Cu 1.10 10
-4

 

Si 0.060 Ni 1.32 10
-3

 Ba 2.91 10
-5

 

K 0.050 Zn 9.48 10
-4

 Cd 1.51 10
-5

 

P 0.020 Cr 8.65 10
-4

 V 3.92 10
-6

 

Mg 0.014 B 8.18 10
-4

 Sn 2.52 10
-6

 

2.2. Calculations methodology 

The aim of the thermodynamic modeling is to determine the nature, the state (gas, liquid 

or solid), speciation the amount of gasification products in given operating conditions 

considering that all chemical reactions reach their equilibrium. Thermodynamic models 

can be developed using two approaches (Basu, 2010): 

- Stoichiometric Equilibrium Models, based on equilibrium constants of each reaction.

- Non-Stoichiometric Equilibrium Models, where the only inputs needed are the

elemental compositions of the feeds.

The non-stoichiometric method which is often referred to as “Gibbs free energy

minimization approach” is the usual approach since no chemical reaction needs to be

assumed (Basu, 2010). It may be calculated using modern software provided the

thermodynamic data for all compounds (reactants and products) under consideration

exist. In a reacting system, a stable equilibrium condition is reached when the Gibbs

free energy of the system is at the minimum. Since the thermodynamic properties of the

willow components are unconventional in most software, willow has to be split into its

constituent elements/molecules as input data to the software. The operating conditions

chosen as initial data for the calculations are:

- initial quantity of biomass: 7 mol (biomass chemical formulae: C6H9O4),

- reactor pressure: 1 or 10 bar,

- reactor temperature: from 500 to 1000 °C (step value: 25 °C),

- gasification agent: 41 mol of H2O (Froment et al. 2013).



Calculations were performed with FactSage 6.3 commercial software (Bale C.W. et al. 

2009), which has already found applications in the field of biomass gasification 

modelling (Fraissler et al. 2009) (Froment et al. 2013) and includes a large database on 

heavy metals. FactSage uses the Gibbs free energy minimization method. For each 

compound, the structure of the database is as follow: available thermochemical data 

capacity polynomial dependence on temperature Cp(T)) are provided for a given state 

(solid, liquid and gas) and a given temperature range. 

As thousands of compounds and phases exist in the multicomponent system consisting 

of contaminated willow, a preliminary selection of the compounds which might form in 

gasification conditions was required: software limitations and computing time impose to 

take into account a maximum of 1500 compounds, while the commercial SGPS 

database includes more than 256 liquids, 813 solids and 894 gases. The selection 

procedure, based on the systematic calculation of predominance diagrams for gaseous 

compounds, leads to the definition of a new specific database containing a few hundreds 

compounds. The following methodology was applied: 

1. Selection of the major elementary compounds of the main organic components of

wood: C, H, N, O and S.

2. Removal of gas, liquid and solid CnHm compounds with n > 3.

3. Selection of all gaseous compounds existing in the contaminated willow system.

4. Removal of unstable gaseous compounds, based on predominance diagram

calculations (this step is developed below).

5. Removal of gaseous compounds whose Cp(T) range validity is outside the range

[500 °C-1000 °C].

Predominance diagrams were computed in order to identify the most stable compounds 

over specific partial pressure ranges of gaseous master species: O2, S2, F2, C2 and H2. By 

combination with a metal element, these master species allow to account for the 

formation of oxides, sulfides, fluorides, carbides, hydrides and their combinations (e.g. 

hydroxydes, oxyfluorides, etc.). The predominance diagrams are plotted for a given 

fixed temperature and a total pressure. In this work, two extreme conditions of 

gasification process were taken into account: 500 °C/1 bar and 1000 °C/10 bar. For 

compounds involving O, S, H and C, all compounds shown stable on the predominance 

diagram were selected. Fig. 1 shows as illustrative example, the Cr-H-O predominance 

diagram at 500 °C and 1 bar. All those compounds were selected. 

Furthermore, due to the high number of existing fluoride compounds, it has been 

decided to eliminate the compounds that are unlikely to form in gasification conditions 

Figure 1. Cr-H-O predominance diagram 

(500 °C - 1 bar). 

   Figure 2. Cr-F-O predominance 

diagram (500 °C - 1 bar). 



due to the low partial pressure of F2(g). 

Preliminary calculations using a simplified biomass mixture showed that at 500 °C and 

1 bar the fluoride partial pressure P(F2) is below 10
-39 

bar and below 10
-21 

bar at 1000 °C 

and 10 bar. So all stable compounds which appeared in the predominance diagrams at a 

P(F2) above those two values were eliminated from the database. For instance, CrF5(g) 

and CrF4(g) which are present in the Cr-F-O diagram (Fig.2) were not selected in the 

database. 

3. Results

After the calculation and examination of 163 predominance diagrams for 20 elements 

(Al, B, P, Na, K, Mg, Ca, Ti, V, Mn, Cr, Fe, Ni, Cu, Zn, Cd, Pb, Si, Sr et Sn), 271 

gaseous compounds were selected amongst 894 and grouped in a specific user database. 

Hence, the thermodynamic equilibrium calculations were performed, with the elemental 

composition of willow (Table 1), with the user database for the gases and the SGPS 

database for the liquid and solid compounds. 

3.1. Partial Pressure of gaseous master species and total volume of gas 

The equilibrium calculations allow determining the total gas volume and the partial 

pressure of all the gaseous compounds.  Fig. 3 shows the variation of partial pressure of 

gaseous master species (O2, S2, F2, H2) at two total pressures 1 and 10 bar. These 

pressures are related to the predominance diagrams so we can exactly determine the 

stable compounds and their fate at the real partial pressure of this system. The 

calculations confirm that the fluoride partial pressure at 500 °C/1 bar is less than 10
-39 

bar and 10
-21 

bar at 1000 °C/10 bar. Hence, the hypothesis regarding the selection of 

fluoride compounds is validated. Hence, the hypothesis regarding the selection of 

fluoride compounds is validated. And as expected from thermodynamic point of view, 

the total volume of gas increases with the temperature and the total pressure (Fig. 4). 

3.2. Speciation of Pb species 

As an example of heavy metals, the behavior of lead is discussed in this work, because 

of its high volatility. 

Figure 3. Partial pressure of gaseous 

master species at 1 and 10 bar. 

Figure 4.  Total volume gas variation at 

1 and 10 bar. 

T [°C]



The thermodynamic calculations are used to identify the speciation of all biomass 

elements. Fig. 5 presents the speciation of the lead at a total pressure of 1 bar. Above 

700 °C, liquid Pb vaporizes to form mainly Pb(g) and PbS(g), as well as small quantities 

of PbO(g). The calculations also show that, even if the PbO(g) amount notably increases 

at high temperature, this compound remains a minor component of the gas phase in the 

whole temperature range. 

3.3. Pressure effect 

The total pressure effect from 1 to 10 bar is reported in Fig. 6. As expected from 

thermodynamic stand point, increasing the total pressure delays volatilization of most 

Pb species. At 1 bar the whole amount of lead volatizes at 700 °C, while for a total 

pressure of 10 bar it volatizes at 800 °C. A comparison of the speciation of lead at 1bar 

and 10 bar (Fig. 5 and Fig. 6), evidences the presence of PbS in the condensed phase at 

high pressure and low temperature.  

Figure 5. Speciation of Pb calculated at 1 

bar. 

Figure 6. Speciation of Pb calculated at 

10 bar. 

3.4. Concentration effect 

As willow is a plant which has a high potential to accumulate heavy metals, the 

concentration of Pb can vary for a plant to other depending in the soil contamination. 

The initial lead concentration in the willow used in this work is 135 mg.kg
-1

. Nzihou et 

al. (2013) summarized the different limits concentration of heavy metals in 

phytoextraction plants: the concentration of Pb can vary between 55 and 300 mg.kg
-1

.  

Fig. 7 shows that doubling the initial concentration of Pb increases the temperature at 

which the whole amount of Pb volatilizes by 30 °C. Conversely, a speciation of 

inorganics during wood gasification realized by Froment et al. (2013) using a lower lead 

concentration (1 ppm) shows that the whole amount of Pb volatilizes at 500 °C. This is 

linked with the increase of the total volume of gas with temperature (Fig. 4): a higher 

volume of gas is required to evaporate a higher amount of Pb. No other concentration 

effect was evidenced. 

)



Figure 7. Effect of lead concentration (135 and 270 mg.kg
-1

) 

4. Conclusions

Equilibrium calculations using a compound thermodynamic database were carried out to 

simulate contaminated biomass gasification. Due to the high number of compounds 

related to biomass composition, a selective methodology was applied in order to focus 

on the most relevant gaseous compounds.  

An example dealing with the behavior of lead during gasification is provided. It shows 

that, at concentration of about 135 mg/kg in a contaminated willow biomass, lead is 

mostly found in the gaseous phase under its metal form, and in smaller quantity as 

sulfur and oxide. 

Ongoing work is considering the behavior of other metal species (Transitions metals, 

Alkali and alkaline earth metals). 
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