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Introduction

Let (N) k and (N) ∞ denote the set of partitions of N into exactly k and infinitely many non-empty pieces, respectively. For X ∈ (N) ∞ , (X) k is the set of all Y ∈ (N) k which are coarser than X.

Statement 1.1 (Dual Ramsey theorem). DRT k is the statement "If (N) k is colored with finitely many Borel colors, then there is some X ∈ (N) ∞ such that (X) k is monochromatic".

The Dual Ramsey theorem was proven by Carlson and Simpson [START_REF] Carlson | A dual form of Ramsey's theorem[END_REF], and studied from a reverse mathematical viewpoint by Slaman [START_REF] Slaman | A note on dual ramsey theorem[END_REF], Miller and Solomon [START_REF] Miller | Effectiveness for infinite variable words and the dual Ramsey theorem[END_REF] and Dzhafarov et al. [START_REF] Solomon | Effectiveness for the dual ramsey theorem[END_REF]. In this paper, we shall focus on a combinatorial lemma used by Carlson and Simpson to prove the Dual Ramsey theorem. This lemma can be formulated in terms of variable words. Definition 1.2 (Variable word). An infinite variable word on a finite alphabet A is an ω-sequence W of elements of A ∪ {x i : i ∈ N} in which all variables occur at least once, and finitely often. Moreover, the first occurrence of x i comes before the first occurrence of x i+1 . A finite variable word is an initial segment of an infinite variable word. A finite or infinite variable word is ordered if moreover all occurences of x i come before any occurrence of x i+1 . Given ā = a 0 a 1 . . . a k-1 ∈ A <ω , we let W (ā) denote the finite A-string obtained by replacing x i with a i in W and then truncating the result just before the first occcurence of x k .

Statement 1.3 (Variable word theorem). VW(n, r) is the statement "If A <ω is colored with r colors for some alphabet A of cardinality n, there exists an infinite variable word W such that {W (ā) : ā ∈ A <ω } is monochromatic. OVW(n, r) is the same statement as VW(n, r) but for ordered variable words.

In this paper, we study the computability-theoretic properties of the variable word theorems using the framework of reverse mathematics. 11.1. Reverse mathematics. Reverse mathematics is a vast foundational program aiming to determine the optimal axioms to prove ordinary theorems. It uses the framework of second-order arithmetic, with a base theory RCA 0 consisting of the axioms of Robinson arithmetic, the Σ 0 1 induction scheme and the ∆ 0 1 comprehension scheme. The system RCA 0 arguably captures computable mathematics. Starting from a proof-theoretic perspective, modern reverse mathematics tends to be seen as a framework to analyse the computability-theoretic features of theorems. Among the distinguished statements, let us mention weak König's lemma (WKL), asserting that every infinite binary tree has an infinite path, the arithmetic comprehension axiom (ACA), and the Π 1 1 comprehension axiom (Π 1 1 CA), consisting of the comprehension scheme restricted to arithmetic and Π 1 1 formulas, respectively. See Simpson [START_REF] Stephen | Subsystems of Second Order Arithmetic[END_REF] for reference book on classical reverse mathematics.

The statements studied within this framework are mainly of the form (∀X)[Φ(X) → (∃Y )Ψ(X, Y )], where Φ and Ψ are arithmetic formulas with set parameters, and can be considered as problems. Given a statement P of this form, a set X such that Φ(X) holds is an instance of P, and a set Y such that Ψ(X, Y ) holds is a solution to the P-instance X. In this paper, we shall consider exclusively statements of this kind.

Friedman and Simpson [START_REF] Friedman | Issues and problems in reverse mathematics[END_REF], and later Montalban [START_REF] Montalbán | Open questions in reverse mathematics[END_REF], asked about the reverse mathematical strength of the ordered variable word. The statement OVW(k, ) is known to be provable in RCA 0 + Π 1 1 CA. Our main result is a direct combinatorial proof of OVW(2, ) in RCA 0 + ACA. Theorem 1.4. For every ≥ 2, RCA 0 + ACA OVW(2, ).

On the lower bound hand, Miller and Solomon [START_REF] Miller | Effectiveness for infinite variable words and the dual Ramsey theorem[END_REF] constructed a computable instance c of OVW(2, 2) with no ∆ 0 2 solution, and deduced that RCA 0 + WKL does not prove VW(2, 2). Indeed, seeing the instance c of OVW(2, 2) as an instance of VW(2, 2), and noticing that the jump of a solution to VW(2, 2) gives a solution to OVW(2, 2), one can deduce that c has no low VW(2, 2)-solution. In this paper, we improve their lower bound by constructing a computable instance of OVW(2, 2) whose solutions are of DNC degree relative to ∅ .

1.2. Organization of the paper. In section 2, we shall give a simple proof of the ordered variable word for binary strings (OVW(2, )) using the finite union theorem. Then, in section 3, we provide a direct combinatorial proof of the same statement over RCA 0 + ACA. Finally, in section 4, we give a new lower bound on the strength of OVW(2, ) using a computable version of Lovasz Local Lemma. 1.3. Notation. Given two sets A and B, we write A < B for the formula (∀x ∈ A)(∀y ∈ B)x < y. Given a set A, we write A <ω for the set of finite A-valued strings. In particular, 2 <ω is the set of binary strings. We denote by P f in (N) the collection of finite non-empty subsets of N. Given two strings σ, τ ∈ A <ω , σ * τ denotes their concatenation. We may also write στ when there is no ambiguity. Given a string or a sequence X and some n ∈ ω, we write X n for the initial segment of X of length n. In particular, X 0 is the empty string, written ε.

A simple proof of the Ordered Variable Word theorem from the Finite Union Theorem

Simpson first noted a relation between Hindman's theorem and the Carlson-Simpson lemma [START_REF] Carlson | A dual form of Ramsey's theorem[END_REF]. In this section, we give a formal counterpart to his observation by giving a simple proof of OVW(2, ) using the Finite Union Theorem, a statement known to be equivalent to Hindman's theorem. A variation of the proof below was used by Dzhafarov et al. [START_REF] Solomon | Effectiveness for the dual ramsey theorem[END_REF] to give an upper bound to the Open Dual Ramsey's theorem. A direct combinatorial proof of OVW(2, ) in RCA 0 + ACA will be given in the next section. Definition 2.1. An IP collection is an infinite collection of finite sets I ⊆ P f in (N) which is closed under non-empty finite unions and contains an infinite subcollection of pairwise disjoint sets.

Note that any IP collection I necessarily contains an infinite I-computable sequence S 0 < S 1 < . . . . Statement 2.2 (Finite union theorem). For every ∈ N, FUT is the statement "For every coloring c : P f in (N) → , there is a monochromatic IP collection". wFUT 2 is the statement "For every coloring c : P f in (N) × N → , there is an IP collection I and a color i < such that c(S, min T ) = i for every S < T ∈ I."

Theorem 2.3. RCA 0 ∀ (FUT → wFUT 2 ).
Proof. Assume ≥ 2, the other cases being trivial. Let f : P f in (N) × N → be an instance of wFUT 2 . Note that over RCA 0 , FUT → ACA and ACA → COH. Let R be a sequence of set defined for every S ∈ P f in (N) and i < by R S,i = {n ∈ N : f (S, n) = i}. Apply COH to R to obtain an infinite R-cohesive set C. In particular, for every S ∈ P f in (N), lim n∈C f (S, n) exists.

Let h : ω → C be a computable bijection. Let f :

P f in (N) → be defined by f (S) = lim n∈C f (h[S], n). f is a ∆ 0,f ⊕C 2
instance of FUT , so by the finite union theorem, there is an IP collection I ⊆ P f in (N). and a color i < such that for every S ∈ I, f (S) = lim n∈C f (h[S], n) = i. Note that for every S ∈ I, min h[S] ∈ C. Therefore, by f -computably thinning-out the set I, we obtain an IP collection J ⊆ I such that for every

S < T ∈ J , f (h[S], min h[T ]) = i. The set {h[S] : S ∈ J } is a solution to f . Theorem 2.4. RCA 0 ∀ (wFUT 2 → OVW(2, )).
Proof. Let f : 2 <ω → be an instance of OVW(2, ). Define an instance g : P f in (N) × N → of wFUT 2 as follows: Given some S ∈ P f in (N) and n ∈ N, if max S < n, then set g(S, n) = f (σ), where σ is the binary string of length n defined by σ(i) = 1 iff i ∈ S. If n ≤ max S, set g(S, n) = 0. By wFUT 2 , there is an IP collection I and a color i < such that g(S, min T ) = i for every S < T ∈ I. Compute from I an infinite increasing sequence of pairwise disjoint finite sets F 0 < F 1 < . . . Let W be the infinite variable word defined by

W (n) =    1 if n ∈ F 0 x i if n ∈ F i for some i ≥ 1 0
otherwise The variable word W and the sequence of the F 's is a solution to the instance f of OVW(2, ).

Corollary 2.5. RCA 0 ACA + → ∀ OVW(2, ). Proof. Immediate since ACA + → ∀ FUT → ∀ wFUT 2 → ∀ OVW(2, ) over RCA 0 .

A proof of the Ordered Variable Word theorem in ACA

The proof of the previous section gave a very coarse computability-theoretic upper bound of the Ordered Variable Word theorem in terms of ω-jumps. In this section, we give a direct combinatorial proof of OVW(2, ) in RCA 0 + ACA. Actually, every PA degree relative to ∅ is sufficient to compute a solution of a computable instance of OVW (2, ). We thereby answer a question of Miller and Solomon [START_REF] Miller | Effectiveness for infinite variable words and the dual Ramsey theorem[END_REF].

Theorem 3.1. For every ∈ ω, every computable instance c of OVW(2, ), every PA degree over ∅ computes a solution to c.

A formalization of Theorem 3.1 yields a proof of Theorem 1.4.

Proof of Theorem 1.4. The proof of Theorem 3.1 can be formalized within RCA 0 + ACA. Indeed, the arguments require only arithmetical induction to be carried out, and every model of RCA 0 + ACA is a model of the statement "For every set X, there is a set of PA degree over the jump of X."

Let us first introduce some notation. For a finite set F and a string σ ∈ 2 <ω let σ F be the binary string of length |σ| defined by σ F (i) = σ(i) if i ∈ F , and σ F (i) = 1 -σ(i) otherwise. Let ≤ lex denote the shortlex order on ω <ω , that is, the order with the shortest length first, and with the strings of same length sorted lexicographically.

In what follows, fix a coloring c : 2 <ω → , and a string ρ ∈ 2 <ω . The main combinatorial lemma we use is Lemma 3.4. As a warm up, we first prove the following lemma 3.2, which is a consequence of Lemma 3.4 and the proof is somehow similar but much simpler. In the following lemma, one may think of ρ P as a finite variable word, where the positions at P are replaced by a same variable kind.

Lemma 3.2. For any

P ⊆ {0, • • • , |ρ| -1} with (∀n ∈ P )[ρ(n) = 0] ∧ |P | ≥ , there exist two subsets P < P of P with P = ∅ such that c(α) = c(α P ) where α = ρ P . Proof. Suppose P = {p 0 < • • • < p m-1 }. Let 0 , .
. . , m be defined by i = c(ρ {p0,...,pi-1} ). In particular,

0 = c(ρ). Since |P | = m ≥ , so among 0 , • • • , m , there must exists i < j such that i = j . Let P = {p 0 , • • • , p i-1 } (if i = 0 then P = ∅), and P = {p i , • • • , p j-1
}, let α = ρ P . Clearly P < P and P = ∅.

It is also easy to see that c(α) = i = j = c(α P ).

We now prove a technical lemma used in the proof of our main combinatorial lemma (Lemma 3.4). The sequence in the following lemma is obtained by a simple greedy algorithm, with finitely many resets.

Lemma 3.3. There exists a nonempty set of colors

L ⊆ {0, 1, • • • , -1}, |L| + 1 many sets of binary strings Γ 0 = {τ η } η∈L , Γ 1 = {τ η } η∈L 2 , • • • , Γ |L| = {τ η } η∈L |L|+1 , such that, letting η = max L * max L * • • • * max L |L|+1 many
and letting ρ = τ η * 0, the following holds:

(1) ρ ≺ Γ 0 and τ η ≺ τ β ⇔ η < lex β; (2) ρ(|τ |) = 0 for all τ ∈ Γ i , i ≤ |L|; (3) for all i ≤ |L|, η ∈ L i+1 , let η 0 ≺ η 1 ≺ • • • ≺ η i-1 denote all nonempty predecessors of η, let Q = |τ η0 |, |τ η1 |, • • • , |τ ηi-1 | (if i = 0 then Q = ∅), then c(τ η Q ) = η(i); (4) let P = {|τ η |} η∈L ≤|L|+1 , for all subset Q of P , all τ ρ, c τ Q ∈ L. Moreover, Γ i , i ≤ |L| is computable in the jump of c, uniformly in ρ.
Proof. We firstly show how to find Γ 0 . Start with L = {0, 1, • • • , -1}. At step 1, try to find a string τ ∈ 2 <ω such that c(ρτ ) = 0 and let τ 0 = ρτ . Then try to find a τ such that c(τ 0 0τ ) = 1 and let τ 1 = τ 0 0τ . Generally, after τ j is found, try to find τ such that c(τ j 0τ ) = j + 1 and let τ j+1 = τ j 0τ if τ is found. If during the above process, after τ j-1 is defined ( τ -1 = ρ ), there is no τ such that c(τ j-1 0τ ) = j, then we start all over again with ρ replaced by ρ 1 = τ j 0 and with L replaced by L {j}.

Generally, given a set of colors L and after τ β is found, let η be the immediate successor (with respect to ≤ lex order restricted to L-strings) of β, let

η 0 ≺ η 1 ≺ • • • ≺ η i-1 denote all nonempty predecessors of η, let Q = |τ η0 |, |τ η1 |, • • • , |τ ηi-1 | (if i = 0 then Q = ∅), we try to find τ such that c((τ β 0τ ) Q ) = η(|η| -1).
If such a string τ does not exists then we start all over again with ρ replaced by τ β 0 Q and L replaced by L {η(|η| -1)}. If such τ exists then let τ η = τ β 0τ .

Note that we have to start over for at most -1 times before we ultimately succeed since there are colors in total. It is plain to check all the four items. Also note that the sequence Γ 0 , • • • , Γ |L| is c -computable since we only need to use the jump of c to know whether the next τ η can be found. We say that (ρ, P ) is c-valid if P and ρ satisfy Lemma 3.4. We say that (P , P ) witnesses c-validity of (ρ, P ) for σ ρ if P < P ⊆ P , and letting α = σ P , c(α) = c(α P ) = c(α min P ). Before proving Theorem 3.1, we start with the following simpler version. Theorem 3.5. For every ∈ ω, every computable instance c : 2 <ω → of OVW(2, ), every P A degree over ∅ computes a solution to c. 

p i = |τ 0••• i | (where τ 0 ••• i ∈ Γ i ). Since 0 , • • • , |L| ∈ L (by item 4 of Lemma 3.3), there is some i < j ≤ |L| such that i = j . Let P = {p 0 , • • • , p i-1 } (if i = 0 then P = ∅), P = {p i , • • • , p j-
P i ⊆ |ρ i |, • • • , |ρ i+1 | -1 be such that (ρ i+1 , P i )- is c i -valid,
and let c i+1 be the coloring of [ρ i+1 ] which on σ ρi+1 associates P , P , j such that (P , P ) witnesses c i -validity of (ρ i+1 , P i ) for σ, and c i (σ P ) = j. If there are multiple such tuples, take the least one, in some arbitrary order. Note that the range of c i is some finite set L i .

We now analyze for σ ρi what c i (σ) = P , P , j means. Note that elements of L i , i ∈ ω admit a natural partial order ¡ as follows: for P 0 , P0 , j 0 ∈ L i , P 1 , P1 , j 1 ∈ L i+1 , P 1 , P1 , j 1 is an immediate successor of P 0 , P0 , j 0 if and only if j 1 = P 0 , P0 , j 0 . Clearly every j ∈ L i admit a unique immediate predecessor. Claim 3.6. Fix some n ≥ 1, and let ˜ ¡ P 0 , P0 , j 0 ¡ • • • ¡ P n-1 , Pn-1 , j n-1 = c n (σ), Let P = i≤n-1 P i and α = σ P . Then for any subset

J of {0, • • • , n -1}, (∀p ∈ min Pj : 1 ≤ j ≤ n -1 ∪ {|α|}) c(α PJ p) = ˜ .
Proof. First we prove the claim for n = 1. By definition of c 1 (σ) = P 0 , P0 , j 0 , letting β = σ P 0 , c 0 (β) = c 0 (β P0 ) = j 0 = ˜ . In other words, for any subset J ⊆ {0},

(∀p ∈ min{ Pj : 1 ≤ j ≤ 0} ∪ {|β|}) c(β PJ p) = ˜ .
So the claim holds for n = 1. Suppose now the claim holds for n -1.

Suppose

c n (σ) = P n-1 , Pn-1 , j n-1 . Let β = σ P n-1 . We have c n-1 (β) = c n-1 (β Pn-1 ) = c n-1 (β min Pn-1 ) = j n-1 = P n-2 , Pn-2 , j n-2 . As c n-1 (β) = P n-2
, Pn-2 , j n-2 and as ˜ ¡ P n-2 , Pn-2 , j n-2 , by induction hypothesis, for any subset J of {0, • • • , n -2} we have:

c(β (∪ i≤n-2 P i )∪ PJ ) = ˜ . (3.1)
Let β = β Pn-1 . As c n-1 (β ) = P n-2 , Pn-2 , j n-2 and as ˜ ¡ P n-2 , Pn-2 , j n-2 , by induction hypothesis, for any subset J of {0, • • • , n -2} we have:

c(β (∪ i≤n-2 P i )∪ PJ ) = ˜ . (3.2)
As c n-1 (β min Pn-1 ) = P n-2 , Pn-2 , j n-2 and as ˜ ¡ P n-2 , Pn-2 , j n-2 , by induction hypothesis, for any subset J of {0, • • • , n -2} we have: 

(∀p ∈ min Pj : 1 ≤ j ≤ n -2 ∪ |β min Pn-1 | ) c(β (∪ i≤n-2 P i )∪ PJ p) = ˜ . (3.
(∀p ∈ min Pj : 1 ≤ j ≤ n -1 ∪ {|β|}) c(β (∪ i≤n-2 P i )∪ PJ p) = ˜ which completes the proof of the claim since β ∪ i≤n-2 P i = α. Let T 0 be the ∅ -computable set of all γ such that (∀i ≤ |γ|)[γ(i) ∈ L i ], γ(i) ¡ γ(i + 1) and γ(|γ| -1) = c |γ|-1 (ρ |γ| ).
Then, let T be the downward closure of the set T 0 by the prefix relation. The tree T is infinite by construction of the strings ρi , the colors c i and the sets P i : a witness for the c i -validity of (ρ i+1 , P i+1 ) for ρ i+1 yields a node of T 0 of length i + 2. The tree T is also ∅ -computably bounded, and ∅ -computable. Let j 0 * P 0 , P0 , j 0 * P 1 , P1 , j 1 * • • • be an infinite path through T computed by any PA degree over ∅ . By construction, P i , Pi , j i ¡ P i+1 , Pi+1 , j i+1 . Let X = i∈ω ρi , P = i∈ω P i and let Y = X P . Clearly (∀i∀n ∈ Pi )[Y (n) = 0] and Y is computable in the given PA degree relative to ∅ . Therefore, letting P osition = min Pi : i ≥ 1 , it suffices to show that for all subsets J of ω,

(∀p ∈ P osition) c(Y PJ p) = j 0 ].
Without loss of generality, suppose p = min Pn and J ⊆ {0, • • • , n-1}. Since j 0 * P 0 , P0 , j 0 * P 1 , P1 , j 1 * • • • P n , Pn , j n is an initial segment of some element in T 0 , there must exist some N > n such that c N (ρ

N +1 ) = P N -1 , PN-1 , j N -1 . Let σ = ρN+1 , α = σ P . Clearly α ≺ Y ∧ |α| > p. Moreover, by Claim 3.6, c(α PJ p) = j 0 . Thus c(Y PJ p) = j 0 .
Finally, we slightly modify the proof of Theorem 3.5 to derive Theorem 3.1.

Proof of Theorem 3.1. The main point is to make the tree T ∅ -computable. To ensure this, after we obtain ρi , c i , we do not directly go to ρi+1 . Instead, we ∅ -compute ρ0

i ≺ ρ1 i ≺ • • • ≺ ρri i such that ρ0 i ρi and c i {τ : τ ρri i } ⊆ c i ρ0 i , • • • , ρri i .
Then we ∅ -compute ρi+1 ρri i as in the proof of Theorem 3.5. Note that this indeed can be achieved using ∅ since c i is computable. Define T to be the set of all γ such that (∀i ≤ |γ|)[γ(i) ∈ L i ], γ(i) ¡ γ(i + 1), and either |γ| = 1 ∧ γ ∈ L 0 or there exists ρu |γ|-1 with c |γ|-1 (ρ u |γ|-1 ) = γ(|γ| -1). It is easy to see that T is ∅ -computable since c i is computable for all i and the sequences c i : i ∈ ω and ρv i : i ∈ ω, v ≤ r i are ∅ -computable. Now we show that T is a tree. Suppose γ ∈ T , |γ| = n+1 with n ≥ 1, and c n (ρ u n ) = γ(n) = P , P , j ∈ L n . We claim that γ n ∈ T . If n = 1, then γ 1 ∈ L 0 ⊆ T . Otherwise, let Q , Q, k ∈ L n-1 be the predecessor of P , P , j . We need to show that there exists ρv

n-1 such that c n-1 (ρ v n-1 ) = Q , Q, k . c n (σ) = P , P , j implies that, letting α = σ P , c n-1 (α) = c n-1 (α min P ) = j = Q , Q, k . Note that α ρrn-1 n-1 since P > |ρ rn-1 n-1 |. But c n-1 {τ : τ ρrn-1 n-1 } ⊆ c n-1 {ρ 0 n-1 , • • • , ρrn-1 n-1 } . Therefore there exists ρu n-1 such that c n-1 (ρ u n-1 ) = Q , Q, k .
It follows that γ n ∈ T and that T is a tree. Any PA degree relative to ∅ computes an infinite path through T . The rest of the proof goes exactly the same as Theorem 3.5.

We now give an alternative proof of Theorem 3.1 based on the definitional complexity of the solutions of c.

Second proof of Theorem 3.1. Let P 0 , P 1 , . . . be the ∅ -computable sequence defined in the proof of Theorem 3.5. We have seen that there exists an infinite ordered variable word such that the nth variable kind appears before the position max P n . Let T be the tree of all finite ordered variable words which are finite solutions to c and such that the nth variable appears before the position max P n . By the previous observation, the tree is infinite, ∅ -computable, and ∅ -computably bounded. Any PA degree relative to ∅ computes an infinite variable word which, by construction of T , is a solution to c. This completes the proof of Theorem 3.1.

Note that the above proof can be slightly modified to obtain a proof of a sequential version of the ordered variable word. Statement 3.7. SeqOVW(n, ) is the statement "If c 0 , c 1 , . . . is a sequence of -colorings of a fixed alphabet A of cardinality n, there exists a variable word W such that for every i ∈ ω and every b ∈ A i , {W ( bā) : ā ∈ A <∞ } is monochromatic for c i ." Theorem 3.8. For every computable instance c 0 , c 1 , . . . of SeqOVW(2, ), every PA degree relative to ∅ computes a solution to c.

Proof. The proof is similar to Theorem 3.1. Using Lemma 3.4, we first construct a ∅ -computable sequence of strings ρ0 ≺ ρ1 ≺ • • • , a sequence of finite sets

P i ⊆ |ρ i-1 |, • • • , |ρ i | -1 and a sequence of colorings d i : [ρ i ] → L i inductively as follows. ρ0 = ε and d 0 = c 0 . Given ρi and d i : [ρ i ] → L i , let ρi+1
ρi and

P i ⊆ |ρ i |, • • • , |ρ i+1 | -1 be such that (ρ i+1 , P i )-is d i -valid,
and let d i+1 be the coloring of [ρ i+1 ] which on σ ρi+1 associates P , P , j, k such that (P , P ) witnesses d i -validity of (ρ i+1 , P i ) for σ, d i (σ P ) = j and c i+1 (σ P ) = k. Note that the main difference with the previous construction is that we handle more and more colorings among c 0 , c 1 , . . . at each level. The remainder of the proof is the same as in Theorem 3.1.

The theorem above is optimal, in that we can obtain the following reversal. Theorem 3.9. There is a computable instance c 0 , c 1 , . . . of SeqOVW(2, 2), such that every solution is of PA degree relative to ∅ .

Proof. Let R 0 , R 1 , . . . be a uniformly computable sequence of sets such that for every e, if Φ ∅ e (e) ↓= 0 then R e is finite, and if Φ ∅ e (e) ↓= 1 then R e is cofinite. In particular, any function f : ω → 2 such that f (e) gives a side of R e which is infinite, is DNC 2 relative to ∅ , hence of PA degree relative to ∅ . Let c i : 2 <∞ → 2 be defined by c i (σ) = 1 iff |σ| ∈ R i , and let W be a solution to c, that is, a variable word W such that for every i ∈ ω and every b ∈ A i , {W ( bā) : ā ∈ A <∞ } is monochromatic for c i . We claim that W computes such a function f . Given e, let f (e) = c e (W ( b)), where b ∈ 2 e is arbitrary (this is well-defined, since c e ( b) depends only on the length of b). By definition of W , {W ( bā) : ā ∈ A <∞ } is monochromatic for c e , the color of c e (W ( b)) appears infinitely often in R e . Therefore, W is of PA degree relative to ∅ . This completes the proof.

A difficult instance of the Ordered Variable Word theorem

Miller and Solomon [START_REF] Miller | Effectiveness for infinite variable words and the dual Ramsey theorem[END_REF] constructed a computable instance of OVW(2, 2) with no ∆ 0 2 solution. In this section, we strengthen their proof by constructing a computable instance of OVW(2, 2) such that every solution is of DNC degree relative to ∅ , using a significantly simpler argument.

The proof makes an essential use of a computable version of Lovasz Local Lemma proven by Rumyantsev and Shen [START_REF] Rumyantsev | Probabilistic constructions of computable objects and a computable version of lovász local lemma[END_REF]. The idea of using Lovasz Local Lemma to analyse the computability-theoretic strength of problems in reverse mathematics comes from Csima and Dzhafarov, Hirschfeldt, Jockusch, Solomon and Westrick [START_REF] Barbara F Csima | The reverse mathematics of hindman's theorem for sums of exactly two elements[END_REF], who proved that a version of Hindman's theorem for subtractions is not computably true. Definition 4.1. Fix a countable set of variables x 0 , x 1 , . . . A (disjunctive) clause C is a tuple of the form

(x n1 = i 1 ∨ • • • ∨ x n k = i k ), with i 1 , . . . , i k < 2.
The length of C is the integer k. An infinite CNF formula is an infinite conjunction of disjunctive clauses. An infinite CNF formula n C n is computable if the function which given n outputs a code for C n is computable, and the set of n such that C n contains the variable x j is uniformly computable in j. Theorem 4.2 (Rumyantsev and Shen [START_REF] Rumyantsev | Probabilistic constructions of computable objects and a computable version of lovász local lemma[END_REF]). For every α ∈ (0, 1), there exists some N ∈ ω such that every computable infinite CNF where each variable appears in at most 2 αn clauses of size n (for every n) and all clauses have size at least N , has a computable satisfying assignment.

Theorem 4.3.

There is a computable instance c of OVW(2, 2) and a computable function h : ω → ω such that if Φ ∅ e outputs a finite variable word in which the first h(e) variable kinds occur, then Φ ∅ e is not extendible into an infinite solution to c.

Proof. Fix α = 0.5, and let N be the threshold of Theorem 4.2. For every index e and stage s, we interpret Φ ∅ e [s] as a finite variable word W e,s with exactly N + e variable kinds, and where a new variable occurs right after W e,s . Such a variable word induces a binary tree T e,s with 2 N +e leaves. Let L e,s be the set of leaves of T e,s , that is, the set of all instantiations of the variable word W e,s . Moreover, all the leaves of T e,s have the same length n e,s .

The idea is the following: since the variable word is ordered and a new variable kind occurs right after W e,s , no variable among the first N + e variables can occur after W e,s . If W is a solution to c with initial segment W e = lim s W e,s for some color i, then W must be homogeneous for c for every instance of the variables, so in particular when setting all the variables after the N + e first ones to 0. Hence, there must be infinitely many strings τ such that for every σ ∈ lim s L e,s , c(στ ) = i. By ensuring that for cofinitely many τ , there is some σ ∈ L e,|τ | such that c(στ ) = i, we force W e not to be a solution to c for color i.

Fix a countable collection of variables (x ρ : ρ ∈ 2 <ω ). Each variable x ρ corresponds to the color of the string ρ. Given some s ∈ ω, τ ∈ 2 <ω and some i < 2, if n e,s + |τ | = s, then let C e,s,τ,i be the disjunctive e is not extendible into an infinite solution to c. Definition 4.4. A function f : ω → ω is diagonally non-computable relative to X (or X-dnc) if for every e, f (e) = Φ X e (e). Corollary 4.5. There is a computable instance c of OVW(2, 2) such that every solution is of ∅ -dnc degree.

Proof. Let c and h be as in Theorem 4.3. For every e, let α e be a computable bijection from the finite variable words in which the first h(e) variable kinds occur, to the set of the integers. By Kleene's fixpoint theorem, there is a computable function g : ω → ω such that for every e, Φ ∅ g(e) = α -1 g(e) (Φ ∅ e (e)). Let W be a solution to c, that is, an infinite variable word. Let f be the W -computable function defined by f (e) = α g(e) (w e ), where w e is the first initial segment of W in which the first h(g(e)) variable kinds occur. We claim that f is ∅ -dnc. Indeed, given e ∈ ω, w e = Φ ∅ g(e) , so f (e) = α g(e) (w e ) = α g(e) (Φ ∅ g(e) ) = Φ ∅ e (e) This completes our proof.

We conclude this section with a small computational observation about VW(2, 2) based on the syntactical form of the statement. Definition 4.6. A function g : ω → ω dominates f : ω → ω if (∀x)f (x) < g(x). A function f : ω → ω is hyperimmune if it is not dominated by any computable function. A Turing degree is hyperimmune-free if it does not contain any hyperimmune function.

Lemma 4.7 (Folklore). Let P be a statement of the form (∀X)[Φ(X) → (∃Y )Ψ(X, Y )] where Φ is an arbitrary predicate, and Ψ is a Π 0 2 predicate. For every computable instance I of P, if I has a solution of hyperimmune-free degree, then every PA degree computes a solution to I.

Proof. Say Ψ(X, Y ) ≡ (∀x)(∃y)Θ(X y, Y y, x, y), where Θ is a decidable predicate. Let I be a computable P-instance with a solution S of hyperimmune-free degree. Let h : ω → ω be the S-computable function such that for every x, Θ(I, S, x, h(x)) holds. In particular, there is a computable function g : ω → ω such that (∀x) max(h(x), S(x)) < g(x). Let T ⊆ ω <ω be the computably bounded tree defined by T = σ ∈ ω <ω :

(∀x < |σ|)σ(x) < g(x))∧ (∀x < |σ|)[g(x) < |σ| → (∃y < |σ|)Θ(I y, σ y, x, y)]

In particular, S ∈ [T ], so the tree is infinite. Moreover, any R ∈ [T ] is a solution to I, and any PA degree computes a member of [T ]. This completes the proof.

Corollary 4.8. There is a computable instance of VW(2, 2) such that every solution is of hyperimmune degree.

Proof. First, note that the statement VW(2, 2) is of the form of Lemma 4.7. Let c : 2 <ω → 2 be the computable instance of VW(2, 2) with no low solution constructed by Miller and Solomon [START_REF] Miller | Effectiveness for infinite variable words and the dual Ramsey theorem[END_REF] or by Theorem 4.3.

Letting d be a low PA degree, d computes no solution to c, hence by Lemma 4.7, every solution to c is of hyperimmune degree.

It is still unknown whether there is a computable instance of OVW(2, 2) such that every solution is PA over ∅ , or even just computes ∅ . In particular the following questions remain open: Question 4.9. Does VW(2, 2) or OVW(2, 2) imply ACA over RCA 0 ? Question 4.10. Is there a computable instance of VW(2, 2) or OVW(2, 2) such that the measure of oracles computing a solution to it is null?

Lemma 3 . 4 .

 34 There exists a string ρ ρ and a finite setP ⊆ |ρ|, • • • , |ρ| -1 with (∀i ∈ P )[ρ(i) = 0]such that for all σ ρ there exists two subsets P < P of P with P = ∅ such that, letting α = σ P , c(α) = c(α P ) = c(α min P ). Moreover, |P | < +2 , and ρ, P , are computable in the jump of c, uniformly in ρ.Proof. Let L and ρ satisfy Lemma 3.3. We claim that ρ and P = {|τ η |} η∈L ≤|L|+1 satisfy the current lemma. It is clear by item 1 of Lemma 3.3 that ρ ρ and by item 2 of Lemma 3.3 that (∀i ∈ P )[ρ(i) = 0].Fix an arbitrary σ ρ. We now describe how to construct P and P . Define 0 , . . . , |L| and p 0 , . . . , p |L| inductively by 0 = c(σ), i+1 = c(σ {p0,p1,••• ,pi} ), and

  1 }, and let α = σ P . We claim that c(α) = c(α P ) = c(α min P ). Note that min P =p i = |τ 0••• i |. Therefore α min P = τ 0••• i P . By item 3 of Lemma 3.3, we have c(τ 0••• i P ) = i .Meanwhile, by definition of i , c(σ P ) = c(α) = i . By definition of j , c(σ P ∪ P ) = c(α P ) = j . Thus, c(α) = c(α P ) = c(α min P ).

Proof.

  It suffices to compute, given a PA degree relative to ∅ , an infinite binary sequence Y ∈ 2 ω together with a sequence of finite sets P0 < P1 < • • • with (∀i ∈ ω)(∀n ∈ Pi )[Y (n) = 0] such that the following holds: Let P osition = min Pi : i ≥ 1 . There is some ˜ < such that for all subset J of ω, letting PJ = i∈J Pi , then we have, (∀p ∈ P osition) c(Y PJ p) = ˜ ]. Using Lemma 3.4, we first construct a ∅ -computable sequence of strings ρ0 ≺ ρ1 ≺ • • • , a sequence of finite sets P i ⊆ |ρ i-1 |, • • • , |ρ i | -1 and a sequence of colorings c i : [ρ i ] → L i inductively as follows. ρ0 = ε and c 0 = c. Given ρi and c i : [ρ i ] → L i , let ρi+1 ρi and

3 )

 3 But |β min Pn-1 | = min Pn-1 . So (3.3) means for any subset J of {0, • • • , n -2} we have:(∀p ∈ min Pj : 1 ≤ j ≤ n -1 ) c(β (∪ i≤n-2 P i )∪ PJ p) = ˜ .Or equivalently, for any subset J of {0, • • • , n -1} we have:(∀p ∈ min Pj : 1 ≤ j ≤ n -1 ) c(β (∪ i≤n-2 P i )∪ PJ p) = ˜ . (3.4)Now from 3.1, 3.2 and 3.4 we deduce that for any subset J of {0, • • • , n -1} we have:

  2 N +e -clause {x στ = i : σ ∈ L e,s }.This infinite CNF formula is clearly computable. Clearly C e,s,τ,i has length 2 N +e . Note that for every ρ, e, there exists at most one τ such that (∃σ ∈ L e,|ρ| )[στ = ρ]. Therefore, each variable x ρ appears in at most 2 clauses of length 2 N +e , namely, C e,|ρ|,τ,0 and C e,|ρ|,τ,1 , where τ is such that (∃σ ∈ L e,|ρ| )[στ = ρ]. Therefore, this formula satisfies the conditions of Theorem 4.2, and has a computable assignment c : 2 <ω → 2. By construction, letting h(e) = N + e + 1, the formula ensures that if Φ ∅ e outputs a finite variable word in which the first h(e) variables kinds occur, then Φ ∅

	And let C be the conjunction

ne,s+|τ |=s {C e,s,τ,i : e ∈ ω, τ ∈ 2 <ω , i < 2}.
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