Peter A Cholak

Gregory Igusa

Ludovic Patey

AND Mariya I Soskova

Daniel Turetsky

The Rado Path Decomposition Theorem

Keywords:

niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Introduction

Fix c : [N] 2 → r, an r-coloring of the pairs of natural numbers. An ordered list of distinct integers, a 0 , a 1 , a 2 . . . a i-1 , a i , a i+1 . . . is a monochromatic path for color k, if, for all i ≥ 1, c({a i-1 , a i }) = k. The empty list is considered a path of any color k. Similarly the list of one element, a 0 , is also considered a path of any color k. For any monochromatic path of length two or more the color is uniquely determined. Paths can be finite or infinite. Since all paths considered in this article are monochromatic we will drop the word monochromatic. Definition 1.1. Let c be an r-coloring of [N] 2 ([n] 2). A path decomposition for c is a collection of r paths P 0 , P 1 , . . . , P r-1 such that P j is a path of color j and every integer (less than n) appears on exactly one path.

Improving on an unpublished result of Erdős, Rado [START_REF] Rado | Monochromatic paths in graphs[END_REF] published a theorem which implies: Theorem 1.2 (Rado Path Decomposition, RPD, or RPD r). Every r-coloring of the pairs of natural numbers has a path decomposition.

In Section 2, we provide three different proofs of this result. The first proof makes use of an ultrafilter on the natural numbers. This ultrafilter proof is clearly known but, as far as we are aware, unpublished. The remaining proofs are interesting new modifications of the ultrafilter proof.

All of the proofs presented are highly non-computable. In Section 3, we show that a non-computable proof is necessary. A coloring c : [N] 2 → r is stable if and only if lim y c({x, y}) exists for every x. We show there is a computable stable 2-coloring c of [N] 2 such that any path decomposition for c computes the halting set. In Section 4, we give a non-uniform proof of the fact that the halting set can compute a path decomposition for any computable 2-coloring.

In Section 5 we show that if our primary ∆ 0 2 construction from Section 4 fails then it is possible to find a path decompostion which is as simple as possible: one path is finite and the other computable. But even with this extra knowledge, we show, in Theorem 5.6, that there is no uniform proof of the fact that the halting set can compute a path decomposition for any computable 2-coloring. In Theorem 5.7, we improve this to show no finite set of ∆ 0 2 indices works. In Section 7 we show that the halting set can also compute a path decomposition for stable colorings with any number of colors. The rest of Section 7 discusses Rado Path Decomposition within the context of mathematical logic and, in particular, from the viewpoint of computability theory and reverse mathematics. In Section 6, we discuss two differences between Rado Path Decomposition and Ramsey Theorem for pairs. Most of the sections can be read in any order, although Section 5 relies on Section 4, and Section 7 relies on Section 2.

Our notation is standard. Outside of Section 7, and possibly Section 5, our use of computability theory and mathematic logic is minimal and very compartmentalized. One needs to be aware of the halting set and the first few levels of the arithmetic hierarchy. A great reference for this material is Weber [START_REF] Weber | Computability theory[END_REF]. For more background in reverse mathematics, including all notions discussed in Section 7, we suggest Hirschfeldt [START_REF] Denis | Slicing the truth[END_REF].

Our interest in the RPD was sparked by Soukup [START_REF] Daniel | Decompositions of edge-coloured infinite complete graphs into monochromatic paths II[END_REF]. Thanks!

Some Proofs of RPD

In this section we will provide several proofs of RPD. We need to start with some notation and definitions. The union of pairwise disjoint sets is written as X 0 X 1 . . . X i . Two sets are equal modulo finite, X = * Y , if and only if their symmetric difference X Y is finite. If X 0 X 1 . . . X i = * Z then every possible intersection of the X j 's is empty and their union is equivalent modulo finite to Z. If Z = N then X 0 X 1 . . . X i is a partition of N. Definition 2.1. A collection U of subsets of N is an ultrafilter (on N) if and only if ∅ / ∈ U, U is closed under superset, U is closed under intersection, and, for all X ⊆ N, either X ∈ U or its complement X ∈ U. An ultrafilter is non-principal if and only if, for all a ∈ N, {a} / ∈ U.

We will call a subset X of N large if and only if X ∈ U.

Remark 2.2. The two key facts that we will need about a non-principal ultrafilter U are as follows.

(1) U does not have finite members. (This statement follows by an easy induction on the size of the finite set.) (2) If X 0 X 1 . . . X i = * N then exactly one of the X j is large. (No more than one of these sets of can be large, because if X j 0 and X j 1 are distinct then they have an empty intersection. Assume that for all j, X j ∈ U. It follows that j≤i X j = * ∅ ∈ U. But no finite set can be a member of a non-principal ultrafilter, giving us the desired contradiction.)

For the rest of this section a coloring c : [N] 2 → r will be fixed.

2.1. Ultrafilter Proof. The existence of a non-principal ultrafilter on the natural numbers is a strong assumption that unfortunately cannot be shown in Zermelo Fraenkel set theory, see Feferman [START_REF] Feferman | Some applications of the notions of forcing and generic sets[END_REF]; the axiom of choice is sufficient see Jech [START_REF] Jech | Set theory[END_REF]. Nevertheless, we give a proof of RPD that uses this assumption, because we believe that it provides insight into the combinatorics of this statement. Later in this section we will give alternative proofs of RPD that do not use a non-principal ultrafilter.

Let U be a non-principal ultrafilter. We will denote the set of neighbors of m with color i by

N (m, i) = {n : c({m, n}) = i}.
Note that N (m, i) is computable in our coloring c. Furthermore, if we fix m then the sets N (m, i) where i < r form a partition of N. By Remark 2.2 for every m there is a unique j < r such that N (m, j) is large. Let A j = {m : N (m, j) is large}. The sets A j where j < r also partition N. If m ∈ A j then we will say that m has color j. It follows that every natural number is assigned in this way a unique color.

For any pair of points m < n in A j , N (m, j) ∩ N (n, j) is large. So there are infinitely many v ∈ N (m, j) ∩ N (n, j). For all such v, c(m, v) = c(v, n) = j. Note that any such v is likely much larger than m and n and not necessary in A j .

Construction. We will construct our path decomposition P 0 , P 1 , . . . , P r-1 in stages. Let P j,0 = ∅ for all j < r. The path P j,0 is the empty path of color j. Assume that for each j < r, P j,s is a finite path of color j such that if P j,s is nonempty then its last member is of color j (i.e. in A j). Assume also that every t < s appears in one of the P j,s . If s already appears in one of the r paths, then let P j,s+1 = P j,s for all j < r. Otherwise, s has some color k. For j = k, let P j,s+1 = P j,s . If P k,s is empty, then let P k,s+1 = {s}. Otherwise, let e be the end of the path P k,s . There is a v not appearing in any of the finite paths P j,s such that v ∈ N (e, k) ∩ N (s, k). Add v and s to the end of P k,s in that order to get P k,s+1 . To complete the construction we set P j = lim s P j,s for every j < r. The desired path decomposition is given by P 0 , P 1 ,P r-1 .

The proof described above is very close to the well known ultrafilter proof of Ramsey's theorem for pairs. To illustrate this we include this proof below. An infinite set H is homogenous for c if and only if c([H] 2) is constant. Ramsey's theorem for pairs is the statement that every rcoloring of the pairs of natural numbers has an infinite homogeneous set.

Remark 2.3 (Proof of the existence of a homogenous set for c). Recall that A 0 , A 1 , . . . A r-1 gives a partition of N. Fix the unique j such that A j is large. We can thin A j to get an infinite homogenous set H of color j as follows: we build an infinite sequence {h n } n∈N of elements in A j by induction so that H = {h 0 , h 1 , . . .} is as desired. Let h 0 be the least element of A j . Suppose that we have constructed a homogeneous set {h 0 , . . . , h i } ⊆ A j . Since A j ∩ k≤i N (h k , j) is the finite intersection of large sets, it is also large and hence infinite. We define h i+1 to be the least member of A j ∩ k≤i N (h k , j) that is larger than h i . 2.2. Cohesive Proof. As noted, above we would like to remove the use of the non-principal ultrafilter from the proof of RPD. For this we will extract the specific relationship that U had with the sets N (m, j).

Remark 2.4. Reflecting on the above construction, we see that the important things about largeness were that (1) for every m there is a unique j < r such that N (m, j) is large, (2) large sets are not finite, and (3) the intersection of two large sets is large. Definition 2.5. An infinite set C is cohesive with respect to the sequence of sets {X n } n∈N if and only if for every n either C ⊆ * X n or C ⊆ * X n . Lemma 2.6. There is a set C that is cohesive with respect to the sequence {N (m, j)} j<r,m∈N .

Proof. Once again we will use a stagewise construction. We will construct two sequences of sets: {C s } s∈N and {R s } s∈N . The first sequence will be increasing and the second decreasing with respect to the subset relation. Start with C 0 = ∅ and R 0 = N. Fix some indexing of all pairs m, i . Inductively assume that, for all m, i < s, either

R s ⊆ N (m, i) or R s ⊆ N (m, i), C s is finite, R s is infinite, and C s and R s are disjoint. At stage s + 1, let c s be the least element of R s . Let C s+1 = C s ∪ {c s }. Assume that s = m, i . Since R s is an in- finite set, at least one of R s ∩ N (m, i) or R s ∩ N (m, i) is infinite. If R s ∩ N (m, i) is infinite let R s+1 = R s ∩ N (m, i) -{c s }. Otherwise let R s+1 = R s ∩ N (m, i) -{c s }. C = lim s C s = {c 0 , c 1 , . . .} is the desired cohesive set.
Fix such a set C. We can now redefine largeness by using C instead of an ultrafilter. Call a set X large if and only if C ⊆ * X. This new notion of largeness has the three key properties outlined above with respect to the sets N (m, i): for every m there is a unique j < r such that N (m, j) is large, because C cannot be a subset of two disjoint sets, even if we allow a finite error; large sets are not finite, because C is infinite; and the intersection of two large sets is large, because if C ⊆ * X and C ⊆ * Y then C ⊆ * X ∩ Y . We can now repeat the original construction using this notion of largeness to produce a path decomposition.

Stable Colorings.

Recall that a coloring c is stable if and only if for every m the limit lim n c({m, n}) exists. Rephrasing this property in terms of sets of neighbors, we get that there is a unique j < r such that N (m, j) is cofinite. So to construct a path decomposition for stable colorings we do not even need a cohesive set. We can redefine large to mean cofinite and use once again the original construction.

2.4. Generic Path Decompositions. In this section we will provide a forcing-style construction of a path decomposition. To avoid confusion with our ultrafilter proof, our construction will use sequences of conditions rather than poset filters.

Conditions are tuples (P 0 , P 1 . . . P r-1 , X) such that

(1) X ⊆ N is infinite, (2) P j is a finite path of color j for every j < r, (3) no integer appears on more than one of the paths, and

(4) if P j is nonempty and e j is its last element then X ⊆ * N (e j , j) (so e j has color j with respect to X).

It follows that (∅, ∅, . . . , ∅, N) is a condition, because it trivially satisfies the third requirement. A condition (P0 , P1 , . . . , Pr-1 , X) extends (P 0 , P 1 , . . . , P r-1 , X) if and only if, for all j, P j is an initial subpath of Pj , and X ⊆ X.

Given a sequence of conditions C i i∈N such that for every i, C i+1 extends C i , we think of this sequence as approximating a tuple of paths as follows.

If C i = (P i 0 , P i 1 , . . . , P i r-1 , X i), then the sequence C i approximates the tuple of paths (P0 , P1 , . . . Pr-1) where Pj = lim i P i j . Such a tuple of paths need not be a path decomposition, since it might happen that some integer does not appear on any of the limit paths. The purpose of the X values in the conditions will be to ensure that the approximated paths do form a path decomposition if the sequence C i is generic (defined below).

A set of conditions D is dense if every condition is extended by a condition in D. A sequence C i meets D if there is some i such that C i ∈ D.

Given any collection of dense sets, a sequence is C i generic for that collection if it meets every D in that collection. Note that if we have a countable collection of dense sets D i then it is straightforward to build a generic sequence for that collection, by inductively choosing each C i+1 to extend C i and be in D i+1 .

Let D i be the set of conditions (P 0 , P 1 , . . . , P r-1 , X) such that i is on some path P j . The lemma below shows that D i is dense. Any generic for {D i } gives a path decomposition for c. Lemma 2.7. For every i the set D i is dense.

Proof. Fix i and a condition (P 0 , P 1 , . . . , P r-1 , X). If i is on one of the paths P j then we are done. Otherwise, X is an infinite set, so there must be a j such that N (i, j) ∩ X is infinite. If k = j then let Pk = P k . Let X = X ∩ N (i, j). If P j is empty let Pj be i. Otherwise let e be the end of P k . Since (P 0 , P 1 , . . . , P r-1 , X) is a condition, there is a v such that v ∈ N (e, j) ∩ N (i, j). Let Pj be P j with v and i added to the end in that order. It follows that (P0 , P1 , . . . Pr-1 , X) is a condition in D i extending (P 0 , P 1 , . . . , P r-1 , X).

The generic construction is very much in the style of Rado's original proof.

Path Decompositions which compute the halting set

Recall the halting set K = {e|(∃s)ϕ e,s (e)↓} is the set of codes e for programs which, when started with input e, halt after finitely many steps. The halting set is one of the first examples of a set that is not computable. The goal of this section is to show the following theorem.

Theorem 3.1. There is a computable stable 2-coloring c such that any path decomposition of c computes the halting set.

We devote the rest of the section to the proof of this theorem. For colors we will use RED and BLUE. Once again a coloring c is stable if, for all m, lim n c(m, n) exists.

We will give a computable stagewise construction for c. The goal will be to construct c so that:

(1) The BLUE path in any path decomposition is infinite;

(2) Any path decomposition can compute the elements of K via the following algorithm: If e is a natural number then the construction will associate a marker m e to e in a way that is computable from any path decomposition for c. We enumerate the BLUE and RED paths until all numbers x ≤ m e have appeared on one of the two paths. Let t be the next element on the BLUE path. Then e ∈ K if and only if ϕ e,t (e) is defined (i.e. ϕ e (e) halts after ≤ t many steps). Each x ∈ N will have a default color. Initially it will be BLUE. The default color of a number might be changed once during the construction to RED. At stage s, we will define c({x, s}) for every x < s and we will always set this value to be the current default color for x. So our construction will produce a stable coloring. To achieve our first goal, it will be sufficient to ensure that for infinitely many intervals [k, 2k + 1] the default color BLUE is never changed. This is because if all elements in the interval [k, 2k + 1] are colored BLUE with every greater number, then, in any path decomposition, the BLUE path must contain a node in this interval: if m is in this interval and on a RED path then the next and previous nodes on this RED path must be a number less than k, so the RED path can only contain at most k of the nodes in this interval. The length of this interval is k + 1, so at least one of the nodes in this interval must be BLUE. This idea is reflected in the way we associate markers m e to elements e.

We will say that a number k is fresh at stage s if and only if k is larger than any number mentioned/used at any stage t where t ≤ s. All markers m e are initially undefined, i.e. m e,0 ↑. At each stage s before we proceed with the definition of c(x, s) for x < s we first update the markers: for the least e where m e,s-1 is not defined, we will select a fresh number k and define m e,s = 2k + 2. (Note that this means that if n is fresh after stage s then n > 2k + 2.) Unless we say otherwise (see below) at all later stages t we will keep m e,t = m e,s . It will follow that lim s m e,s = m e exists.

We also update the default colors as follows. For every e < s we check if ϕ e,s-1 (e)↑, ϕ e,s (e)↓, and m e,s is defined. If so we change the default color of all x ∈ [m e,s , s + 1] to RED and make all m i,s undefined for all i > e. If we can show that this construction satisfies our first goal, then we can easily argue that it also satisfies the second: Fix any path decomposition and assume that t is the first element on the BLUE path after all numbers x ≤ m e have shown up on one of the two paths. Suppose further that ϕ e (e) halts in s many steps. We must show that t > s. If at stage s we have that m e,s is not defined then t > m e > s.

If m e,s is defined and we assume that t < s + 1 then t has color RED with every number that has not yet appeared on either path and so the BLUE path cannot be extended. It follows that the BLUE path is finite, contradicting our assumption.

For every e the value of the marker m e,s can be cancelled at most e many times and then stays constant, so lim s m e,s = m e does exist. It is furthermore computable from any path decomposition by the following procedure. The marker for 0 is never cancelled, so m 0 = m 0,1 . If we know the value of m e then we run the construction until we see the first stage t 0 such that m e = m e,t 0 . It follows that after stage t 0 we can cancel m e+1 only for the sake of e. We can also figure out if e ∈ K by looking for the first t 1 on the BLUE path after all numbers x ≤ m e have shown up on one of the two paths and checking whether or not ϕ e (e) halts in t 1 steps. Let t = max(t 0 , t 1) + 1. We claim that m e+1,t = m e+1 . If e / ∈ K then m e+1 is not cancelled at any stage greater than t 0 and is defined by stage t. If e ∈ K then m e+1 can possibly be cancelled after stage t 0 but no later than at stage t 1 and so once again its final value will be defined by stage t.

Finally, by induction on e, we will show that there are e intervals [k, 2k +1] where the default color BLUE for all x in the interval is never changed and 2k + 1 ≤ m e . Assume inductively this is true for all e ≤ e and let s be the stage when m e+1,s = m e+1 is defined. By construction m e+1,s is defined as 2k e+1 + 2 for some fresh k e+1 > m e . The default color for all x in the interval [k e+1 , 2k e+1 + 1] is never changed from BLUE.

2-colorings

As we will see in this section 2-colorings are very special. For this section we will use BLUE and RED as our colors. Perhaps the starting point for all theorems about path decompositions is the following theorem.

Theorem 4.1 (Gerencsér and Gyárfás [START_REF] Gerencsér | On Ramsey-type problems[END_REF]). Every 2-coloring c of [n] 2 has a path decomposition.

Proof. We prove this statement by induction on n. Clearly the statement is true for

[2] 2 . Assume c is a 2-coloring of [n + 1] 2 . In particular c induces a 2-coloring on the subgraph [n] 2 .
By induction there is a path decomposition of [n] 2 . So there is a RED path, P r and a BLUE path, P b , such that, if i < n, then i is on exactly one of P r or P b .

If P r is empty then P b and {n} is a path decomposition for c. Similarly if P b is empty.

Let x r be the end of the RED path and let x b be the end of the BLUE path. Look at the color of the edge between x r and n. If it is RED then add n to the end of P r to get a path decomposition for c. Similarly, if the color of the edge between x b and n is BLUE then add n to the end of P b .

Otherwise look at the color of the edge between x r and x b . If this is RED add x b , n (in that order) to the end of the RED path and remove x b from the end of the BLUE path. We will say that x b switches to RED. If c({x r , x b }) is BLUE then add x r , n (in that order) to the end of the BLUE path and remove x r from the end of the RED path. In this case x r switches switches to BLUE. In all cases we have obtained a path decomposition of [n + 1] 2 , thereby completing the inductive step.

We are going to extend this theorem to the following:

Theorem 4.2. If c : [N] 2 → 2 then there is a ∆ c
2 Path Decomposition. In particular, if c is computable then it has a path decomposition that is computable from the halting set K.

The rest of this section is devoted to the proof of this theorem. This proof will be nonuniform. We will also discuss other issues along the way. Our first goal is to understand why we cannot simply iterate Theorem 4.1 infinitely often to get such a proof. We need to examine the path constructed in Theorem 4.1 very closely. Definition 4.3. Suppose Pb is a BLUE path and Pr a RED path. Then the pair (Pb , Pr) is a one-step path extension of (P b , P r) if exactly one of the following holds:

(1) Pb is P b with one additional element at the end and Pr = P r , or (2) Pr is P r with one additional element at the end and Pb = P b , or (3) Pb is the path P b with the last element x b removed and Pr is P r with x b and some integer x added in that order at the end, (in this case x b switches to RED), or (4) Pr is the path P r with the last element x r removed and Pb is P b with x r and some integer x added in that order at the end, (in this case x r switches to BLUE). (Pb , Pr) is a path extension of (P b , P r) if it can be obtained from (P b , P r) by a sequence of one-step path extensions. Also, if (Pb , Pr) is a path extension of (P b , P r), Pr = P r , and x is the last element of Pb , then we say that (Pb , Pr) is a BLUE path extension of (P b , P r) to x. We similarly define a RED path extension of (P b , P r) to x.

Note that if x is on one of P b or P r and (Pb , Pr) is a path extension, then x is on one of Pb or Pr .

The proof of Theorem 4.1 shows:

Lemma 4.4. Given any two finite disjoint paths P b and P r and an integer n not on either path, we can computably in c find a one-step path extension (Pb , Pr) such that n appears on exactly one of these paths.

We cannot generalize this lemma for more than 2 colors. In fact, Theorem 4.1 fails for more than 2 colors. Theorem 4.5 (Pokrovskiy [9]). Given any r > 2 there are infinitely many m such that there is a r-coloring c of [m] 2 without a path decomposition.

As our first attempt to prove Theorem 4.2, we will iterate Lemma 4.4 infinitely often to build paths P b,s and P r,s by stages. Start with P b,0 = P r,0 = ∅. At stage s + 1, apply Lemma 4.4 to P b,s and P r,s and the least integer not on either path n to get P b,s+1 and P r,s+1 . Once we have constructed these sequences, we need a way to extract from them two paths P b and P r and then try to argue that they form a path decomposition. We can do this if the position of every number eventually stabilizes. This idea is captured by the following definition. Definition 4.6. Suppose that, for every natural number s, P s = x s 0 , . . . , x s ks is a finite BLUE (RED) path. We define the BLUE (RED) path lim s P s = x 0 , x 1 , . . . , x n , . . . by x n = lim s x s n as long as lim s x s i exists for all i ≤ n. If there is an i ≤ n for which lim s x s i does not exist, then we leave x n undefined.

Given the sequences {P b,s } s∈N and {P r,s } s∈N , we know that every n eventually appears on one of P b,s and P r,s at some stage s and remains on either P b,t and P r,t at all stages t > s. So if every n only switches between the two sides finitely often then the pair P b and P r is a path decomposition. The limit will exist, although we might not have an explicit way to compute the limit.

However, it is possible for an n to switch infinitely often. It is, in fact, even possible to build a c such that every number n switches sides infinitely often. For such a c, it would be the case that the lim sup s |P b,s | = ∞ but the lim s P b,s is empty, and likewise for P r .

We have to alter our approach. We will still build our path decomposition as the stagewise limit of path extensions, although they will no longer be one-step path extensions. At each stage s we will have disjoint finite paths P b,s and P r,s . The pair (P b,s+1 , P r,s+1) will be a path extension of (P b,s , P r,s). The integers x r,s and x b,s will be the ends of these paths at stage s. When the stage is clear, we will abuse notation and drop the s in x r,s and x b,s . We will need the following: Definition 4.7. Suppose (Pb , Pr) is a one-step path extension of (P b , P r) obtained by Case (3) (i.e. x b switches to RED and is followed by x on Pr .) We say that x b strongly switches to RED if there is no BLUE path extension to x. We similarly define what it means for x r to strongly switch to BLUE.

We say (Pb , Pr) forms a strong one-step path extension of (P b , P r) if the pair (Pb , Pr) is a one-step path extension of (P b , P r) via either Cases (1) or (2), or via Cases (3) or (4) with a strong switch.

We say that (Pb , Pr) forms a strong path extension of (P b , P r) if it can be obtained from (P b , P r) by a sequence of strong one-step path extensions.

The following lemma is the key combinatorial property that will provide stability to constructions that are performed using strong path extensions.

Lemma 4.8. If n strongly switches to RED then n can never switch back to BLUE by a path extension. The RED path up to n is stable.

Before we prove Lemma 4.8, we require a more basic orderpreservation lemma concerning path extensions. Lemma 4.9. Assume (Pb , Pr) is a path extension of (P b , P r). Assume that n and m are two numbers such that one of the following holds.

• n appears before m in P r .

• m appears before n in P b .

• n appears in P r and m appears in P b .

Then one of the following holds.

• n appears before m in Pr .

• m appears before n in Pb .

• n appears in Pr and m appears in Pb .

Proof. The proof is an easy induction argument using the fact that only the last element of a path can ever switch to the other path. Any time the elements attempt to switch which path they are on, the latter element must switch before the earlier element.

We now proceed to prove Lemma 4.8.

Proof (Lemma 4.8). Assume not. Let (P b,0 , P r,0), (P b,1 , P r,1), (P b,2 , P r,2), (P b,3 , P r,3) be finite paths such that

(1) (P b,1 , P r,1) is a one-step path extension of (P b,0 , P r,0) in which n strongly switches to RED, (2) (P b,2 , P r,2) is a path extension of (P b,1 , P r,1) in which n never switches, (3) (P b,3 , P r,3) is a one-step path extension of (P b,2 , P r,2) in which n switches to BLUE.

Let m be the element following n in P r,1 . By definition of a strong switch, we have that there is no BLUE path extension of (P b,0 , P r,0) to m. In particular, there is no BLUE path from n to m that does not involve any integers (besides n) from P b,0 or P r,0 .

By hypothesis, n is in P b,3 , so by Lemma 4.9, m must appear before n in P b, [START_REF] Gerencsér | On Ramsey-type problems[END_REF] .

But then P b,3 has both n and m in it, and thus there is a BLUE path from n to m. This provides a contradiction provided that we can prove that this path P does not involve any integers besides n from P b,0 or P r,0 .

To show this, note that n and m are the last two elements of P r,1 . In particular, every element of P r,0 appears before n in P r,1 , and so by Lemma 4.9, if it is in P b,3 , it must appear after n. (This does not happen, although we do not need this fact for this proof.) Likewise, every element, besides n, of P b,0 is in P b,1 . Therefore, by Lemma 4.9, it must appear before m in P b,3 .

Note that we now have that if n strongly switches to RED, then the RED path up to n is stable: n can never switch back to BLUE, and so nothing can be added to or removed from the RED path before n.

Below we will modify the initial construction and require that all switches are strong. This avoids the problem of instability discussed above. We will from now on use only strong path extensions.

We note here that if our goal was only to provide another proof of Theorem 1.2, then we would be done. The analogue of Lemma 4.4 is not true with strong one-step extensions, but it is true with strong extensions, so we could simply use the initial construction with strong extensions to provide a path decomposition for c. However, this process might not produce a ∆ c 2 path decomposition for the following reason. If there are infinitely many strong RED switches, but only finitely many BLUE switches, then the RED path is stabilized in a way that allows it to be computed in a ∆ c 2 manner, but the BLUE path can only be computed in a ∆ c 3 manner. It is ∆ c 2 to recognize a strong switch, but it is ∆ c 3 to recognize that an element will never strongly switch in the future. We will discuss this in more detail in Section 4.4. For now, the key point is that we must sacrifice some of the simplicity of the construction in order to provide a construction that can be carried out by a computationally weaker oracle.

We now describe our construction explicitly. As suggested in the above paragraph, the construction will depend on whether the number of strong BLUE switches is finite or infinite and similarly for RED. This leads us to a case-by-case analysis of our path decomposition. In Section 5 we will show that there is no uniform way to produce a ∆ c 2 path decomposition, which implies that there is no way to prove Theorem 4.2 without some sort of case-by-case analysis.

The following allows us to define our cases nicely.

Definition 4.10. For a coloring c, we will say that we can always strongly RED switch if for every pair (P b , P r) of disjoint finite BLUE and RED paths, there is a strong path extension (Pb , Pr) of (P b , P r) such that there was a strong RED switch at some point during the path extension between (P b , P r) and (Pb , Pr).

We define being able to always strongly BLUE switch similarly.

Lemma 4.11. If the pair (P b , P r) witnesses that we cannot always strongly RED switch and (Pb , Pr) is a strong path extension of (P b , P r), then (Pb , Pr) also witnesses that we cannot always strongly RED switch.

Proof. Strong path extension is transitive. If there is a path extension of (Pb , Pr) that includes a strong RED switch, then that same path extension is also a path extension of (P b , P r) that includes a strong RED switch.

Our construction of a path decomposition breaks down into three different procedures depending on whether or not we can always strongly BLUE and RED switch.

4.1. We can always strongly BLUE and RED switch. We will inductively define (P b,s , P r,s) by multiple stages at once. For each s, (P b,s+1 , P r,s+1) will be a strong path extension of (P b,s , P r,s).

Start with P b,0 = P r,0 = ∅.

Let k the least stage where (P b,k , P r,k) has yet to be defined. Let x be the least integer not in the paths P b,k-1 and P r,k-1 . If there is a BLUE path extension to x, let (P b,k , P r,k) by that path extension. If this fails, try the same for RED. If both fail, switch either x b or x r as in Lemma 4.4 to get P b,k and P r,k . It follows that this switch is a strong switch. Next we stabilize some initial segment of our paths: Let (P b,k+1 , P r,k+1) be a strong path extension of (P b,k , P r,k) that includes a RED switch, and let (P b,k+2 , P r,k+2) be a strong path extension of (P b,k+1 , P r,k+1) that includes a BLUE switch.

We then repeat for the next integer not yet on either path. All switches are strong switches, and by Lemma 4.8, the limits of these paths exist. Since every integer is placed on our paths at some stage, and since every integer can be moved at most once, we have that every integer is on exactly one of the two limiting paths.

Therefore this construction gives a path decomposition.

4.2.

We cannot always strongly RED switch. Let (P b,0 , P r,0) witness that we cannot always RED switch, and furthermore assume that among all such witnesses the length of P r,0 is minimal. Now consider (P b,s , P r,s) and x the least number not on these two finite paths. If there is a BLUE path extension, to x, use that extension for (P b,k+1 , P r,k+1). If this fails try to do the same for RED.

We claim that one of the two options listed above will always work. Towards a contradiction, suppose that both fail. To add x we must switch (like in Theorem 4.1). Call the resulting pair (Pb , Pr). Then (Pb , Pr) is a strong extension of (P b,s , P r,s). So if x b switches to RED then it strongly RED switches. This is not possible, by our choice of (P b,0 , P r,0).

It follows that c({x b , x r }) = BLU E and x r strongly switches to BLUE. By Lemma 4.11, since (Pb , Pr) is a strong extension of (P b,s , P r,s), it must also witness that we cannot always RED switch. Note that Pr is shorter than P r,s , so by the minimality of P r,0 , we know that P r,s = P r,0 . So x r was added to the RED path at some stage t ≤ s.

Hence there is no BLUE path from x b,t to x r which is otherwise disjoint from P b,t and P r,t , as otherwise x r would have been added to P b,t .

On the other hand there is a BLUE path from x b,t to x b , witnessed by the fact that x b,t and x b are both on the BLUE path at stage s. (By induction, our construction has no switches up to this point, so x b,t is still on the blue path at stage s.) We also have that the pair x b , x r is colored BLUE, so there is a BLUE path from x b,t to x r , a contradiction. 4.3. We cannot always strongly BLUE switch. This case is dealt with in the same way as the previous one.

4.4.

The use of the oracle c . The existence of a path from x to n is existential in the coloring. The lack of a path from x to n is universal in the coloring. So deciding if " Pb and Pr is a one-step path extension of P b and P r and x b strongly switches to RED" is universal in the coloring and so computable in c .

As a result, c can be used as an oracle to implement both of the above constructions. In the case where we can always strongly RED and BLUE switch, we can then use c to compute both of the paths because both paths are stabilized by strong switches, and c can recognize the strong switches. In the case where we cannot strongly RED (BLUE) switch, we can also use c to compute both of the paths because both paths are already stable: no numbers ever switch from one path to the other.

Note that Definition 4.10 is Π 3 in the coloring. Our division of cases depends on the truth of this statement and the witness to its failure. This is finite information but as a result the proof is not uniform in c . In Theorem 5.6, we will show that this nonuniformity cannot be removed.

The more naive construction, always greedily adding the next element by a strong extension with no case-by-case breakdown, can be implemented uniformly by c , but the construction could potentially result in infinitely many RED switches and finitely many BLUE switches (or vice-versa). In this case, the RED path would be computable from c because the strong RED switches would stabilize it. On the other hand, the BLUE path would not necessarily be computable from c : the statement that an initial segment of the BLUE path has stabilized is universal in the construction ("for all future steps of the construction, none of these elements ever RED switch") and so is Π 2 in the coloring. Thus, the naive construction could potentially produce a path decomposition in which one of the two paths was computable from c , but not c .

In our proof of Theorem 4.2, if we can always switch then both the BLUE and RED paths are infinite. But if we cannot always switch one of the paths might be finite. In that case the constructed paths are both computable from the coloring. In Theorem 5.1, we will see by a more delicate case breakdown that this actually always happens. Thus, although our strongly switching proof does not work for all colorings, it does work for all "difficult" colorings: colorings for which there is no computable solution.

Uniformity

In the above section, we have provided a nonuniform ∆ 0 2 construction and a uniform ∆ 0 3 construction of a path decomposition. Furthermore, Theorem 4.2 showed that, in general, we cannot hope for a construction that is simpler than ∆ 0 2 , so the complexity of the construction cannot be reduced. Here we address the question of whether the nonuniformity of the ∆ 0 2 construction can be reduced. Theorem 5.1 shows that if our primary construction for Theorem 4.2 fails, then there must be a path decomposition for c in which one of the two paths is finite and the other is computable from c.

Theorem 5.6 shows that there is no uniform ∆ 0 2 path decomposition. Theorem 5.7 improves this to show we cannot even get by with a finite set of possible ∆ 0 2 indices for our path composition. Thus, nonuniformity is unavoidable.

In light of this, the result in Theorem 5.1 is the closest possible thing to a reduction of nonuniformity: All of the noncomputable cases are handled by a single uniform ∆ 0 2 construction, which cannot have its complexity reduced due to Theorem 4.2, and all of the nonuniform cases (unavoidable, by Theorem 5.7) are handled by computable constructions that are as simple as possible, with one path finite and the other computable. 5.1. When we cannot always strongly BLUE and RED switch. Theorem 5.1. There is a computable function f with the property that for any e, if e is an index for a computable coloring c, then either f (e) is an index for a ∆ 0 2 path decomposition for c, or there is a computable path decomposition for c in which one of the two paths is finite.

Note that this theorem relativizes: there is a uniform way to take a coloring c, and attempt to produce a ∆ c 2 path decomposition so that either the attempt succeeds, or there is a c-computable path decomposition for c in which one of the two paths is finite.

Proof. The proof hinges on the case analysis from the proof of Theorem 4.2.

In the case where we can always strongly BLUE and RED switch, the proof is uniform: we alternate between adding the next element, adding a RED switch, and adding a BLUE switch, and our ∆ c 2 path decomposition is simply the path decomposition stabilized by the switches. Our function f will be the function corresponding to attempting to do that construction.

It remains to show that if we cannot always RED switch, then there is always a c-computable path decomposition in which one of the two paths is finite. (The case where we cannot always BLUE switch will follow by symmetry.)

As in the proof of Theorem 4.2, let (P b,0 , P r,0) witness that we cannot always RED switch, and furthermore assume that among all such witnesses the length of P r,0 is minimal. Let x b and x r be the endpoints of the paths P b,0 , P r,0 . We split our proof into two cases.

Case 1: Assume that for every n ∈ N, and for every BLUE extension (P b , P r,0) of (P b,0 , P r,0), if n is not on either P b or P r,0 , then there is a BLUE path extension of (P b , P r,0) to n.

In this case, we will use P r,0 as our RED path, and grow our BLUE path to cover the rest of N. We use a basic greedy algorithm.

At stage s, let (P b,s , P r,0) be the pair of paths that we have, and let n s be the smallest number not on either path. We search for a BLUE path extension of (P b,s , P r,0) to n s , and when we find such an extension, we let (P b,s+1 , P r,0) be the first such extension that we find.

By hypothesis, we will always find such an extension, and this algorithm clearly covers all of N in the limit.

Case 2: Assume Case 1 does not hold. Let (P b,1 , P r,0) be a BLUE path extension of (P b,0 , P r,0), and n 0 ∈ N so that there is no BLUE path extension of (P b,1 , P r,0) to n 0 .

We claim that in this case, we actually have that for every n ∈ N, and for every RED extension (P b 1 , P r) of (P b,1 , P r,0), if n is not on either P b 1 or P r , then there is a RED path extension of (P b 1 , P r) to n. Thus we may use the RED analogue of the previous algorithm. The proof of this claim will be somewhat circuitous.

First we show that there is no n such that (P b,1 , P r,0) has both a RED extension to n and a BLUE extension to n. After this we will show that actually either there is no n such that (P b,1 , P r,0) has a BLUE extension to n or there is no n such that (P b,1 , P r,0) has a RED extension to n. We will then show that the first case is true. Finally, from there, we will show that for every n ∈ N, and for every RED extension (P b 1 , P r) of (P b,1 , P r,0) there is a RED path extension of (P b 1 , P r) to n.

During these proofs, we will repeatedly use the following facts.

(1) (P b,1 , P r,0) is a witness to the fact that we cannot always RED switch.

(2) P r,0 has minimal length among the RED paths of such witnesses.

(3) There is no BLUE path extension of (P b,1 , P r,0) to n 0 . The first two facts follow from the fact that (P b,1 , P r,0) is a BLUE path extension of (P b,0 , P r,0). The third is from our hypothesis in Case 2.

Claim 5.2.

There is no n such that (P b,1 , P r,0) has both a RED extension to n and a BLUE extension to n: Proof. Assume not, and let n 1 be such an n. Replacing n 1 if necessary, we may assume that the BLUE path extension to n 1 and the RED path extension to n 1 do not intersect before n 1 . Consider the edge from n 1 to n 0 .

If this edge is BLUE, then we can add n 0 to the end of the BLUE extension to n 1 , creating a BLUE path to n 0 . This contradicts fact [START_REF] Gerencsér | On Ramsey-type problems[END_REF].

If the edge is RED, then consider the path extension (Pb , Pr) of (P b,1 , P r,0) in which Pb is created by the BLUE path extension to n 1 , and Pr is created by the RED path extension to n 1 , but with n 1 removed from the end. Let x be the last element of Pr . Now we have that the edge from x to n 1 is RED, the edge from n 1 to n 0 is RED, and there is no BLUE path extension from (Pb , Pr) to n 0 . So we can strongly switch n 1 to RED. This contradicts fact (1). Claim 5.3. Either there is no n such that (P b,1 , P r,0) has a nontrivial BLUE extension to n or there is no n such that (P b,1 , P r,0) has a nontrivial RED extension to n.

A path extension (Pb , Pr) of (P b , P r) is nontrivial if (Pb , Pr) = (P b , P r).

Proof. Assume not, and let n 1 , n 2 be such that (P b,1 , P r,0) has a nontrivial BLUE extension to n 1 and a nontrivial RED extension to n 2 . Consider the edge between n 1 and n 2 . If the edge is RED, then we can use it with the RED path to n 2 to create a RED path to n 1 . But then (P b,1 , P r,0) has both a RED extension to n 1 and a BLUE extension to n 1 , contradicting Claim 1. If the edge is BLUE, we can similarly conclude that (P b,1 , P r,0) has both a RED and a BLUE extension to n 2 , again contradicting Claim 5.2.

Claim 5.4.

There is no n such that (P b,1 , P r,0) has a nontrivial BLUE extension to n.

Proof. Again, assume not. Then by Claim 5.3, there is no n such that (P b,1 , P r,0) has a nontrivial RED extension to n. In particular, (P b,1 , P r,0) does not have a RED extension to n 0 . By fact (3), (P b,1 , P r,0) also does not have a BLUE extension to n 0 . It follows, by Lemma 4.4, that we can add n 0 by a switch, and the switch must be a strong switch.

The switch cannot be a strong RED switch by fact [START_REF] Enayat | From bounded arithmetic to second order arithmetic via automorphisms[END_REF]. Also, the switch cannot be a strong BLUE switch because if we performed a strong BLUE switch on (P b,1 , P r,0), it would create a strong path extension in which we decreased the length of the RED path. This contradicts fact (2), recalling that by Lemma 4.11, any strong path extension of (P b,1 , P r,0) must also witness that we cannot always RED switch. Claim 5.5. For every n ∈ N, and for every RED extension (P b,1 , P r) of (P b,1 , P r,0), if n is not on either P b,1 or P r , then there is a RED path extension of (P b,1 , P r) to n.

Proof. Let (P b,1 , P r) be a RED extension of (P b,1 , P r,0), and let n 1 be an element of N that is on neither P b,1 nor P r . Assume there is no RED extension of (P b,1 , P r) to n. By Claim 5.4, there is also no BLUE extension of (P b,1 , P r) to n, because extending the RED path cannot make it any easier to find a BLUE extension. Then, by Lemma 4.4, to add n 1 to (P b,1 , P r), we must do a switch, and the switch must be strong.

We split our proof into two cases: If (P b,1 , P r) = (P b,1 , P r,0), then the proof proceeds exactly as the proof of Claim 5.4. The switch cannot be a strong RED switch by fact (1), and the switch cannot be strong BLUE switch by fact [START_REF] Feferman | Some applications of the notions of forcing and generic sets[END_REF].

If (P b,1 , P r) = (P b,1 , P r,0), then the switch still cannot be a strong RED switch by fact (1), recalling again that by Lemma 4.11, any strong path extension of (P b,1 , P r,0) must also witness that we cannot always RED switch. The switch also cannot be a BLUE switch, because for the switch to be a BLUE switch, the edge from the end of the P b,1 to the end of P r must be BLUE, contradicting Claim 5.4. This completes of Theorem 5.1.

Note that if we are in Case 2 of the above construction, we have no way of knowing whether we will find the x we are looking for, so we cannot know when to switch to the construction for Case 1. This does not concern us. We are only proving that there is a computable path decomposition with one path finite, not that the path decomposition can be found uniformly.

5.2.

No Uniform ∆ 0 2 index. Theorem 5.6. There is no partial computable function f such that if e is an index for a computable coloring c, then f (e) is an index for a ∆ 0 2 path decomposition for c. Proof. Let f be a partial computable function. We create a computable coloring with index e such that if f (e) is defined, then f (e) is not an index for a ∆ 0 2 path decomposition for c. Our construction is in stages. During stage s of the construction, for every t ≤ s, we color the pair {t, s + 1}.

By the recursion theorem, we may know the index, e, for the coloring that we are constructing. We begin computing f (e), and while we wait for it to halt, we color everything BLUE with everything else.

If f (e) halts, then by the limit lemma, we begin approximating the ∆ 0 2 paths P r and P b computed by the f (e)th ∆ 0 2 index. We let P r,s and P b,s be the stage s approximations to P r and P b .

The only facts we will need about the approximations is that if P b is defined and empty, then there is some s such that for all t ≥ s, P b,t is empty and likewise that if P b is defined and nonempty, then there is some s such that for all t ≥ s, P b,t is nonempty and the first element of P b,t is the first element of P b .

We define x s to be the first element of P b,s (with x s undefined if P b,s is empty). We may assume that x s ≤ s.

At stage s if P b,s is empty, we color everything BLUE with s + 1. On the other hand, if P b,s is nonempty, then let s 0 be minimal such that for all t ∈ [s 0 , s], x t = x s . Then, if t ≤ s 0 , we color {t, s + 1} RED, and if s 0 < t < s + 1, we color {t, s + 1} BLUE.

This completes the construction. We now verify that if f (e) is defined and if the ∆ 0 2 set with index f (e) is defined, then it is not a path decomposition for c.

Assume f (e) and the ∆ 0 2 set with index f (e) are defined. We have two cases. Either P b is empty or it is not empty.

If P b is empty, then there is some s 0 such that for all s ≥ s 0 , P b,s is empty. But then, after stage s 0 , we only create BLUE edges, so at most finitely many edges are RED. Thus P r can only be a finite length, and P b is empty, so P r and P b do not form a path decomposition for c.

If P b is not empty, then it has some smallest element x, and there is some smallest s 0 such that for all s ≥ s 0 , x s = x. Note that s 0 ≥ x s 0 = x. But then no number ≤ s 0 is ever colored BLUE with any number greater than s 0 , so in particular if x is in the BLUE path, then the BLUE path cannot go through any numbers larger than s 0 , and must be finite. However, every number larger than s 0 is colored BLUE with every other number larger than s 0 , so for every t > s 0 on the RED path, the next element on the RED path must be ≤ s 0 . Thus, the RED path can have length at most 2s 0 , and is also finite. Again, P r and P b do not form a path decomposition for c.

We remark now that the technique of Theorem 5.6 only allows us to build a coloring c that can defeat any single uniform manner of attempting to produce a ∆ 0 2 path decomposition from c. For the coloring c that we create, it is not at all difficult to produce a path decomposition; it is just the case that the f (e)th ∆ 0 2 set fails to do so.

5.3.

No finite set of ∆ 0 2 indices. We show now, by a strengthening of the argument from Theorem 5.6 that it is impossible to reduce the nonuniformity to a finite collection of ∆ 0 2 indices. Theorem 5.7. There is no partial computable function f such that if e is an index for a computable coloring c, then f (e) is an index for a finite c.e. set W f (e) one of whose elements is an index for a ∆ 0 2 path decomposition for c.

Proof. Let f be a partial computable function. We create a computable coloring with index e such that if f (e) is defined, and if W f (e) is finite, then no element of W f (e) is an index for a ∆ 0 2 path decomposition for c.

Our construction is in stages. During stage s of the construction, for every t ≤ s, we color the pair {t, s + 1}.

By the recursion theorem, we may know the index, e, for the coloring that we are constructing. We begin computing f (e), and while we wait for it to halt, we color everything BLUE with everything else.

If f (e) halts, then we begin enumerating W f (e) . Let W f (e),s be the stage s approximation to W f (e) .

For each i in W f (e) , let P b,i,s and P r,i,s be the stage s approximations to the BLUE and RED paths of the ith ∆ 0 2 approximation to a path decomposition. We may assume P b,i,s and P r,i,s have no elements larger than s. Let P b,i and P r,i be the limits, if they exist, of P b,i,s and P r,i,s .

We will use x as a variable for a color (BLUE or RED), as well as for a letter for a color (b or r). We will write 1 -x to refer to the other color.

For each i ∈ W f (e) , we will have two strategies S b,i and S r,i , which will work to ensure that if (P b,i , P r,i) forms a path decomposition for c, then P b,i (respectively P r,i) is finite. Note that if both S b,i and S r,i achieve their goals, then (P b,i , P r,i) cannot form a path decomposition for c.

At stage s, if every P x,i,s with i ∈ W f (e) is empty, then we continue to color everything BLUE.

If at least one P x,i,s is nonempty, and if there are no currently active strategies, then we will activate one S x,i such that P x,i has been stably nonempty for the longest time. More precisely, for each (x, i) such that i ∈ W f (e),s , and P x,i,s is nonempty, let t x,i be minimal such that ∀t ∈ [t x,i , s], P x,i,t is nonempty, with first element equal to the first element of P x,i,s . Let t 0 = min (x,i) (t x,i), and let (x 0 , i 0) be minimal among all (x i) such that t x,i = t 0 . We activate strategy S x 0 ,i 0 .

When this happens, S x 0 ,i 0 claims the set [0, s], declaring that ∀t ∈ [0, s] ∀s > s, the color of {t, s } will be 1 -x 0 . This restraint will remain in effect either until the end of the construction, or until some later stage when the smallest element of P x 0 ,i 0 changes.

If at some point the smallest element of P x 0 ,i 0 changes, we injure every active strategy in the construction: Every active strategy forgets its claim set and deactivates. After that, we will probably be back in the case where there are no active strategies, and we are choosing a new strategy to activate.

Note that if S x 0 ,i 0 is never injured, then it will have achieved its goal: P x 0 ,i 0 has an element in [0, s], and there are no numbers in [0, s] that are colored x 0 with any numbers > s, so P x 0 ,i 0 will never be able to exit the interval [0, s]. Now, assume that at stage s, there are finitely many active strategies S x 0 ,i 0 , S x 1 ,i 1 , . . . , S x k ,i k with claim sets [0, s 0], (s 0 , s 1], . . . , (s k-1 , s k].

We say that an inactive strategy S x,i is eligible to act if

• i ∈ W f (e),s ,
• The paths P b,i,s and P r,i,s include every element of [0, s k], and • The last element of P x,i,s is larger than s k .

If any strategy is eligible to act, then we will choose one to activate in the following manner: For each (x, i) such that S x,i is eligible to act, let Px,i,s be the shortest initial segment of P x,i,s that includes every element of [0, s k] that is in P x,i,s , and that ends with an element not in [0, s k]. Let P1-x,i,s be the shortest initial segment of P 1-x,i,s that includes every element of [0, s k] that is in P 1-x,i,s . (The double hat on P1-x,i,s is used because P1-x,i,s may already be defined if (1 -x, i) also satisfies the properties above. Note that if both are defined, then P1-x,i,s is P1-x,i,s with one extra element at the end.)

Let t x,i be minimal such that ∀t ∈ [t x,i , s], Px,i,s is an initial segment of P x,i,t and P1-x,i,s is an initial segment of P 1-x,i,t . We think of t x,i as measuring how long S x,i 's reason for acting has been valid.

Let t k+1 = min (x,i) (t x,i), and let (y, j) be minimal among all (x, i) such that t x,i = t k+1 . We activate strategy S y,j . So the strategy that is activated is the one whose reason for acting has been valid the longest.

When this happens, S y,j claims the set (s k , s], declaring that ∀t ∈ (s k , s] ∀s > s, the color of {t, s } will be 1 -y. This restraint will remain in effect either until the end of the construction, or until some later stage when S y,j becomes injured.

If at some stage s > s, we see that Py,j,s is not an initial segment of P y,j,s or P1-y,j,s is not an initial segment of P 1-y,j,s , then at that stage, injure S y,j as well as every strategy that became active after stage s. The injured strategies all forget their claim sets and deactivate. If this happens, we say that the reason S y,j activated is no longer valid.

Note again that if S y,j is never injured, then it will have achieved its goal as follows. The last element of Py,j,s is in (s k , s]. Every element of (s k , s] is colored 1 -y with every element larger than s, so P y,j cannot exit (s k , s] by moving to a number larger than s. Finally, every number ≤ s k is already in either Py,j,s or P1-y,j,s . These are initial segments of P y,j , P 1-y,j (because otherwise S y,j would be injured) and so P y,j cannot exit (s k , s] by moving to a number ≤ s k , because all of those numbers are already on one of the two paths. Thus P y,j is unable to have any elements > s.

At the end of stage s, after determining which, if any, strategy becomes activated at stage s, for every t ≤ s, we color {t, s + 1} by the following algorithm. If t is in any active strategy's claim set, then we color {t, s + 1} according to that strategy's restriction. (Note that the claim sets of our active strategies are always disjoint.) If t is not claimed by any strategy, then color {t, s + 1} BLUE.

This completes the construction of c. We now verify that if W f (e) is finite, then for every i ∈ W f (e) , (P b,i , P r,i) is not a path decomposition for c. The verification will consist of two claims. Claim 5.8 was already verified during the construction. Claim 5.8. For every (x, i), if at some stage s, S x,i becomes active, and is never injured after stage s, and if (P b,i , P r,i) forms a path decomposition for c, then P x,i is finite. Claim 5.9. If W f (e) is finite, then for every (x, i), if i ∈ W f (e) , (P b,i , P r,i) forms a path decomposition for c, and P x,i is infinite, then there is an s such that S x,i becomes active at stage s, and is never injured after stage s.

Proof. Fix some pair (y, j) such that j ∈ W f (e) , (P b,j , P r,j) forms a path decomposition for c, and P y,j is infinite. Let S x 0 ,i 0 , S x 1 ,i 1 , . . . , S x k ,i k be the strategies which at some point activate and never get injured again. If S y,j is one of these strategies, then we are done, so assume it is not.

For each S xn,in , let s n be the stage when S xn,in is activated for the last time, never to be injured again. Reordering the S xn,in so that the s n are in increasing order, we may assume that at stage s k , the strategies S x 0 ,i 0 , S x 1 ,i 1 , . . . , S x k ,i k are all active, with claim sets [0, s 0], (s 0 , s 1], . . . , (s k-1 , s k], that none of the S xn,in will ever be injured after stage s k , and that no other strategies are active at stage s k .

(They are all active and will never be injured again because s k is the max of the s n . There are no other strategies active because S x k ,i k just became activated at stage s k , and, by definition of the S xn,in , if any other strategy was active, it would get injured again later, but then this would injure S x k ,i k , contradicting the choice of s k .)

For each x, let Px,j be the shortest initial segment of P x,j that includes every element of [0, s] that is on P x,j . By assumption, (P b,j , P r,j) forms a path decomposition for c. Therefore, in particular, Pb,j Pr,j together cover all the elements of [0, s k]. Also by assumption, P y,j is infinite, so let Py,j be the initial segment of P y,j whose length is one greater than the length of Py,j .

Let t 0 be minimal such that t 0 > s k , j ∈ W f (e),t 0 , and for all t > t 0 , Py,j is an initial segment of P y,j,t , and P1-y,j is an initial segment of P 1-y,j,t . We claim that there will be some stage s ≥ t 0 so that S x 0 ,i 0 , S x 1 ,i 1 , . . . , S x k ,i k are the only strategies active at the beginning of stage s, and S y,j becomes active at stage s. We also claim that after that stage s, S y,j will never be injured. Claim 5.10. There is some s ≥ t 0 so that S x 0 ,i 0 , S x 1 ,i 1 , . . . , S x k ,i k are the only strategies active at the beginning of stage s, and S y,j becomes active at stage s.

Proof. The proof of Claim 5.10 hinges on the following. Claim 5.11. For every pair (x, i), if (x, i) = (y, j), then there can be at most one stage s ≥ t 0 such that S x 0 ,i 0 , S x 1 ,i 1 , . . . , S x k ,i k are the only strategies active at the beginning of stage s, and S x,i becomes active at stage s.

Proof. To see this, assume that s ≥ t 0 , S x 0 ,i 0 , S x 1 ,i 1 , . . . , S x k ,i k are the only strategies active at the beginning of stage s, and S x,i becomes active at stage s. Assume further that S x,i is injured at stage s > s. Let s ≥ s be a stage at which S x 0 ,i 0 , S x 1 ,i 1 , . . . , S x k ,i k are the only active strategies.

Then, at stage s , even if S x,i is eligible to act, t x,i must be ≥ s . This is because t 0 is larger than the stage at which any of the S x 0 ,i 0 , S x 1 ,i 1 , . . . , S x k ,i k is ever injured, and so, at stage s , when S x,i was injured, it must have been injured because its reason for acting was no longer valid. Thus, t x,i ≥ s , but, by choice of t 0 , we know that S y,j is eligible to act and t y,j ≤ t 0 . Thus, it is not possible for S x,i to become active at stage s , because S y,j is ahead of it in queue. Claim 5.10 now follows directly, because, by definition of S x 0 ,i 0 , S x 1 ,i 1 , . . . , S x k ,i k , we know that every S x,i that becomes active after stage s k must become injured at a later stage. We have that W f (e) is finite, and so by Claim 5.11 there can be at most finitely many stages after t 0 when S x 0 ,i 0 , S x 1 ,i 1 , . . . , S x k ,i k are the only active strategies, and some strategy other than S y,j becomes active. Each time such a strategy becomes active at such a time, and later becomes injured, we have another stage at which S x 0 ,i 0 , S x 1 ,i 1 , . . . , S x k ,i k are the only active strategies. By choice of t 0 , at each such stage, S y,j is eligible to act, so once no other strategy is able to become active, we must have that S y,j becomes active at a stage at which S x 0 ,i 0 , S x 1 ,i 1 , . . . , S x k ,i k are the only active strategies.

We conclude the proof of Theorem 5.7 with a proof of the following. Claim 5.12. Assume S y,j becomes active at a stage s > t 0 such that S x 0 ,i 0 , S x 1 ,i 1 , . . . , S x k ,i k are the only strategies active at the beginning of stage s. Then S y,j is never injured after stage s.

Proof. None of the S x 0 ,i 0 , S x 1 ,i 1 , . . . , S x k ,i k are ever injured after stage s k , and t 0 was chosen to be large enough that if S y,j becomes active at stage s ≥ t 0 , and if the previously claimed elements at stage s are [0, s k], then S y,j 's reason for acting will remain valid forever, and so S y,j will never injure itself.

S y,j can only be injured by itself or by a strategy that was active when S y,j became active. It follows that S y,j will not be injured after stage s.

This completes the proof of Claim 5.9, as we have shown that there must be a stage so that S y,j becomes active at that stage and is never injured after that stage. Theorem 5.7 now follows from Claims 5.8 and 5.9, because N is infinite, so any path decomposition of N must have an infinite path. Considered together, Claims 5.8 and 5.9 say that if W f (e) is finite, and if i ∈ W f (e) , then either (P b,i , P r,i) do not form a path decomposition for c, or both P b,i and P r,i are finite (in which case they cannot form a path decomposition for c).

RPD compared to Ramsey's Theorem for pairs

One fact about (infinite) Ramsey's Theorem that is regularly used is that for every coloring c : [N] 2 → r and every infinite set X, there is an infinite homogeneous set H ⊆ X. However, a path decomposition of a set X ⊆ N for the restricted coloring c : [X] 2 → r does not help us to find a path decomposition for the unrestricted coloring c : [N] 2 → r.

There is a proof which uses compactness to show the infinite version of Ramsey theorem implies the finite version. For example, see Graham et al. [START_REF] Graham | Ramsey theory[END_REF]. By Theorem 4.5, we know this compactness argument fails for the Rado Path Decomposition Theorem. A compactness argument breaks down since the paths linking numbers below m might also involve numbers larger than m.

Corollaries in Mathematical Logic

The existence of a non-principal ultrafilter on the natural numbers is a strong assumption that unfortunately cannot be shown in Zermelo Fraenkel set theory, see Feferman [START_REF] Feferman | Some applications of the notions of forcing and generic sets[END_REF]; the axiom of choice is sufficient see Jech [START_REF] Jech | Set theory[END_REF]. By independent results of Towsner [START_REF] Towsner | Ultrafilters in reverse mathematics[END_REF], Enayat [START_REF] Enayat | From bounded arithmetic to second order arithmetic via automorphisms[END_REF], and Kreuzer [START_REF] Kreuzer | Non-principal ultrafilters, program extraction and higher-order reverse mathematics[END_REF], the ultrafilter proof of Rado Path Decomposition implies that for every r-coloring c of [N] 2 there is a path decomposition arithmetical in c, and as a statement of second order arithmetic the Rado Path Decomposition Theorem holds in ACA 0 .

A careful analysis of the cohesive proof shows that a path decomposition can always be found in the jump of the cohesive set C . The key issue is that exactly one N (m, j) is large (with respect to our cohesive set C). It is ∆ C 2 (but not computable in C) to determine which one. Jockusch and Stephan [START_REF] Jockusch | A cohesive set which is not high[END_REF] have showed that d is PA over 0 if and only if there is a cohesive set C such that C ≤ T d. This implies that there is always a path decomposition computable in c , equivalently there is a ∆ c 3 path decomposition. It also implies there is a path decomposition whose jump is c .

For 2-colorings, Theorem 4.2 shows this bound can be improved to ∆ c 2 . For stable colorings the bound can also be improved to ∆ c 2 . (Use the stable proof of RPD and note that determining m's color is ∆ c 2 .) Theorem 3.1 shows that we cannot expect to do better than ∆ c 2 . So for stable and 2-coloring the bound of ∆ c 2 is tight. For more than two colors, we do not have an exact calibration of the effectivity of path decomposition. One might wonder why we cannot use the generic construction to answer Question 7.2 by building a path decomposition that avoids the cone of degrees above 0 . The problem is that forcing Σ G 1 statements (like does Φ G (w)↓) is Σ X 2 not Σ X 1 . The ends of finite paths P j must have color j and determining this is not Σ X 1 .

Question 7 . 1 .Question 7 . 2 .Question 7 . 3 .

 717273 Does every 3-coloring c have a ∆ c 2 path decomposition? Is there an unstable 3-coloring c such that every path decomposition is PA over 0 ? Does increasing the number of colors past 3 have any effect on the above two questions? Theorem 3.1 shows as a statement of second order arithmetic the Rado Path Decomposition Theorem implies ACA 0 .

This work was partially supported by a grant from the Simons Foundation (#315283 to Peter Cholak). Igusa was partially supported by EMSW21-RTG-0838506. Soskova's research was supported by Sofia University Science Fund Grant 54/12.04.2016 and by the L'Oréal-UNESCO program "For women in science". 1