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COLORING THE RATIONALS IN REVERSE MATHEMATICS

EMANUELE FRITTAION AND LUDOVIC PATEY

Abstract. Ramsey’s theorem for pairs asserts that every 2-coloring of the pairs of integers has
an infinite monochromatic subset. In this paper, we study a strengthening of Ramsey’s theorem
for pairs due to Erdős and Rado, which states that every 2-coloring of the pairs of rationals
has either an infinite 0-homogeneous set or a 1-homogeneous set of order type η, where η is
the order type of the rationals. This theorem is a natural candidate to lie strictly between the
arithmetic comprehension axiom and Ramsey’s theorem for pairs. This Erdős-Rado theorem,
like the tree theorem for pairs, belongs to a family of Ramsey-type statements whose logical
strength remains a challenge.

1. Introduction

In this paper, we investigate the reverse mathematics of a well-known theorem due to Erdős
and Rado about 2-colorings of pairs of rationals. This theorem is a natural strengthening of
Ramsey’s theorem for pairs and two colors. We say that an order type α is Ramsey, and
write α → (α)22, if for every coloring f : [L]2 → 2, where L is a linear order of order type α,
there is a homogeneous set H such that (H,≤L) has order type α. Ramsey’s theorem for pairs
and two colors asserts that ω is Ramsey. It turns out that ω and ω∗ are the only countable
Ramsey order types. In particular, η → (η)22 does not hold, where η is the order type of the
rationals. A standard counterexample is as follows. Fix a one-to-one map i : Q → N. Define
f : [Q]2 → 2 by letting

f(x, y) =

{
0 if x <Q y ∧ i(x) < i(y);

1 if x <Q y ∧ i(x) > i(y).

A homogeneous set of order type η would give an embedding of Q into ω (with color 0) or ω∗

(with color 1), which is impossible. Even though Ramsey’s theorem for rationals fails, Erdős and
Rado [6, Theorem 4, p. 427] proved the following Ramsey-type theorem (see also Rosenstein
[17, Theorem 11.7, p. 207]).

Theorem 1.1 (Erdős-Rado theorem) The partition relation η → (ℵ0, η)2 holds.

The relation η → (ℵ0, η)2 asserts that for every coloring f : [L]2 → 2, where L is a linear
order of order type η, there is either an infinite 0-homogeneous set or a 1-homogeneous set H
such that (H,≤Q) has order type η.

We study Theorem 1.1 within the framework of reverse mathematics (see Simpson [21]). Re-
verse mathematics is a vast mathematical program whose goal is to study the logical strength
of ordinary theorems in terms of set existence axioms. It uses the framework of subsystems of
second-order arithmetic, with the base theory RCA0 (recursive comprehension axiom). RCA0

is composed of P−, that is, the basic first-order Peano axioms for 0, 1,+,×, <, together with
∆0

1-comprehension and Σ0
1-induction with number and set parameters. RCA0 is usually thought

of as capturing computable mathematics. It turns out that the large majority of countable math-
ematics can be proven in ACA0, where ACA0 is RCA0 together with arithmetic comprehension.
See Hirschfeldt [8] for a gentle presentation of the reverse mathematics below ACA0.

We formalize Theorem 1.1 in RCA0 as follows.
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2 FRITTAION AND PATEY

ER2
2 For every coloring f : [Q]2 → 2 there exists either an infinite 0-homogeneous set or a

1-homogeneous set H such that (H,≤Q) is dense.

Here Q is any fixed primitive recursive presentation of the rationals. We may safely assume
that the domain of Q is N. Note that provably in RCA0 every two (countable) linear orders
of order type η are isomorphic and any dense linear order obviously contains a linear order of
order type η. Therefore ER2

2 is provably equivalent over RCA0 to the statement of Theorem 1.1.
In order to study ER2

2 we also consider a version of the infinite pigeonhole principle over the
rationals, namely the statement:

ER1 For every n and for every n-coloring f : Q→ n there exists a dense homogeneous set.

The early study of reverse mathematics has led to the observation that most of the theorems
happen to be equivalent to five main subsystems of second-order arithmetic that Montalbán [13]
called the “Big Five”. However, Ramsey’s theory provides many statements escaping this
observation. Perhaps the most well-known example is Ramsey’s theorem for pairs and two
colors (RT2

2). The effective analysis of Ramsey’s theorem was started by Jockusch [10]. In the
framework of reverse mathematics, Simpson (see [21]), building on Jockusch results, proved that
whenever n ≥ 3 and k ≥ 2, RTnk is equivalent to ACA0 over RCA0. The case of RT2

2 had been a
long-standing open problem until Seetapun [19] proved that RT2

2 is strictly weaker than ACA0

over RCA0. Cholak, Jockusch and Slaman [1] paved the way to the reverse mathematics analysis
of Ramsey’s theorem for pairs. Since then, many consequences of Ramsey’s theorem for pairs
have been studied, leading to a whole zoo of independent statements. However, no natural
statement besides Ramsey’s theorem for pairs (RT2) is known to be strictly between ACA0

and RT2
2 over RCA0. The only known candidate is the tree theorem for pairs (TT2

2) studied
in [2, 3, 5, 15]. We show that ER2

2 also lies between ACA0 and RT2
2, and so represents another

candidate, arguably more natural than TT2
2.

Although no relation is known between them, TT2
2 and ER2

2 share some essential combinatorial
features and put the emphasis on a new family of Ramsey-type theorems, characterized by what
we call a disjoint extension commitment. See section 5 for a discussion on this notion. Some
separations known for variants of TT2

2 are essentially due to this common feature, which enables
us to prove the same separations for variants of ER2

2. In particular, we prove that ER2
2 does not

computably reduce to Ramsey’s theorem for pairs with an arbitrary number of colors (RT2).
However, we cannot simply adapt this “one-step separation” to a separation over ω-models, and
in particular over RCA0, as in the case of TT2

2 [15]. This is the first known example of such
an inability. Indeed, a diagonalization against an RT2

4-instance is similar to a diagonalization
against two RT2

2-instances. Therefore, diagonalizing against RT2 has some common flavor with
a separation over standard models.

Among the consequences of Ramsey’s theorem for pairs, Ramsey’s theorem for singletons
(RT1), also known as the infinite pigeonhole principle, is of particular interest. RT1 happens
to be equivalent to the Σ0

2 bounding scheme (see Hirst [9]). The Σ0
2 bounding scheme (BΣ0

2) is
formally defined as

(∀x < a)∃yϕ(x, y, a) =⇒ ∃b(∀x < a)(∃y < b)ϕ(x, y, n)

where ϕ is any Σ0
2 formula. One may think of BΣ0

2 as asserting that the finite union of finite
sets is finite (see for instance [7]). We show that ER1, the corresponding pigeonhole principle
for rationals, is strictly stronger than BΣ0

2, and hence has the same reverse mathematics status
as the tree theorem for singletons (TT1) [3].

For the purpose of separating ER2
2 from RT2 over computable reducibility, we also introduce

the asymmetric version of ER1 for two colors, namely a-ER1
2, stating that for every partition

A0 ∪A1 = Q of the rationals there exists either an infinite subset of A0 or a dense subset of A1.
Indeed, we show the existence of a ∆0

2-instance of a-ER1
2, and hence of a computable instance

of ER2
2, which does not reduce to any computable instance of RT2.
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1.1. Definitions and notation

String. A string is an ordered tuple of bits b0, . . . , bn−1, that is, such that bi < 2 for every i <
n. The empty string is written 〈〉. A real is an infinite listing of bits b0, b1, . . . . Given s ∈ ω,
2s is the set of strings of length s and 2<s is the set of strings of length < s. Similarly, 2<ω is
the set of finite strings and 2ω is the set of reals. Given a string σ ∈ 2<ω, we denote by |σ| its
length. Given two strings σ, τ ∈ 2<ω, we write σaτ for the concatenation of σ and τ , and we
say that σ is a prefix of τ (written σ � τ) if there exists a string ρ ∈ 2<ω such that σaρ = τ .
Given a real X, we write σ ≺ X if σ = X�n for some n ∈ ω, where X�n denotes the restriction
of X to its first n elements. We may identify a real with a set of integers by considering that
the real is its characteristic function.

Tree, path. A binary tree T ⊆ 2<ω is a set downward-closed under the prefix relation. A real
P is a path though T if for every σ ≺ P , σ ∈ T .

Sets, partitions. Given two sets A and B, we denote by A < B the formula (∀x ∈ A)(∀y ∈
B)[x < y] and by A ⊆∗ B the formula (∀∞x ∈ A)[x ∈ B], meaning that A is included in B up
to finitely many elements. Given a set X and some integer k, a k-partition of X is a k-uple of
pairwise disjoint sets A0, . . . , Ak−1 such that A0 ∪ · · · ∪ Ak−1 = X. A Mathias condition is a
pair (F,X) where F is a finite set, X is an infinite set and F < X. A condition (F1, X1) extends
(F,X) (written (F1, X1) ≤ (F,X)) if F ⊆ F1, X1 ⊆ X and F1 r F ⊂ X. A set G satisfies a
Mathias condition (F,X) if F ⊂ G and Gr F ⊆ X.

2. The Erdős-Rado theorem in reverse mathematics

We start off the analysis of the Erdős-Rado theorem by proving that the statement ER2
2

lies between ACA0 and RT2
2. On the lower bound hand, ER2

2 can be seen as an immediate
strengthening of RT2

2. The upper bound is an effectivization of the original proof of ER2
2 by

Erdős and Rado in [6].

Lemma 2.1 (RCA0) ER2
2 → RT2

2.

Proof. An instance of RT2
2 can be regarded as an instance of ER2

2. Moreover, provably in RCA0,
a dense set is infinite. �

The rest of this section is devoted to show that ER2
2 is provable in ACA0. For this purpose,

we give the following definition.

Definition 2.2 (RCA0) By interval we mean a set of the form I = (x, y)Q for x, y ∈ Q. We say
that A ⊆ Q is somewhere dense if A is dense in some interval of Q, i.e., there exists an interval
I such that for all intervals J ⊆ I we have that A∩ J 6= ∅. We call A nowhere dense otherwise.

Notice that the above notion of nowhere dense is the usual topological notion with respect to
the order topology of Q. In general, the nowhere dense sets of a topological space form an ideal.
This is crucial in the proof by Erdős and Rado. For this reason, we also use the terminology
positive and small for somewhere dense and nowhere dense respectively. In RCA0 we can show
that nowhere dense subsets of Q are small, meaning that:

(1) If A ⊆ Q is small and B ⊆ A, then B is small;
(2) If A,B ⊆ Q are small, then A ∪B is small.

With enough induction, it is possible to generalize (2) to finitely many sets.

Lemma 2.3 (RCA0 + IΣ0
2) If Ai is a small subset of Q for all i < n, then

⋃
i<nAi is small.

Proof. Suppose that Ai is small for every i < n. Fix an interval I. We aim to show that
An =

⋃
i<nAi is not dense in I. By Σ0

2-induction we prove that for all i ≤ n there exists an

interval J ⊆ I such that Ai ∩ J = ∅, where Ai =
⋃
j<iAj . For i = n we have the desired

conclusion. The case i = 0 is trivial. Suppose i + 1 ≤ n. By induction there exists an interval
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J ⊆ I such that Ai ∩ J = ∅. By the assumption Ai is small and so there exists an interval
K ⊆ J such that Ai ∩K = ∅. It follows that Ai+1 ∩K = (Ai ∪Ai) ∩K = ∅. �

Theorem 2.4 ER2
2 is provable in ACA0.

Proof. Let f : [Q]2 → 2 be given. For any x ∈ Q, let Red(x) = {y ∈ Q r {x} : f(x, y) = 0}.
Define Blue(x) accordingly. We say that A ⊆ Q is red-admissible if there exists some x ∈ A
such that A ∩ Red(x) is positive.

Case I. Every positive subset of Q is red-admissible. We aim to show that there exists
an infinite 0-homogeneous set. We define by arithmetical recursion a sequence (xn)n∈N as
follows. Suppose we have defined xi for all i < n, and assume by arithmetical induction that
An =

⋂
i<n Red(xi) is positive, and hence red-admissible (where

⋂
i<0 Red(xi) = Q). Search for

the ω-least xn ∈ An such that An ∩ Red(xn) =
⋂
i<n+1 Red(xi) is positive. By definition, the

set {xn : n ∈ N} is infinite and 0-homogeneous.
Case II. There is a positive subset A of Q which is not red-admissible. In this case, we show

that there exists a dense 1-homogeneous set. Let I be a witness of A being positive. Fix an
enumeration (In)n∈N of all subintervals of I. Notice that by definition A intersects every In.

We define by arithmetical recursion a sequence (xn)n∈N as follows. Let x0 ∈ A∩ I0. Suppose
we have defined xi ∈ A ∩ Ii for all i < n. By Lemma 2.3, since every A ∩ Red(xi) with i < n
is small, it follows that E =

⋃
i<n

(
A ∩ Red(xi)

)
is small. Let J ⊆ In be such that E ∩ J = ∅.

We may safely assume that no xi with i < n belongs to J . Since A is dense in I and J ⊆ I, we
can find xn ∈ A ∩ J . In particular, xn ∈

⋂
i<n Blue(xi). Therefore {xn : n ∈ N} is dense and

1-homogeneous. �

Remark 2.5 A similar proof shows that RT2
2 is provable in ACA0. In fact, we can consider the

ideal of finite sets of N so that a positive set is just an infinite set and a red-admissible set is a
set A ⊆ N such that A ∩ Red(x) is infinite for some x ∈ A.

3. Pigeonhole principle on Q

We next consider the statement ER1 asserting that every finite coloring of rationals has a
dense homogeneous set. The main result is that ER1 is stronger than BΣ0

2 over RCA0. We
achieve this by adapting the model-theoretic proof of Corduan, Groszek, and Mileti [3] that
separates TT1 from BΣ0

2. Basically, in a model of RCA0 +¬ IΣ0
2, there are a real X and an

X-recursive instance of ER1 with no X-recursive solutions. Before going into the details of this
proof, we establish the following simple reverse mathematics facts.

Lemma 3.1 Over RCA0,

1) ER2
2 ∨ IΣ0

2 → ER1

2) ER1 → RT1.

Proof. 1) Let f : Q→ n be a given coloring. First assume ER2
2, and let g : [Q]2 → 2 be defined

by g(x, y) = 1 if and only if f(x) = f(y). Provably in RCA0 every one-to-one function from an
infinite set is unbounded. Then by ER2

2 there exists a dense 1-homogeneous set for g, which is
homogeneous for f .

Now assume IΣ0
2 and define Ai = f−1(i) for i < n. As Q =

⋃
i<nAi is positive, by lemma 2.3,

there exists i < n such that Ai is positive. From Ai we can compute a dense i-homogeneous set.
2) is trivial. �

As in [3], the proof of our separation result consists of a few lemmas. We start by first
adapting [3, Lemma 3.4] (see Lemma 3.3 below). The combinatorial core of the proof is based
on the following.

Lemma 3.2 (IΣ1) For each e < n, let Γe consist of 4n pairwise disjoint intervals of Q. Then
there exist 2n pairwise disjoint intervals 〈Ie,i : e < n, i < 2〉 such that Ie,i ∈ Γe for all e < n
and i < 2.
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Proof. Let Γe, e < n, be given. Consider the following recursive procedure. At each stage we
define Γe,s for e < n and ∆s as follows. At stage 0, Γe,0 = Γe and ∆0 = 〈〉. At stage s + 1, if
|∆s| = 2n or Γs =

⋃
e<n Γe,s is empty, we are done. Otherwise search for I ∈ Γs minimal with

respect to inclusion (such an interval exists by IΣ1). Add I to ∆s, that is, ∆s+1 = ∆s
aI. Let

e be such that I ∈ Γe,s. If ∆s already contains an interval in Γe, let Γe,s+1 = ∅, otherwise let
Γe,s+1 = Γe,s r {I}. For all j 6= e, let Γj,s+1 = {J ∈ Γj,s : I ∩ J = ∅}. Notice that by the choice
of I as minimal, at most two intervals from each Γj,s with j 6= e have nonempty intersection
with J .

By IΣ1 (indeed IΣ0) it is easy to show that, for all s < 2n + 1, ∆s consists of s disjoint
intervals from

⋃
e<n Γe with at most two intervals from the same Γe, that every interval in ∆s

is disjoint from any interval in Γs, and that if ∆s does not contain 2 intervals from Γe, then Γe,s
contains at least 4n− 2s intervals. In particular, ∆2n is as desired. �

Lemma 3.3 (RCA0) For every real X there exists an X-recursive function d : N×Q→ 2 such
that for all n and e < n, if WX

e is a dense set of Q, then there exist two disjoint intervals I0, I1
such that WX

e ∩ Ii is infinite for all i < 2 and d(n, x) = i for all i < 2 and for almost every
x ∈ Ii.

Proof sketch. Our strategy to defeat n-many dense sets {Ae : e < n} is to choose 2n pairwise
disjoint intervals Ie,0, Ie,1 for e < n so that each Ie,i has end-points in Ae, and assign color i to
the interval Ie,i for all e < n and i < 2. As we want to diagonalize against n-many potential
dense sets of the form WX

e for e < n and we cannot decide uniformly in n which ones are dense,
we act only when some WX

e outputs 4n + 1 points. We then specify a set Γe of 4n disjoint
intervals with end-points in WX

e and from each Γe currently defined we choose intervals Ie,0
and Ie,1 as in Lemma 3.2. Every time we act, our choice of Ie,0 and Ie,1 might change, but this
happens at most n-many times. As the actual construction is essentially the one in the proof
of [3, Lemma 3.4], we leave the details to the reader. �

The next lemma is the key part of the whole argument (see [3, Proposition 3.5]).

Lemma 3.4 Let M be a model of RCA0 +¬IΣ0
2. Then for some real X ∈ M there is an X-

recursive (in the sense ofM) coloring f of Q intoM -finitely many colors such that noX-recursive
dense set is homogeneous for f .

Proof. Let X ∈M witness the failure of IΣ0
2. Then there exists an X-recursive function h : N2 →

N such that for some number a, the range of the partial function h(y) = lims→∞ h(y, s) is
unbounded on {y : y < a} (see also [3, Lemma 3.6]). Define f : Q→ 2a by

f(x) = 〈d(h(y, x), x) : y < a〉,

where d(n, x) is the function of Lemma 3.3. Let WX
e be a dense set of Q. We aim to show

that WX
e is not homogeneous for f . Let y < a such that h(y) > e. Observe that for almost

every x ∈ Q the yth bit of f(x) is d(h(y), x). As e < h(y), let I0 and I1 be two intervals as in
Lemma 3.3. Now for sufficiently large x0 ∈WX

e ∩ I0 and x1 ∈WX
e ∩ I1 we have d(h(y, xi), xi) =

d(h(y), xi) = i, and hence f(x0) 6= f(x1). �

We can finally prove the analogue of [3, Corollary 3.8], which is the main result.

Theorem 3.5 Let P be a Π1
1 sentence. Then RCA0 +P ` ER1 if and only if RCA0 +P ` IΣ0

2.
In particular, RCA0 + BΣ0

2 6` ER1.

Proof. The argument is the same as in the proof of [3, Theorem 3.7]. As RCA0 + IΣ0
2 ` ER1,

we just need to prove one implication. Suppose that RCA0 +P 6` IΣ0
2, and let M be a model of

RCA0 +P where IΣ0
2 fails. By Lemma 3.4, for some real X ∈ M , there exists an X-recursive

instance of ER1 with no X-recursive solutions. Let M ′ be the submodel of M with the same
first-order part as M and second-order part consisting of the reals recursive in X (in the sense
of M). Therefore ER1 fails in M ′. Since M ′ has same first-order part as M , M ′ satisfies the Π1

1
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sentence P . As the reals of M ′ are the ones recursive in a given real of M , M satisfies RCA0.
Thus RCA0 +P 6` ER1. �

4. ER2
2 does not computably reduce to RT2

2

Many proofs of Q → P over RCA0 make use only of one Q-instance to solve a P-instance.
This is the notion of computable reducibility.

Definition 4.1 (Computable reducibility) Fix two Π1
2 statements P and Q. P is computably

reducible to Q (written P ≤c Q) if every P-instance X0 computes a Q-instance X1 such that for
every solution Y to X1, Y ⊕X0 computes a solution to X0.

Proving that P ≤c Q is not sufficient to deduce that RCA0 ` Q→ P. One needs to prove that
this reducibility can be formalized within RCA0, and in particular that Σ0

1-induction is sufficient
to prove its validity. The fine-grained nature of computable reducibility enables one to exhibit
distinctions between statements which would not have been revealed in reverse mathematics.
For example, RT2

k and RT2
k+1 are equivalent over RCA0 whereas RT2

k+1 6≤c RT2
k [16].

This notion of reducibility can be also seen as an intermediary step to tackle difficult sep-
arations [4]. Proving that P 6≤c Q is simpler than separating Q from P over ω-models. Ler-
man, Solomon and Towsner [12] introduced a framework to separate Ramsey-type statements
over ω-models, in which they transform a one-step diagonalization, that is, computable non-
reducibility, into a separation in the sense of reverse mathematics. In this section, we prove
that the Erdős-Rado theorem for pairs does not reduce to Ramsey’s theorem for pairs in one
step.

Theorem 4.2 ER2
2 6≤c RT2.

Interestingly, this diagonalization does not seem to be easily generalizable to a separation
over ω-models. A reason is that the fairness property ensured by the ER2

2-instance does not
seem to be preserved by weak König’s lemma. This is hitherto the first example of a computable
non-reducibility of a principle P to RT2 which is not generalizable to a proof that RT2

2 does not
imply P over RCA0.

The remainder of this section is devoted to a proof of Theorem 4.2. The notion of fairness
presented below may have some ad-hoc flavor. It has been obtained by applying the main
ideas of the framework of Lerman, Solomon and Towsner [12, 14]. Thanks to an analysis of
the combinatorics of Ramsey’s theorem for pairs and the Erdős-Rado theorem for pairs, we
prove our computable non-reducibility result by constructing an instance of ER2

2 ensuring the
density of the diagonalizing conditions in the forcing notion of RT2

2. Then we abstract the
diagonalization to any Σ0

1 formula, to get rid of the specificities of the forcing notion of RT2
2 in

the notion of fairness preservation. See [15] for a detailed example of the various steps of this
framework, leading to a separation of RT2

2 from the tree theorem for pairs over RCA0.

Definition 4.3 (Simple partition) A simple partition intQ(S) is a finite sequence of open inter-
vals (−∞, x0), (x0, x1), . . . , (xn−1,+∞) for some set of rationals S = {x0 <Q · · · <Q xn−1}. We
set intQ(∅) = {Q}. A simple partition I0, . . . , In−1 refines another simple partition J0, . . . , Jm−1
if for every i < n, there is some j < m such that Ii ⊆ Jj . Given two simple partitions I0, . . . , In−1
and J0, . . . , Jm−1, the product ~I ⊗ ~J is the simple partition

{I ∩ J : I ∈ ~I ∧ J ∈ ~J}

One can easily see that intQ(S) refines intQ(T ) if T ⊆ S and that intQ(S ∪ T ) = intQ(S) ⊗
intQ(T ). Note that every simple partition has a finite description, since the set S and each
rational has a finite description. Also note that a simple partition is not a true partition of Q
since the endpoints do not belong to any interval. However, we have S ∪

⋃
intQ(S) = Q.
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Definition 4.4 (Matrix) An m-by-n matrix M is a rectangular array of rationals xi,j ∈ Q such
that xi,j <Q xi,k for each i < m and j < k < n. The ith row M(i) of the matrix M is the n-tuple
of rationals xi,0 < · · · < xi,n−1. The simple partition intQ(M) is defined by

⊗
i<m intQ(M(i)).

In particular,
⊗

i<m intQ(M(i)) refines the simple partition intQ(M(i)) for each i < m.

It is important to notice that an m-by-n matrix is formally a 3-tuple 〈m,n,M〉 and not only
the matrix itselfM . This distinction becomes important when dealing with the degenerate cases.
An m-by-0 matrix M and a 0-by-n matrix N are both empty. However, they have different
sizes. In particular, we shall define the notion of M -type for a matrix, and this definition will
depend on the number of columns of the matrix M , which is 0 for M , and n for N . Notice also
that, for a degenerate matrix M , the simple partition intQ(M) is the singleton {Q}.

Given a simple partition ~I, we want to classify the k-tuples of rationals according to which

interval of ~I they belong to. This leads to the notion of (~I, k)-type.

Definition 4.5 (Type) Given a simple partition I0, . . . , In−1 and some k ∈ ω, an (~I, k)-type is

a tuple T0, . . . , Tk−1 such that Ti ∈ ~I for each i < k. Given an m-by-n matrix M , an M -type is
an (intQ(M), n)-type.

We now state two simple combinatorial lemmas which will be useful later. The first trivial
lemma simply states that each m-tuple of rationals (different from the endpoints of a simple
partition) belongs to a type.

Lemma 4.6 For every simple partition I0, . . . , In−1 and every k-tuple of rationals x0, . . . , xk−1 ∈⋃
i<n Ii, there is an (~I, k)-type T0, . . . , Tk−1 such that xj ∈ Tj for each j < k.

Proof. Fix k rationals x0, . . . , xk−1. For each i < k, there is some interval Ti ∈ ~I such that xi ∈ Ti
since xi ∈

⋃
j<n Ij . The sequence T0, . . . , Tk−1 is the desired (~I, k)-type. �

The next lemma is a consequence of the pigeonhole principle.

Lemma 4.7 For every m-by-n matrix M and every M -type T0, . . . , Tn−1, there is an m-tuple
of intervals J0, . . . , Jm−1 with Ji ∈ intQ(M(i)) such that

(
⋃
j<n

Tj) ∩ (
⋃
i<m

Ji) = ∅

Proof. Let T0, . . . , Tn−1 be an M -type. For every i < m and j < n, there is some J ∈ intQ(M(i))
such that Tj ⊆ J . Since |intQ(M(i))| = n + 1, there is an interval Ji ∈ intQ(M(i)) such that
(
⋃
j<n Tj) ∩ Ji = ∅. �

Definition 4.8 (Formula, valuation) Given an m-by-n matrix M , an M -formula is a formula

ϕ(~U, ~V ) with distinguished (finite coded) set variables Uj for each j < n and Vi,I for each i < m

and I ∈ intQ(M(i)). An M -valuation (~R, ~S) is a tuple of finite sets Rj ⊆ Q for each j < n

and Si,I ⊆ I for each i < m and I ∈ intQ(M(i)). The M -valuation (~R, ~S) is of type ~T

for some M -type T0, . . . , Tn−1 if moreover Rj ⊆ Tj for each j < n. The M -valuation (~R, ~S)

satisfies ϕ if ϕ(~R, ~S) holds.

Given some valuation (~R, ~S) and some integer s, we write (~R, ~S) > s to say that for every

x ∈ (
⋃ ~R)∪ (

⋃ ~S), x > s. Following the terminology of [12], we define the notion of essentiality
for a formula (an abstract requirement), which corresponds to the idea that there is room for
diagonalization since the formula is satisfied by valuations which are arbitrarily far.

Definition 4.9 (Essential formula) Given an m-by-n matrix M , an M -formula ϕ is essential

if for every s ∈ ω, there are an M -type ~T and an M -valuation (~R, ~S) > s of type ~T such that

ϕ(~R, ~S) holds.
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The notion of fairness is defined accordingly. If some formula is essential, that is, leaves
enough room for diagonalization, then there is an actual valuation which will diagonalize against
the ER2

2-instance.

Definition 4.10 (Fairness) Fix two sets A0, A1 ⊆ Q. Given an m-by-n matrix M , an M -

valuation (~R, ~S) diagonalizes against A0, A1 if
⋃ ~R ⊆ A1 and for every i < m, there is some I ∈

intQ(M(i)) such that Si,I ⊆ A0. A set X is fair for A0, A1 if for every m,n ∈ ω, every m-by-n

matrix M and every Σ0,X
1 essential M -formula, there is an M -valuation (~R, ~S) diagonalizing

against A0, A1 such that ϕ(~R, ~S) holds.

Of course, if Y ≤T X, then every Σ0,Y
1 formula is Σ0,X

1 . As an immediate consequence, if X
is fair for some A0, A1 and Y ≤T X, then Y is fair for A0, A1.

Now that we have introduced the necessary terminology, we create a non-effective instance
of a-ER1

2 which will serve as a bootstrap for fairness preservation. Remember that erps asserts
that for every partition A0 ∪A1 = Q of the rationals there exists either an infinite subset of A0

or a dense subset of A1.

Lemma 4.11 For every set C, there exists a ∆0,C
2 partition A0 ∪ A1 = Q such that C is fair

for A0, A1.

Proof. The proof is a no-injury priority construction. Let M0,M1, . . . be an enumeration of all

m-by-n matrices and ϕ0, ϕ1, . . . be an effective enumeration of all Σ0,C
1 Mk-formulas for every

m,n ∈ ω. We want to satisfy the following requirements for each pair of integers e, k.

Re,k: If the Mk-formula ϕe is essential, then ϕe(~R, ~S) holds for some Mk-

valuation (~R, ~S) diagonalizing against A0, A1.

The requirements are ordered via the standard pairing function 〈·, ·〉. The sets A0 and A1

are constructed by a C ′-computable list of finite approximations Ai,0 ⊆ Ai,1 ⊆ . . . such that
all elements added to Ai,s+1 from Ai,s are strictly greater than the maximum of Ai,s (in the N
order) for each i < 2. We then let Ai =

⋃
sAi,s which will be a ∆0,C

2 set. At stage 0, set
A0,0 = A1,0 = ∅. Suppose that at stage s, we have defined two disjoint finite sets A0,s and A1,s

such that

(i) A0,s ∪A1,s = [0, b]N for some integer b ≥ s
(ii) Re′,k′ is satisfied for every 〈e′, k′〉 < s

Let Re,k be the requirement such that 〈e, k〉 = s. Decide C ′-computably whether there are

some Mk-type ~T and some Mk-valuation V = (~R, ~S) > b of type ~T such that ϕe(V ) holds. If so,

C-effectively fetch ~T = T0, . . . , Tn−1 and such a (~R, ~S) > b. Let d be an upper bound (in the N
order) on the rationals in (~R, ~S). By Lemma 4.7, for each i < m, there is some Ji ∈ intQ(M(i))
such that

(
⋃
j<n

Tj) ∩ (
⋃
i<m

Ji) = ∅

Set A0,s+1 = A0,s ∪
⋃
i<m Ji ∩ (b, d]N and A1,s+1 = [0, d]N rA0,s+1. This way, A0,s+1 ∪A1,s+1 =

[0, d]N. By the previous equation,
⋃
j<n Tj ∩ (b, d]N ⊆ [0, d]N rA0,s+1 and the requirement Re,k

is satisfied. If no such Mk-valuation is found, the requirement Re,k is vacuously satisfied. Set
A0,s+1 = A0,s ∪ {b+ 1} and A1,s+1 = A1,s. This way, A0,s+1 ∪A1,s+1 = [0, b+ 1]N. In any case,
go to the next stage. This finishes the construction. �

Lemma 4.12 If X is fair for some sets A0, A1 ⊆ Q, then X computes neither an infinite subset
of A0, nor a dense subset of A1.

Proof. Since fairness is downward-closed under Turing reducibility, it suffices to prove that if X
is infinite and fair for A0, A1, then it intersects both A0 and A1.

We first prove that X intersects A1. Let M be the 0-by-1 matrix and ϕ(U) be the Σ0,X
1 M -

formula which holds if U ∩X 6= ∅. The only M -type is Q and since X is infinite, ϕ is essential.
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By fairness of X, there is an M -valuation R diagonalizing against A0, A1 such that ϕ(R) holds.
By definition of diagonalization, R ⊆ A1. Since R ∩X 6= ∅, this shows that X ∩A1 6= ∅.

We now prove that X intersects A0. Let M be the 1-by-0 matrix and ϕ(V ) be the Σ0,X
1

M -formula which holds if V ∩ X 6= ∅. The M -formula ϕ is essential since X is infinite. By
fairness of X, there is an M -valuation S diagonalizing against A0, A1 such that ϕ(S) holds. By
definition of diagonalization, S ⊆ A0. Since S ∩X 6= ∅, this shows that X ∩A0 6= ∅. �

Note that we did not use the fact that X is dense to make sure it intersects A0. Density will
be useful in the proof of Theorem 4.14.

Definition 4.13 A Scott set is a set S ⊆ 2ω such that

(i) (∀X ∈ S)(∀Y ≤T X)[Y ∈ S]
(ii) (∀X,Y ∈ S)[X ⊕ Y ∈ S]
(iii) Every infinite, binary tree in S has an infinite path in S.

Theorem 4.14 Let A0, A1 ⊆ Q and S be a Scott set whose members are all fair for A0, A1. For
every set C ∈ S, every C-computable coloring f : [ω]2 → k, there is an infinite f -homogeneous
set H such that H ⊕ C computes neither an infinite subset of A0, nor a dense subset of A1.

Proof. The proof is by induction over the number of colors k. The case k = 1 is ensured by
Lemma 4.12. Fix a set C ∈ S and let f : [ω]2 → k be a C-computable coloring. If f has an
infinite f -thin set H ∈ S, that is, an infinite set over which f avoids at least one color, then
H⊕C computes a coloring g : [ω]2 → k−1 such that every infinite g-homogeneous set computes
relative to H ⊕ C an infinite f -homogeneous set. Since H ⊕ C ∈ S, by induction hypothesis,
there is an infinite g-homogeneous set H1 such that H1 ⊕H ⊕ C computes neither an infinite
subset of A0, nor a dense subset of A1. So suppose that f has no infinite f -thin set in S.

We construct k infinite sets G0, . . . , Gk−1. We need therefore to satisfy the following require-
ments for each p ∈ ω.

Np : (∃q0 > p)[q0 ∈ G0] ∧ · · · ∧ (∃qk−1 > p)[qk−1 ∈ Gk−1]

Furthermore, we want to ensure that one of the G’s computes neither an infinite subset of A0,
nor a dense subset of A1. To do this, we will satisfy the following requirements for every k-tuple
of integers e0, . . . , ek−1.

Q~e : RG0
e0 ∨ · · · ∨ RGk−1

ek−1

where RHe holds if WH⊕C
e is neither an infinite subset of A0, nor a dense subset of A1.

We construct our sets G0, . . . , Gk−1 by forcing. Our conditions are variants of Mathias
conditions (F0, . . . , Fk−1, X) such that each X is an infinite set in S, each Fi is a finite set
with max(Fi) < min(X), and the following property holds:

(P) (∀i < k)(∀x ∈ X)[Fi ∪ {x} is f -homogeneous with color i]

A condition d = (E0, . . . , Ek−1, Y ) extends c = (F0, . . . , Fk−1, X) if (Ei, Y ) Mathias extends
(Fi, X) for every i < k. We now prove the progress lemma, stating that we can force the G’s to
be infinite. This is where we use the fact that there is no infinite f -thin set in S.

Lemma 4.15 For every condition c = (F0, . . . , Fk−1, X), every i < k and every p ∈ ω there is
some extension d = (E0, . . . , Ek−1, Y ) such that Ei ∩ (p,+∞)N 6= ∅.

Proof. Fix c, i and p. If for every x ∈ X ∩ (p,+∞)N and almost every y ∈ X, f(x, y) 6= i, then
X computes an infinite f -thin set, contradicting our hypothesis. Therefore, there is some x ∈
X ∩ (p,+∞)N such that f(x, y) = i for infinitely many y ∈ X. Let Y be the collection of such
y’s. The condition (F0, . . . , Fi−1, F ∪ {x}, Fi+1, . . . , Fk, Y ) is the desired extension. �

We now prove the core lemma stating that we can satisfy each Q-requirement. A condition c
forces a requirement Q if Q holds for every set G satisfying c.
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Lemma 4.16 For every condition c = (F0, . . . , Fk−1, X) and every k-tuple of indices ~e, there is
an extension d = (E0, . . . , Ek−1, Y ) forcing Q~e.

Proof. We can assume that WFi⊕C
ei has already outputted at least k elements and is either

included in A0 or in A1 for each i < k. Indeed, if c has no extension satisfying this condition,
then c forces WGi⊕C

ei to be finite or not to be a valid solution for some i < k and therefore

forces Q~e. For each i < k, we associate the label `i < 2 and the number pi such that WFi⊕C
ei is

the (pi + 1)th set of this form included in A`i .
Let n be the number of sets WFi⊕C

ei which are included in A0, and let M be the (k−n)-by-n
matrix such that the jth row is composed of the n first elements already outputted by the set
WFi⊕C
ei where pi = j and `i = 1. In other words, M(j) are the n first elements outputted by

the jth set WFi⊕C
ei included in A1.

Let ϕ(~U, ~V ) be the Σ0,X⊕C
1 formula which holds if there is a finite set Z ⊆ X such that for

every k-partition Z0 ∪ · · · ∪ Zk−1 = Z, there are some i < k and some set E ⊆ Zi which is

f -homogeneous with color i and such that either `i = 0 and W
(Fi∪E)⊕C
ei ∩ Upi 6= ∅, or `i = 1

and W
(Fi∪E)⊕C
ei ∩ Vpi,I 6= ∅ for each I ∈ intQ(M(pi)). We have two cases.

In the first case, ϕ(~U, ~V ) is essential. Since X ⊕ C is fair for A0, A1, there is an M -

valuation (~R, ~S) diagonalizing against A0, A1 such that ϕ(~R, ~S) holds. By compactness and
definition of diagonalization against A0, A1, there is a finite subset D ⊂ X such that for every
k-partition D0 ∪ · · · ∪ Dk−1 = D, there are some i < k and some finite set E ⊆ Di which is

f -homogeneous with color i and such that either `i = 0 and W
(Fi∪E)⊕C
ei ∩ A1 6= ∅, or `i = 1

and W
(Fi∪E)⊕C
ei ∩A0 6= ∅.

Each y ∈ XrD induces a k-partition D0∪· · ·∪Dk−1 of D by setting Di = {x ∈ D : f(x, y) =
i}. Since there are finitely many possible k-partitions of D, there are a k-partition D0 ∪ · · · ∪
Dk−1 = D and an infinite X-computable set Y ⊆ X such that

(∀i < k)(∀x ∈ Di)(∀y ∈ Y )[f(x, y) = i]

We furthermore assume that min(Y ) is larger than the use of the computations. Let i < k

and E ⊆ Di be the f -homogeneous set with color i such that either `i = 0 and W
(Fi∪E)⊕C
ei ∩A1 6=

∅, or `i = 1 and W
(Fi∪E)⊕C
ei ∩A0 6= ∅. The condition (F0, . . . , Fi−1, Fi ∪E,Fi+1, . . . , Fk−1, Y ) is

an extension of c forcing Q~e by the ith side.

In the second case, there is some threshold s ∈ ω such that for every M -type ~T , there is no

M -valuation (~R, ~S) > s of type ~T such that ϕ(~R, ~S) holds. By compactness, it follows that

for every M -type ~T , the Π0,X⊕C
1 class C~T of all k-partitions Z0 ∪ · · · ∪ Zk−1 = X such that for

every i < k and every finite set E ⊆ Zi which is f -homogeneous with color i, either `i = 0

and W
(Fi∪E)⊕C
ei ∩ Tpi ∩ (s,+∞)N = ∅, or `i = 1 and W

(Fi∪E)⊕C
ei ∩ I ∩ (s,+∞)N = ∅ for

some I ∈ intQ(M(pi)) is non-empty. Since S is a Scott set, for each M -type ~T , there is a

k-partition ~Z
~T ∈ C~T such that

⊕
~T
~Z
~T ⊕X ⊕ C ∈ S.

If there are some M -type ~T and some i < k such that `i = 1 and Z
~T
i is infinite, then the

condition (F0, . . . , Fk−1, Z
~T
i ) extends X and forces WGi⊕C

ei not to be dense. So suppose that it

is not the case. Let Y ∈ S be an infinite subset of X such that for each M -type ~T , there is

some i < k such that Y ⊆ Z
~T
i . Note that by the previous assumption, `i = 0 for every such i.

We claim that the condition (F0, . . . , Fk−1, Y ) forces WGi⊕C
ei to be finite for some i < k such

that `i = 0. Suppose for the sake of contradiction that there are some rationals x0, . . . , xn−1 > s
such that xpi ∈ WGi⊕C

ei for each i < k where `i = 0. Since x0, . . . , xn−1 > s, x0, . . . , xn−1 ∈⋃
intQ(M). Therefore, by Lemma 4.6, let ~T be the unique M -type such that xj ∈ Tj for

each j < n. By assumption, there is some i < k such that Y ⊆ Z
~T
i and `i = 0. By definition

of Z
~T
i , WGi⊕C

ei ∩ Tpi ∩ (s,+∞)N = ∅, contradicting xpi ∈WGi⊕C
ei . �

Using Lemma 4.15 and Lemma 4.16, define an infinite descending sequence of conditions c0 =
(∅, . . . , ∅, ω) ≥ c1 ≥ . . . such that for each s ∈ ω
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(i) |Fi,s| ≥ s for each i < k
(ii) cs+1 forces Q~e if s = 〈e0, . . . , ek−1〉

where cs = (F0,s, . . . , Fk−1,s, Xs). Let Gi =
⋃
s Fi,s for each i < k. The G’s are all infinite by

(i) and Gi does not compute an a-ER1
2-solution to the A’s for some i < k by (ii). This finishes

the proof of Theorem 4.14. �

We are now ready to prove the main theorem.

Proof of Theorem 4.2. By the low basis theorem [11], there is a low set P of PA degree. By
Scott [18], every PA degree bounds a Scott set. Let S be a Scott set such that X ≤T P for

every X ∈ S. By Lemma 4.11, there is a ∆0,P
2 (hence ∆0

2) partition A0 ∪A1 = Q such that P is
fair for A0, A1. In particular, every set X ∈ S is fair for A0, A1 since fairness is downward-closed
under the Turing reducibility.

By Schoenfield’s limit lemma [20], there is a computable function h : [Q]2 → 2 such that
for each x ∈ Q, lims h(x, s) exists and x ∈ Alims h(x,s). Note that for every infinite set D
0-homogeneous for h, D ⊆ A0, and for every dense set D 1-homogeneous for h, D ⊆ A1.

Fix a computable RT2-instance f : [ω]2 → k. In particular, f ∈ S. By Theorem 4.14, there
is an infinite f -homogeneous set H such that H computes neither an infinite subset of A0, nor
a dense subset of A1. Therefore, H computes no ER2

2-solution to h. �

5. Discussion and questions

This Erdős-Rado theorem shares an essential feature with another strengthening of Ramsey’s
theorem for pairs already studied in reverse mathematics: the tree theorem for pairs [2, 3, 5, 15].

Definition 5.1 (Tree theorem) We denote by [2<N]n the collection of linearly ordered subsets
of 2<N of size n. A set S ⊆ 2<N is order isomorphic to 2<N (written S ∼= 2<N) if there is a
bijection g : 2<N → S such that for all σ, τ ∈ 2<N, σ � τ if and only if g(σ) � g(τ). Given a
coloring f : [2<N]n → k, a tree S is f -homogeneous if S ∼= 2<N and f�[S]n is monochromatic.
TTnk is the statement “Every coloring f : [2<N]n → k has an f -homogeneous tree.”

Both TT2
2 and ER2

2 lie between the arithmetic comprehension axiom and RT2
2, but more than

that, they share a disjoint extension commitment. Let us try to explain this informal notion
with a case analysis.

Suppose we want to construct a computable RT1
2-instance f : N → 2 which diagonalizes

against two opponents W f
0 and W f

1 . After some finite amount of time, each opponent W f
i will

have outputted a finite approximation of a solution to f , that is, a finite f -homogeneous set Fi.

The two opponents share a common strategy. W f
0 tries to build an infinite f -homogeneous setH0

for color 0, and W f
1 tries to build an infinite f -homogeneous set H1 for color 1. It is therefore

difficult to defeat both opponents at the same time, since if from now on we set f(x) = 1, W f
1

will succeed in extending F1 to an infinite f -homogeneous set, and if we always set f(x) = 0,

W f
0 will succeed with its dual strategy.

Consider now the same situation, where we want to construct a computable TT1
2-instance

f : 2<N → 2. After some time, the opponent W f
0 will have outputted a finite tree S0 ∼= 2<b

which is f -homogeneous for color 0, and the opponent W f
1 will have done the same with a finite

tree S1 ∼= 2<b f -homogeneous for color 1. The main difference with the RT1
2 case is that each

opponent will commit to extend each leaf of his finite tree Si into an infinite tree isomorphic
to 2<N. In particular, for each tree Si, the sets Xσ of nodes extending the leaf σ ∈ Si are
pairwise disjoint. Therefore, each opponent commits to extend its partial solution to disjoint
sets. Moreover, by asking b to be large enough, each opponent will commit to extend enough
pairwise disjoint sets so that we can choose two of them for each opponent and operate the
diagonalization without any conflict.

This combinatorial property works in the same way for ER1-instances. Indeed, in this case,
each opponent will commit to extend its partial solution to pairwise disjoint intervals due to the
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density requirement of an ER1-solution. Since the combinatorial arguments of the Erdős-Rado
theorem and the tree theorem for pairs are very similar, one may wonder whether they are
equivalent in reverse mathematics.

Question 5.2 How do ER2
2 and TT2

2 compare over RCA0?

The failure of Seetapun’s argument for ER2
2 comes from this disjoint extension commitment

feature. In particular, it is hard to find a forcing notion for ER2
2 whose conditions are extendible.

Question 5.3 Does ER2
2 imply ACA0 over RCA0?

ER1 and TT1 have the same state of the art due to their common combinatorial flavor.
However, when looking at their statements for pairs, ER2

2 and TT2
2 have a fundamental difference:

ER2
2 has only a half disjoint extension commitment feature. This weaker property prevents one

from separating RT2
2 from ER2

2 over RCA0 by adapting the argument of TT2
2 in [15].

Question 5.4 Does RT2
2 imply ER2

2 over RCA0?

We have seen in section 3 that the separation of BΣ0
2 from ER1 is directly adaptable from

the separation of BΣ0
2 from TT1 from Corduan, Groszek, and Mileti [3], since the combinatorial

core of this separation comes from this shared disjoint extension commitment. It is natural to
conjecture that the status of ER1 with respect to IΣ0

2 will be the same as TT1.

Question 5.5 Does ER1 imply IΣ0
2 over RCA0?

It is worth mentioning that RCA0 + IΣ0
2 proves a strengthening of both TT1 and ER1, namely

the statement “For every n and every f : 2<N → n there exists a strong copy S of the full binary
tree such that f is constant on S”, where by strong copy we mean an isomorphic copy of 2<N

with respect to order and minima. It is easy to see that a strong copy computes a dense set
of 2<N, when 2<N is equipped with the standard dense linear ordering on binary strings, i.e.,
the only linear order such that {τ : τ � σa0} <Q σ <Q {τ : τ � σa1} for all σ ∈ 2<N. It is
likely that if we can separate TT1 or ER1 from IΣ0

2, then we can already separate this stronger
statement by essentially the same proof.
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