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Introduction

In this paper, we answer several questions pertaining to the logical content of Ramsey's theorem, and thus we open by recalling the statement of this principle. For an infinite set X and n ≥ 1, let [X] n denote the set of all tuples x 0 , . . . , x n-1 ∈ X n with x 0 < • • • < x n-1 . For k ≥ 1, a k-coloring of [X] n is a map c : [X] n → {0, . . . , k -1}, which we abbreviate as c : [X] n → k. For x 0 , . . . , x n-1 ∈ [X] n , we write c(x 0 , . . . , x n-1 ) instead of c( x 0 , . . . , x n-1 ). A set Y ⊆ X is homogeneous for c if there is an i < k such that c(y 0 , . . . , y n-1 ) = i for all y 0 , . . . , y n-1 ∈ [Y ] n . In this case, we say also that Y is homogeneous with color i. In other words, Y is homogeneous for c if [Y ] n is monochromatic for c.

Ramsey's theorem for n-tuples and k-colorings (RT n k ). For every coloring c : [ω] n → k, there is an infinite set H which is homogeneous for c.

Understanding the effective and proof-theoretic content of RT n k , for various values of n and k, has long been a major driving force of research in computability theory, reverse mathematics, and their intersection. The traditional approach in computability theory has been to measure the complexity of homogeneous sets of computable colorings, in terms of Turing degrees and the various inductive hierarchies involving them. In reverse mathematics, the relationship of Ramsey's theorem Dzhafarov was partially supported by NSF grant DMS-1400267. Patey was funded by the John Templeton Foundation ('Structure and Randomness in the Theory of Computation' project). The opinions expressed in this publication are those of the authors and do not necessarily reflect the views of the John Templeton Foundation. The authors are grateful to the anonymous referee for a number of helpful comments and suggestions.

to various other principles, from combinatorics as well as other areas, has been investigated, most commonly in the sense of which principles are implied by Ramsey's theorem, and which imply it, over the weak subsystem RCA 0 of second-order arithmetic. We refer the reader to Soare [START_REF] Soare | Computability theory and applications[END_REF] and Simpson [START_REF] Stephen | Subsystems of second order arithmetic[END_REF] for general background on computability and reverse mathematics, respectively, and to Hirschfeldt [START_REF] Denis | Slicing the Truth: On the Computable and Reverse Mathematics of Combinatorial Principles[END_REF]Section 6] for a comprehensive survey of results about Ramsey's theorem specifically. We refer to Shore [START_REF] Shore | Lecture notes on turing degrees[END_REF]Chapter 3] for background on forcing in arithmetic.

1.1. Notions of computability-theoretic reduction. As is well-known, there is a natural interplay between the two endeavors described above, with each of the benchmark subsystems of second-order arithmetic broadly corresponding to a particular level of computability-theoretic complexity (see, e.g., [13, Section 1] for details). But more is true. The majority of principles one considers in reverse mathematics, like Ramsey's theorem, have the syntactic form

∀X (Φ(X) → ∃Y Ψ(X, Y )),
where Φ and Ψ are arithmetical predicates. It is common to call such a principle a problem, and to call each X such that Φ(X) holds an instance of this problem, and each Y such that Ψ(X, Y ) holds a solution to X. The instances of RT n k are thus the colorings c : [ω] n → k, and the solutions to any such c are the infinite homogeneous sets for this coloring. While an implication over RCA 0 between problems, say Q → P, can in principle make multiple applications of the antecedent Q, or split into cases in a non-uniform way, and generally be quite complicated, in practice, most implications have a considerably simpler shape. Define the following notions of reduction between problems. Definition 1.1. Let P and Q be problems.

(1) P is computably reducible to Q, written P ≤ c Q, if every instance X of P computes an instance X of Q, such that if Y is any solution to X then there is a solution Y to X computable from X ⊕ Y . (2) P is strongly computably reducible to Q, written P ≤ sc Q, if every instance X of P computes an instance X of Q, such that if Y is any solution to X then there is a solution Y to X computable from Y . (3) P is Weihrauch reducible to Q, written P ≤ W Q, if there are Turing functionals Φ and ∆ such that if X is any instance of P then Φ X is an instance of Q, and if Y is any solution to Q then ∆ X⊕ Y is a solution to X. (4) P is strongly Weihrauch reducible to Q, written P ≤ sW Q, if there are Turing functionals Φ and ∆ such that if X is any instance of P then Φ X is an instance of Q, and if Y is any solution to Q then ∆ Y is a solution to X.

All of these reductions express the idea of taking a problem, P, and computably (even uniformly computably, in the case of ≤ W and ≤ sW ) transforming it into another problem, Q, in such a way that being able to solve the latter computably (uniformly computably) tells us how to solve the former. This is a natural idea, and indeed, more often than not an implication Q → P over RCA 0 (or at least, over ω-models of RCA 0 ) is a formalization of some such reduction. The strong versions above may appear more contrived, since it does not seem reasonable to deliberately bar access to the instance of the problem one is working with. Yet commonly, in a reduction of the above sort, the "backward" computation from Y to Y turns out not to reference the original instance. Frequently, it is just the identity.

Let P ≤ ω Q denote that every ω-model of Q is a model of P. It is easy to see that the following implications hold:

P ≤ W Q ! ) P ≤ sW Q 4 < " * P ≤ c Q + 3 P ≤ ω Q. P ≤ sc Q 5 =
No additional arrows can be added to this diagram (see [START_REF] Hirschfeldt | On notions of computability theoretic reduction between Π 1 2 principles[END_REF]Section 1]). The notions of computable reducibility and strong computable reducibility were implicitly used in many papers on reverse mathematics, but were first isolated and studied for their own sake by Dzhafarov [START_REF] Damir | Cohesive avoidance and strong reductions[END_REF], and also form the basis of the iterated forcing constructions of Lerman, Solomon, and Towsner [START_REF] Manuel Lerman | Separating principles below Ramsey's theorem for pairs[END_REF]. Weihrauch reducibility (also called uniform reducibility) and strong Weihrauch reducibility were introduced by Weihrauch [START_REF] Weihrauch | The degrees of discontinuity of some translators between representations of the real numbers[END_REF], under a different formulation than given above, and have been widely applied in the study of computable analysis. Later, these were independently rediscovered by Dorais, Dzhafarov, Hirst, Mileti, and Shafer [START_REF] François | On uniform relationships between combinatorial problems[END_REF], and shown to be the uniform versions of computable reducibility and strong computable reducibility, respectively (see [7, Appendix A]). The investigation of these notions has seen a recent surge of interest. (An updated bibliography is maintained by Brattka [START_REF] Brattka | Bibliography on Weihrauch complexity[END_REF].) Collectively, they provide a way of refining the analyses of effective and reverse mathematics, by elucidating subtler points of similarity and difference between various principles. In the case of Ramsey's theorem, one starting point of interest was in the number of colors. Over RCA 0 , the principle RT n k is equivalent to RT n for all k > , but the usual proof that RT n k is implied by RT n uses RT n multiple times, and as such does not fit any of the notions in Definition 1.1. Dorais et al. [START_REF] François | On uniform relationships between combinatorial problems[END_REF]Theorem 3.1] showed that if k > then RT n k sW RT n , and this was subsequently improved by Hirschfeldt and Jockusch [START_REF] Hirschfeldt | On notions of computability theoretic reduction between Π 1 2 principles[END_REF]Theorem 3.3] and Rakotoniaina [START_REF] Rakotoniaina | The Computational Strength of Ramsey's Theorem[END_REF] (see [START_REF] Brattka | On the uniform computational content of Ramsey's theorem[END_REF]Theorem 4.21]) to show that also RT n k W RT n . Thus, the proof of RT n k from RT n is essentially nonuniform. Surprisingly, Patey [START_REF] Patey | The weakness of being cohesive, thin or free in reverse mathematics[END_REF]Corollary 3.15] showed that even RT n k c RT n . Thus, under any of the above reducibilities, what was basically a single principle in the classical framework is separated into infinitely many. 1.2. Ramsey's theorem for singletons. Our interest in this paper is in the principle RT 1 k , and specifically, how it relates to the stable Ramsey's theorem and the cohesive principle. We begin with the former. A coloring c : [ω] 2 → k is stable if for every x ∈ ω there is an s > x and an i < k such that for all y ≥ s, c(x, y) = i. In other words, the color of c(x, y) is constant for all sufficiently large y. In this case, we write lim y c(x, y) = i. Stable Ramsey's theorem for k-colorings (SRT 2 k ). For every stable coloring c : [ω] 2 → k, there is an infinite set H which is homogeneous for c.

It is convenient to define a set X to be limit homogeneous for a stable coloring c : [ω] 2 → k if for some i < k, we have lim y c(x, y) = i for all x ∈ X. In this case, we say X is limit homogeneous with color i. Every infinite homogeneous set is limit homogeneous (with the same color), but not conversely. Note that if F is finite and homogeneous for c with color i, then F is extendible to an infinite homogeneous set if and only if it is also limit homogeneous with color i and there are infinitely many x such that lim y d(x, y) = i.

One can think of an instance c :

[ω] 2 → k of SRT 2 k as an instance d : ω → k of RT 1
k defined by d(x) = lim y c(x, y). And from any solution X to d, one can thin out to obtain a solution H to c, and H ≤ T c ⊕ X. Of course, d is not computable from c, merely from the Turing jump of c. Thus, while

SRT 2 k is not computably reducible to RT 1 k , it is computably equivalent to a kind of ∆ 0 2 version of RT 1 k called D 2
k , which we will not discuss here. (See [START_REF] Chong | On the role of the collection principle for Σ 0 2 -formulas in second-order reverse mathematics[END_REF] and [9, Section 3] for thorough explorations of how these principles are related.)

The second principle we will look at is the cohesive principle. A set Y is cohesive for a sequence

X n : n ∈ ω of subsets of ω if for each n, either Y ∩ X n or Y ∩ X n is finite.
Cohesive principle (COH). For every sequence X n : n ∈ ω of subsets of ω, there is an infinite set Y which is cohesive for this sequence.

COH, too, may be thought of in terms of RT 1 k , namely, as a sequential form of RT 1 k with finite errors. To make this precise, define a set Y to be almost homogeneous for a coloring c : ω → k if Y -F is homogeneous for c for some finite set F .

Lemma 1.2. The following statements are equivalent under ≤ sW .

(1) COH.

(2) For every sequence

c k : k ≥ 1 of colorings c k : ω → k + 1, there is an infinite set Y which is almost homogeneous for each c k . Proof. (Statement 2 ≤ sW COH.) Fix a sequence c k : k ≥ 1 of colorings c k : ω → k + 1.
We define a sequence of sets X n : n ∈ ω as follows. Partition ω into adjacent finite intervals B 1 , B 2 , . . ., with |B k | = log 2 (k + 1) . Fix k, and suppose B k = {n 0 < . . . < n log 2 (k+1) -1 }; we define X n0 (x), . . . , X n log 2 (k+1) -1 (x) for each x ∈ ω. Since c k (x) ≤ k, it consists of at most log 2 (k + 1) digits when written in binary, and so by prepending 0s if necessary, we can encode c k (x) as a binary sequence σ k,x of length log 2 (k + 1) . For instance, if c 5 (2) = 3 then σ 5,2 = 011 , and if c 10 (3) = 2 then σ 10,3 = 0010 . We define X nj (x) = σ k,x (j) for each j < log 2 (k + 1) . Now if Y is an infinite cohesive set for X n : n ∈ ω , then for all sufficiently large x the finite binary sequence X n0 (x), . . . , X n log 2 (k+1) -1 (x) is the same, and hence also c k (x) is the same. Thus, Y is almost homogeneous for

c k . (COH ≤ sW Statement 2.
) This is clear, by identifying sets with their characteristic functions.

Since ≤ sW is the strongest of the reducibilities we are discussing, it follows that for our purposes, COH can be used interchangeably with Statement 2. k ≤ sc SRT 2 . Our main result in this paper is a negative answer to this question. In fact, we will prove the following considerably stronger fact.

Theorem 1.3. If k > , there exists a coloring c : ω → k such that for every stable coloring d : [ω] 2 → (computable from c or not), there is an infinite homogeneous set H for d such that H computes no infinite homogeneous set for c.

Corollary 1.4. If k > , then RT 1 k sc SRT 2 .
Theorem 1.3 can be viewed as saying that if k > , then not only does RT 1 k not follow from SRT 2 by any natural argument, of the kind encapsulated by the reductions of Definition 1.1, but also there is a true combinatorial, rather than merely computability-theoretic, difference between the two. A similar "combinatorial nonreduction" was exhibited by Hirschfeldt and Jockusch [12, Theorem 3.9] and Patey [START_REF] Patey | The weakness of being cohesive, thin or free in reverse mathematics[END_REF]Corollary 3.4], who constructed a coloring c : ω → k such that for every stable coloring d : [ω] 2 → , there is an infinite limit homogeneous set L for d such that L computes no infinite homogeneous set for c. Theorem 1.3 is an extension of this fact, though the proof is not: the move from limit homogeneous sets to fully homogeneous ones in our case requires an entirely different set of techniques.

Theorem 1.3 has an application to the study of the relative strength of the stable Ramsey's theorem and COH. An important connection between these principles, due to Cholak, Jockusch, and Slaman [5, Section 3] . In turn, it was asked in [9, Question 6.3] whether the same holds for SRT 2 k for k > 2. We give an affirmative answer to this question, again in a stronger form.

Corollary 1.5. There is a family c k : k ≥ 1 of colorings c k : ω → k + 1 such that for every stable coloring d : [ω] 2 → (computable from this family or not), there is an infinite homogeneous set H for d such that for some k ≥ 1, H computes no almost homogeneous set for c k .

Proof. By Theorem 1.3, for each k ≥ 1 there is a coloring c k : ω → k + 1 such that for every stable d : [ω] 2 → k, there is an infinite homogeneous set H for d such that H computes no infinite homogeneous set for c k . Then, in particular, H also computes no almost homogeneous set for c k . Thus, the family c k : k ≥ 1 is as desired.

Corollary 1.6. COH sc SRT 2 <∞ . Proof. This is immediate by Lemma 1.2.

We do not know how effective we can choose the instance of COH witnessing Corollary 1.6 to be, and in particular, whether or not we can find a computable such instance. In the terminology introduced by Jockusch and Stephan [15, Section 1], the latter is equivalent to whether there is a computable stable coloring of pairs d, every homogeneous set for which has p-cohesive degree, which is in turn equivalent to the aforementioned open question of whether COH ≤ c SRT 2 2 . More generally, we do not know if there is any set X, and any stable coloring of pairs d computable from X, such that for every infinite homogeneous set H for d, X ⊕ H has p-cohesive degree relative to X. Corollary 1. [START_REF] Chong | On the role of the collection principle for Σ 0 2 -formulas in second-order reverse mathematics[END_REF] shows that the answer is no if we ask for H itself, rather than X ⊕ H, to have p-cohesive degree relative to X.

By contrast, the instance of COH witnessing Corollary 1.5 cannot be chosen to be computable, nor even ∆ 1 1 . Indeed, for every ∆ 1 1 set X, it is easy to define a stable coloring d : [ω] 2 → 2 (not necessarily computable from X) such that the principal function of any infinite homogeneous set H for d computes X. (By results of Solovay [START_REF] Solovay | Hyperarithmetically encodable sets[END_REF] and Groszek and Slaman [START_REF] Groszek | Moduli of computation[END_REF], a set X is ∆ 1 1 if and only if it has a modulus of computation, meaning a function f : ω → ω such that X is computable from any function g : ω → ω that dominates f . Given a modulus f for X, we set d(x, y) = 0 if y -x ≤ max{f (z) : z ≤ x + 1}, and set d(x, y) = 1 otherwise. Then lim y d(x, y) = 1 for all x, so every infinite homogeneous set H for d has color 1. But for any such H, H(x + 1) > f (x + 1) for all x.) In particular, for every ∆ 1 1 set X, there is a stable coloring of pairs d, every infinite homogeneous set for which can compute X , and hence can compute a solution to any X-computable instance of COH. Hence, for every ∆ 1 1 set X there is a stable coloring of pairs d, every infinite homogeneous set for which has p-cohesive degree relative to X.

The outline of the rest of the paper is as follows. In Section 2, we introduce the forcing notions we need for the proof of Theorem 1.3, and we prove the theorem modulo a key diagonalization step, Lemma 2.5. This lemma relies on a significant simplification and extension of the tree labeling method of constructing homogeneous sets, introduced in [9, Section 5] to prove that COH sc SRT 2 2 . We review the tree labeling method in Section 3, and then conclude by proving the lemma. Our notation in the sequel is standard, with the following exception. For a Turing functional ∆, we write ∆ X (x) y to denote that either ∆ X (x) diverges or ∆ X (x) ↓= y. For a finite set F , we follow the convention that if ∆ F (x) ↓ then the computation halts with use bounded by max F .

Forcing notions and outline of proof

In this section, we prove Theorem 1.3 modulo a key combinatorial lemma, Lemma 2.5, which we delay until the next section. Given k > , we need to build an instance c : ω → k of RT 1 k , and for every stable coloring d : [ω] 2 → , an infinite homogeneous set H such that H computes no infinite homogeneous set for c. We obtain each of c and H as a generic for a suitable notion of forcing: Cohen forcing in the case of c, and Mathias forcing in the case of H. We begin by defining the relevant forcing notions.

Throughout, let M be a fixed countable transitive model of ZFC. Let C k be Cohen forcing with strings σ ∈ k <ω , so that a generic is a coloring ω → k. We let the desired instance c of RT 1 k be a generic for C k over M . To define the homogeneous set H for the given stable coloring d : [ω] 2 → , we first recall the definition of Mathias forcing, which is frequently employed in the study of Ramsey's theorem. (See [START_REF] Cholak | Generics for computable Mathias forcing[END_REF][START_REF] Cholak | Generics for Mathias forcing over general Turing ideals[END_REF] for a general discussion of Mathias forcing in computability theory.) Here, conditions are pairs (E, I) such that E is a finite set, I is an infinite set called a reservoir, and E < I. A condition (E , I ) extends (E, I), denoted (E , I ) ≤ (E, I), if E ⊆ E ⊆ E ∪ I and I ⊆ I. Frequently, the reservoirs I in a particular Mathias forcing construction are restricted to a certain family of sets, for example the (infinite) computable sets, as in Cholak, Jockusch, and Slaman [5, Section 4]. In our case, we let I be the set of all infinite subsets of ω in the model M , and restrict to working with conditions (E, I) with I ∈ I.

For every i < k and j < , let I i,j be the collection of sets I ∈ I such that for all increasing map f ∈ M with ran(f ) ∈ I, if ran(f ) ⊆ I, then there is some w ∈ dom(f ) such that c(w) = i and lim y d(f (w), y) = j. Note that I i,j is upward-closed in (I, ⊇).

Lemma 2.1. For every i < k, the set I i = j< I i,j is dense in (I, ⊇).

Proof. Suppose that I i is not dense and let I ∈ I have no extension in I i . Define a finite sequence of increasing maps f 0 , . . . , f -1 ∈ M and a finite sequence of sets I = I 0 ⊇ • • • ⊇ I ∈ I such that for each j < k, ran(f j ) = I j+1 and f j witness that I j has no extension in I i,j , that is, for every w ∈ dom(f if c(w) = i then lim y d(f (w), y) = j. For each x ∈ I , let F x = {f -1 j (x) : j < }. The set P = {F x : x ∈ I belongs to M , so by M -genericity of c, c(F x ) = {i} for some x ∈ I . By choice of F x , lim y d(x, y) ∈ . Contradiction.

Let I d ∈ i<k I i and let j i < be such that I d ∈ I i,j for each i < k. Since k > , there are some i 0 < i 1 < k such that j i0 = j i1 . Let j = j i0 = j i1 . From now on, I d , i 0 , i 1 and j are fixed. The following lemma is a useful consequence of the choices of I d and j. In particular, if (E, I) is an M d,I d ,j condition then E is limit homogeneous for d with color j, and E ∪ {y} is homogeneous with color j for each y ∈ I. A generic filter for this forcing thus yields a subset H of I d which is homogeneous for d with color j. Proof. Fix any condition (E, I). By Lemma 2.2, there is some x ∈ I such that lim y d(x, y) = j. Let m > x be such that d(x, y) = j for all y ≥ m. Let E = E∪{x}, and let I = {x ∈ I : x > m}}, which is a co-initial segment of I and hence belongs to I. Then (E , I ) ≤ (E, I) and |E | = |E| + 1. Thus, it is dense to add an element to H, so by genericity, H is infinite.

We fix a countable transitive model M of ZFC with M ∪{c, d} ⊆ M , and choose the set H to be generic for M d,I d ,j over M . The following lemma, whose proof we give in the next section, will allow us to complete the proof of Theorem 1.3. Lemma 2.5. Let ∆ be a Turing functionals Then for each i ∈ {i 0 , i 1 }, one of the following holds:

(1) ∆ H is not (the characteristic function of ) an infinite set;

(2) there is a w ∈ ω such that ∆ H (w) ↓= 1 and c(w

) = i.
The theorem is now an immediate consequence.

Proof of Theorem 1.3. We claim that H computes no infinite homogeneous set for c. By Lemma 2.4, H is an infinite homogeneous set for d, so this suffices. Seeking a contradiction, suppose not. Let ∆ be a Turing functional such that ∆ H is an infinite homogeneous set for c. By Lemma 2.5, for each i ∈ {i 0 , i 1 } we can find a number w in the set ∆ H such that c(w) = i, so ∆ H is not homogeneous for c after all.

Proof of Lemma 2.5

As mentioned in the introduction, the proof of Lemma 2.5 employs the so-called tree labeling method, introduced in [START_REF] Damir | Strong reductions between combinatorial principles[END_REF]. As this method is new, we begin this section with a careful presentation of this method.

3.1. Tree labeling. Let λ denote the empty string. For a non-empty string α, we let α # = α |α| -1. That is, α # is the string formed by removing the last element of α. Given a string β, we write α * β for the concatenation of α by β, and given x ∈ ω, we write α * x for the concatenation of α by the singleton sequence x . We call α * x a successor of α. Note that (α * x) # = α.

Definition 3.1. Fix n ∈ ω, and let ∆ be a Turing functional and (E, I) a Mathias condition. We define T (n, ∆, E, I) ⊆ I <ω by λ ∈ T (n, ∆, E, I) and for a non-empty string α, α ∈ T (n, ∆, E, I) if α ∈ I <ω is increasing and

∀F ⊆ ran(α # ) ∀w ≥ n (∆ E∪F (w) 0).
It is clear from the definition that T (n, ∆, E, I) is closed under initial segments, and so is a tree. In what follows, we will always interpret the functional ∆ in these trees to have output values restricted to {0, 1}. Lemma 3.2. T = T (n, ∆, E, I) has the following properties.

(1) If T is not well-founded and P is any infinite path through T , then ran(P ) is infinite and ∆ E∪F (w) 0 for all w ≥ n and all F ⊆ ran(P ).

(2) If α ∈ T is not terminal, then ∀x ∈ I (x > ran(α) → α * x ∈ T ).
(3) If α ∈ T is terminal, then there is an F ⊆ ran(α) and a w ≥ n such that ∆ E∪F (w) ↓= 1. In particular, if T consists of just the root node then ∆ E (w) ↓= 1 for some w ≥ n.

Proof. Property (1) follows immediately from the definition of T (n, ∆, E, I). For property (2), let α ∈ T be a non-terminal node and let α * x be a successor of α in T . By definition, for every F ⊆ ran((α * x) # ) = ran(α) and every w ≥ n, we have ∆ E∪F (w) 0. But this fact is independent of x. Hence, so long as x ∈ I and x > ran(α), so that α * x is an increasing sequence from I, we have α * x ∈ T . For property (3), let α be a terminal node. Because I is infinite, there is an x ∈ I with x > ran(α). And since α * x ∈ T , there is F ⊆ ran((α * x)

# ) = ran(α) and a w ≥ n such that ∆ E∪F (w) ↓= 1.

Our main concern in the proof of Lemma 2.5 will be when T is well-founded. If this is the case, we label the nodes of T (n, ∆, E, I) and prune to a more uniformly labeled subtree. Definition 3.3. Let T = T (n, ∆, E, I) be well-founded. We label the nodes of T by recursion starting at the terminal nodes. The label of each node will be either a number w or the symbol ∞. If α ∈ T is terminal, then for some w ≥ n there is an F ⊆ ran(α) such that ∆ E∪F (w) ↓= 1, and we label α by the least such w. Now suppose α ∈ T is not terminal, and assume by recursion that every successor of α in T has been labeled. If there is a number w such that infinitely many of the successors of α are labeled w, we choose the least such w and label α with w. Otherwise, we label α with ∞.

Thus, each non-terminal α ∈ T either has a numerical label w, in which case so do infinitely many of its successors in T , or α has label ∞. In the latter case, each number w that appears as the label of any successor of α can label at most finitely many other successors of α. Definition 3.4. Let T = T (n, ∆, E, I) be well-founded. We define the labeled subtree T L = T L (n, ∆, E, I) of T as follows, starting at the root of T and working down by levels. In all cases, if a node of T is placed in T L then it retains its label from T . To begin, the root of T is placed in T L . Now suppose α ∈ T has been placed in T L . If α has a numerical label w, then each successor of α in T with label w is placed in T L . If α has label ∞ and infinitely many of its successors have label ∞, then each successor of α in T with label ∞ is placed in T L . If α has label ∞ and only finitely many of its successors have label ∞, then α must have successors labeled with infinitely many different numerical values. For each numerical value w which labels some successor of α, we pick the least x such that α * x has label w and place α * x in T L .

The next lemma lists properties of T L which are straightforward to verify. Lemma 3.5. Assume T = T (n, ∆, E, I) is well-founded. A node α ∈ T L is terminal in T L if and only if it is terminal in T . Each non-terminal node α ∈ T L has infinitely many successors in T L , and these successors are either all labeled with the same numerical value w (if α has label w), are all labeled ∞ (and α is labeled ∞), or each successor has a distinct numerical label (and α is labeled ∞).

Suppose T = T (n, ∆, E, I) is well-founded. For each non-terminal α ∈ T L , we define the row below α to be the infinite set {x : α * x ∈ T L }. In the event that each α * x has a distinct numerical label, we also define the labeled row below α to be { x, w : α * x ∈ T L ∧ α * x has label w}. Thus, the labeled row below α is defined if and only if α has label ∞ but each of its successors has a numerical label. We call a set a row of T L or labeled row of T L if it is the row or labeled row below some non-terminal α ∈ T L . If Y is a labeled row of T L , then {x : ∃w x, w ∈ Y } is a row of T L , and we denote it by π 1 Y . The following observation will serve as a crucial connection with the forcing notions defined in the previous section. absoluteness that T is not well-founded in M , and hence M contains an infinite path through T . The range of this path thus belongs to I. And if T is well-founded, then every row and every labeled row of T L belongs to M , and in particular, every row of T L belongs to I.

3.2.

Proof of Lemma 2.5. Let M , I, c, d, M , I d , i 0 , i 1 and j be as in Section 2. We will need the technical result below, which gives the most important application of the tree labeling method for our purposes. For each β ∈ T L , and each m ∈ ω, there is a γ ∈ ω <ω with the following properties:

• γ = λ or m ≤ min ran(γ);

• β * γ is a terminal node of T L ;

• ran(γ) is homogeneous and limit homogeneous for d with color j.

Proof. Fix β ∈ T L . We define a sequence γ 0 γ 1 • • • such that for each s, β * γ s ∈ T L , m ≤ x for each x ∈ ran(γ s ), and ran(γ s ) is homogeneous and limit homogeneous for d with color j. Furthermore, we ensure that if β * γ s is not terminal in T L then β * γ s+1 is a successor of β * γ s . Thus, since T L is well-founded, β * γ s must be terminal in T L for some s, and we can then take γ = γ s . To construct the sequence, let γ 0 = λ, and suppose inductively that we have defined γ s . If β * γ s is terminal in T L , we are done. Otherwise, let m be large enough so that d(x, y) = j for all x ∈ ran(γ s ) and all y ≥ m . By Observation 3.6, the row below β * γ s belongs to I, and it is an infinite subset of I and hence of I d . Thus, there must be infinitely many x in this row such that lim y d(x, y) = j. In particular, we can choose some such x with x ≥ max{m, m }, and we let γ s+1 = γ s * x.

We can now prove Lemma 2.5, which completes the argument. Lemma 2.5. Let ∆ be a Turing functionals Then for each i ∈ {i 0 , i 1 }, one of the following holds:

(1) ∆ H is not (the characteristic function of) an infinite set;

(2) there is a w ∈ ω such that ∆ H (w) ↓= 1 and c(w) = i.

Proof. Let ∆ and i ∈ {i 0 , i 1 } be given. Fix any M d,I d ,j condition (E, I). We seek an extension (E , I ) such that one of the following holds:

(1) there is an n ∈ ω such that for all F ⊆ I and all w ≥ n, ∆ E ∪F (w) 0;

(2) there is a w ∈ ω such that ∆ E (w) ↓= 1 and c(w) = i. Since d ∈ M , also M d,I d ,j ∈ M . And since also c ∈ M and H is generic over M , this suffices.

Construction. For each n, let T n = T (n, ∆, E, I), and if T n is well-founded, let T L n = T L n (n, ∆, E, I). We consider the following cases. Case 1. There is an n such that T n is not well-founded.

Let P be any infinite path through T n in M , and let I = ran(P ). By Observation 3.6, I ∈ I. We define E = E, so that (E , I ) extends (E, I). Clearly, this extension satisfies clause (1) above.

Case 2. For all n, T n is well-founded, and the root of T L n has a numerical label w n . By Observation 3.6, the set of all w n belongs to M , so by genericity of c, there is an n such that c(w n ) = i. We apply Lemma 3.7 with β = λ to obtain a terminal node γ of T L n such that ran(γ) is homogeneous and limit homogeneous for d with color j. Then γ is labeled by w n in T L n , so there is a finite F ⊆ ran(γ) such that ∆ E∪F (w n ) ↓= 1, and we define E = E ∪ F . (Since F ⊆ I, we have E < F . By Lemma 3.2, if T L n consists of just the root node, then β = λ and F = ∅.) Note that E is homogeneous and limit homogeneous for d with color j. We choose m > F such that d(x, y) = j for all x ∈ F and all y ≥ m, and define I = {x ∈ I : x > m}, so that I ∈ I. Now (E , I ) is an extension of (E, I) satisfying clause [START_REF] Brattka | On the uniform computational content of Ramsey's theorem[END_REF].

Case 3. For some n, T n is well-founded, and the root of T L n has label ∞. Let γ be a terminal node of T L n obtained by applying Lemma 3.7 with β = λ. Let α be an initial segment of γ such that α has label ∞ and each successor of α in T L n has numerical label. In particular, ran(α) is homogeneous and limit homogeneous for d with color j. By Observation 3.6, the labeled row below α is in M , so there are infinitely many pairs x, w in this labeled row with c(w) = i. Let m be such that d(x, y) = j for all x ∈ ran(α) and all y ≥ m.

Let f ∈ M be the increasing map defined by f (w) = x iff x, w ∈ α and x ≥ m. In particular, ran(f ) ∈ I and ran(f ) ⊆ I ⊆ I d . Since I d ∈ I i,j , there is some w ∈ dom(f ) such that c(w) = i and lim y d(f (w), y) = j. Let x = f (w). We have x, w ∈ α, x ≥ m and lim y d(x, y) = j. We then apply Lemma 3.7 again, this time with β = α * x, and find a δ such that δ = λ or m ≤ min ran(δ), α * x * δ is terminal in T L n , and ran(δ) is homogeneous and limit homogeneous for d with color j. Now α * x * δ is labeled w in T L n , and its range is homogeneous and limit homogeneous for d with color j. We choose a finite F ⊆ ran(α * x * δ) such that ∆ E∪F (w) ↓= 1, and define E = E ∪ F . Let m > F be such that d(z, y) = j for all z ∈ ran(F ) and all y ≥ m , and define I = {x ∈ I : x > m }. Then (E , I ) extends (E, I) and satisfies clause [START_REF] Brattka | On the uniform computational content of Ramsey's theorem[END_REF]. This completes the proof.

Lemma 2 . 2 .

 22 For all I ∈ I, if I ⊆ I d then lim y d(x, y) = j for infinitely many x ∈ I.Proof. Fix some I ∈ I such that I ⊆ I d and fix some n ∈ ω. Define f : ω → I \[0, n] be the increasing map which to x associates the xth element of I \ [0, n]. Since I d ∈ I i0,j and f ∈ M , there is some w ∈ dom(f ) = ω such that c(w) = i 0 and lim y d(f (w), y) = j. In particular f (w) > n, so there are an unbounded number of x ∈ I such that lim y d(x, y) = j.We are now ready to define our notion of forcing. Definition 2.3. We define M d,I d ,j to be the following notion of forcing. A condition is a Mathias condition (E, I) such that I ∈ I with I ⊆ I d , and E is homogeneous for d with color j, and d(x, y) = j for all x ∈ E and all y ∈ I. A condition (E , I ) extends (E, I), denoted (E , I ) ≤ (E, I), if (E , I ) ≤ (E, I) as a Mathias condition.

Lemma 2 . 4 .

 24 If H is generic for M d,I d ,j , then H is infinite.

Observation 3 . 6 .

 36 Recall the collection I of infinite subsets of ω in our fixed countable transitive model M of ZFC, as well as the model M extending M and containing the generic c and the given stable coloring d : [ω] 2 → . If I ∈ I then T = T (n, ∆, E, I) belongs to M . If T is not well-founded, it follows by Π 1 1

Lemma 3 . 7 .

 37 Fix I ∈ I with I ⊆ I d , and assume T = T (n, ∆, E, I) is well-founded.

  1.3. Main theorems. Clearly, for all k we have that RT 1 k ≤ sW SRT 2 k . Let RT 1

	In fact, Hirschfeldt and Jockusch [12, Theorem 2.10 (4)] showed that for all k,
	RT 1 k+1	W SRT 2 k . This leaves a gap around strong computable reducibility. More
	generally, it was asked in [12, Question 5.4] whether there exist k > such that
	RT 1	
		<∞
	be the problem whose instances are colorings c : ω → k, for all k ≥ 1, and solutions
	are, as before, infinite homogeneous sets. As a statement of second-order arithmetic,
	this corresponds to the statement ∀k ≥ 1 RT 1 k . Hirst [14, Theorem 6.8] proved that RT 2 2 → RT 1

<∞ over RCA 0 , and his proof actually shows that RT 1 <∞ ≤ sW RT 2 2 . A modification of this proof shows also that SRT

2 

2 → RT 1 <∞ over RCA 0 , but in terms of computability-theoretic reducibilities, it yields only that RT 1 <∞ ≤ c SRT 2 2 .

  , is that RT 2 k is equivalent to SRT 2

k + COH over RCA 0 (see

[START_REF] Mileti | Partition Theorems and Computability Theory[END_REF] Corollary A.1.4]

). Only recently has the question of whether SRT 2 k implies COH been answered (in the negative), by Chong, Slaman, and Yang

[START_REF] Slaman | The metamathematics of stable Ramsey's theorem for pairs[END_REF]

, but it remains open whether COH ≤ ω SRT 2 k , and even whether COH ≤ c SRT 2 k . As a partial step towards a negative answer, Dzhafarov [9, Corollary 5.3] proved that COH sc SRT 2 2