
HAL Id: hal-01888746
https://hal.science/hal-01888746v1

Submitted on 26 Mar 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Deep neural networks for audio scene recognition
Yohan Petetin, Cyrille Laroche, Aurelien Mayoue

To cite this version:
Yohan Petetin, Cyrille Laroche, Aurelien Mayoue. Deep neural networks for audio scene recognition.
2015 23rd European Signal Processing Conference (EUSIPCO), Aug 2015, Nice, France. pp.7362358,
�10.1109/EUSIPCO.2015.7362358�. �hal-01888746�

https://hal.science/hal-01888746v1
https://hal.archives-ouvertes.fr


DEEP NEURAL NETWORKS FOR AUDIO SCENE RECOGNITION

Yohan Petetin, Cyrille Laroche, Aurélien Mayoue

CEA, LIST, Gif-sur-Yvette, F-91191, France

ABSTRACT

These last years, artificial neural networks (ANN) have
known a renewed interest since efficient training procedures
have emerged to learn the so called deep neural networks
(DNN), i.e. ANN with at least two hidden layers. In the same
time, the computational auditory scene recognition (CASR)
problem which consists in estimating the environment around
a device from the received audio signal has been investigated.
Most of works which deal with the CASR problem have tried
to find well-adapted features for this problem. However,
these features are generally combined with a classical classi-
fier. In this paper, we introduce DNN in the CASR field and
we show that such networks can provide promising results
and perform better than standard classifiers when the same
features are used.

Index Terms— Deep neural networks; deep beliefs net-
works; audio scene recognition.

1. INTRODUCTION

1.1. Generalities

The CASR problem consists in determining automatically the
context or environment around a device [1]. A variety of
features have been proposed for CASR, but the majority of
the past work uses features that are well-known for struc-
tured data, such as speech and music. In this way, time-
domain (zero-crossing rate), frequency-domain (band-energy
ration, spectral centroid, spectral flatness) and cepstral(Mel-
frequency cepstral coefficients) features are naturally used in
the literature [1] [2] [3] [4]. Only few recent articles havepro-
posed new sets of features which try to encode some relevant
information for unstructured environmental sound classifica-
tion. The choice of these new features is often inspired by
other research fields than audio one such as image process-
ing (spectrogram pattern [5], histogram of gradient (HOG)
features [6]), chaos theory (Recurrence Quantification Analy-
sis descriptors [7]) or compressed sensing (Matching Pursuit-
based features [8]). In this paper, we do not discuss on the
relevance of audio features for CASR but we investigate clas-
sification approaches. Indeed, whatever the complexity of the
features proposed in the literature, the classification step is
always based on standard machine learning approaches such
as K-nearest neighbors [1] [5] [8], Gaussian Mixture Mod-

els (GMM) [1] [8], hidden Markov models [2] [3], Support
Vector Machines (SVM) [4] [6] [7]. Or, while DNN have led
to significant advances in automatic speech recognition [9],
this approach has never been used in the field of CASR to
the best of our knowledge. In this paper, we study how to
deploy DNN for audio context recognition and we show that
DNN can produce promising results even when we use stan-
dard audio features which are not necessarily optimized for
the CASR problem.

1.2. Feed forward artificial neural networks

Feed forward artifical neural networks (ANN) are popular
computer architectures which can be used for classification.
More precisely, when the objective is to classify a feature of
interestx amongC classes, an ANN estimates the probabili-
tiespj , j ∈ {1, · · · , C}, of each class given the input feature
x. In our audio classification problem, the inputx represents
the concatenation of audio features [10] [11], such as cepstral
(Mel-frequency cepstral coefficients (MFCC)) and frequency
features (spectral centroid, spectral flatness,...); the class rep-
resents the audio context (car, bus, office, street, restaurant,
...). A graphical representation of this architecture is given in
Figure 1.
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Fig. 1. An ANN is described by an input (a feature vector), a
given number of hidden layers, a given number of neurons per
layer and an output which describes the class probabilities.

In order to compute the outputspj of the ANN, we first



need to compute the ouput of each hidden unit. In an ANN,
the connection between thek−1-th hidden layer and thek-th
one is described by a matrix of weightsWk, and a bias vector
bk; the outputhk

j of thej-th neuron of thek-th layer is then
computed from

hk
j = f
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ijh

k−1
i + bkj

)

, (1)

wheref(.) is the sigmoid function:

f(x) = sigmoid(x) =
1

1 + e−x
. (2)

Finally, the output is computed via the softmax nonlinearity,
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wherep is the number of layers (without counting up the input
layer).

The training of ANN (i.e. the estimation of parameters
Wk andbk) relies on supervised methods such as the Back-
Propagation (BP) algorithm [12] whose the principle will be
reminded in section 3. However, when the number of hid-
den layers and neurons increases, supervised methods are not
reliable and ANN are difficult to tune. Particularly, these
methods can be stuck in a poor local optima when we look
for estimating the parameters. Recently, new procedures for
training DNN (i.e. ANN with at least two hidden layers)
have been proposed to overcome the limitations of classi-
cal training algorithms [13] and rely on an unsupervised pre-
training which aims at initializing properly the parameters of
the DNN. The rest of this paper is organized as follows. In
Section 2, we describe the pre-training step of DNN which
relies on Restricted Boltzman Machines (RBM) and Deep Be-
lief Networks (DBN) and which are both probabilistic graphi-
cal models. In Section 3, the principle of the supervised train-
ing via the BP algorithm is recalled. Finally, in section 4, we
focus on the tuning of DNN for CASR problem by perform-
ing experimentations on an audio context dataset.

2. PRE-TRAINING OF DNN VIA DBN

We now focus on the initialization of the parameters of DNN
by considering DBN which are generative graphical model.
Thus, the initialization of the parameter of a DNN relies on
those of the associated DBN. However, maximizing the likeli-
hood of a DBN is impossible. Consequently variational meth-
ods based on RBM models have been developed and con-
sists in training separately each layer of the DBN as an RBM.
These models are described in our next paragraph.

2.1. RBM

An RBM is a probabilistic graphical model which connects a
set ofm visible random variables (r.v.),v = (v1, · · · , vm),

with a set ofq hidden r.v.,h = (h1, · · · , hq) [14]. In this
model, the joint probability density function (pdf) of the visi-
ble and hidden units depends on an energy function and reads

p(v,h) =
1

Z
e−E(v,h), (4)

where

E(v,h) = −
∑

i

aivi −
∑

j

bjhj −
∑

i,j

wijvihj , (5)

Z =
∑

v,h

e−E(v,h) (6)

for a Bernoulli-Bernoulli RBM (BBRBM) (i.e. an RBM in
whichvi andhj take their values in{0, 1}). Equations related
to a Gaussian-Bernoulli RBM (GBRBM) and which are more
adapted for real values can be found in [9].

From an unlabeled visible dataset(x1, · · · ,xN ), our ob-
jective is to learn the parameters of the RBM. More precisely,
starting from (4)-(6), we intend to maximize the likelihood
p(x1, · · · ,xN ) =

∏N

i=1 p(x
i), where

p(xi) =
∑

h

p(xi,h) =
1

Z

∑

h

e−E(xi,h), (7)

w.r.t. ai, bj andwij .
However, the gradient of the log-likelihood,
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is not computable but can be interpreted as the sum of two
expectations. Consequently, (8) can be approximated by a
Monte Carlo method. More precisely, in an RBM (4), one
can show that

p(hj = 1|v) = sigmoid(bj +
∑

i

wijvi), (9)

where the sigmoid functionsigmoid(.) is defined in (2) and
that

p(vi = 1|h) = sigmoid(ai +
∑

j

wijhj). (10)

Finally, the first expectation in (8) is easy to approxi-
mate by sampling according top(vi|h); sampling accord-
ing to p(vi, hj) is more difficult but can be achieved via
a Gibbs sampler in which we sample alternatively from
p(v|h) =

∏m

i=1 p(vi|h) and p(h|v) =
∏q

i=j p(hj |v). In
practice, the expectations are approximated with only1
sample and the Gibbs sampler relies on1 iteration. This
procedure is called the Contrastive Divergence (CD-1) algo-
rithm and leads to an approximate maximization of (8) via a
gradient descent method.



2.2. Deep Belief Networks

Let us now consider the DBN probabilistic model defined
by a layer of visible unitx = h0 (our input data) and
p − 1 hidden layers, denotedh1, · · · ,hp−1. The pdf of
(h0,h1, · · · ,hp−1) in a DBN reads

p(h0,h1, · · · ,hp) =

p−2
∏

i=1

p(hi−1|hi)p(hp−2,hp−1), (11)

wherep(hp−2,hp−1) is an RBM and coincides with (4), and
p(hi−1|hi) is deduced from (10).

Again, the maximization of the likelihoodp(x) in model
(11) w.r.t parametersWk andbk associated to each layerhk

is not possible. A greedy layer wise procedure has been pro-
posed in the literature [13] [15] [16] and consists in approxi-
mating the DBN (11) as a stacking of RBM (4).

Strictly speaking,p(hk−1,hk) in (11) does not satisfy (4)
and so is not an RBM, except fork = p− 1. However, justi-
fications of the following procedure can be found in [16] [13]
and relies on Kullback Leibler Divergence arguments.

In summary, the unsupervised training of a DBN (i.e.
the pre-training of our DNN) consists of the following steps;
starting from a training dataset{x1, · · · , xi, · · · ,xN} :

1. train the first RBM(h0,h1) (i.e. computeW1 andb1

associated to the first layer) via the procedure described
in section 2.1;

2. compute the output associated to the data set{x1, · · · ,xi,

· · · ,xN} via (1)-(2) using the parametersW1 andb1 ob-
tained after the pre-training;

3. train the next RBM(h1,h2), · · · , (hp−2,hp−1) by re-
peating steps 1. and 2.

3. FINE-TRAINING OF DNN

We now consider that the parameters estimated by the pre-
training algorithm are used for the initialization of the super-
vised training algorithm of the DNN. So now we assume that
we have a set of labeled data

E = {(x1,d1), · · · , (xi,di), · · · , (xN ,dN )} (12)

wheredi = [di1, · · · , d
i
K ]T is the known class vector asso-

ciated toxi andK the number of classes:dij=C = 1 if xi

belongs to theC-th class anddij 6=C = 0 otherwise. Note that
this set could be different from the one used in the previous
section for the learning of the associated DBN.

Supervised training consists in tuning matricesWk and
biasesbk from the setE in (12). Here, our objective is to min-
imize the cross entropyC = −

∑K

k=1 dk log(pk) between the
output of the DNNp = [p1, · · · , pK ]T and the target prob-
abilities d = [d1, · · · , dK ]T . The BP method is a popular
algorithm to compute recursively the gradient ofC w.r.t. the
weightswk

ij and the biasesbkj of the DNN [12]. Finally, the

algorithm includes a gradient descent method in order to ap-
proximate the parameters which minimizeC.

In summary, from a given labeled data(x,d) and for a
given iterationl:

1. Compute the outputp associated to the inputx by using
weightswk

ij(l − 1) and biasesbkj (l − 1) of the previous
iterationl− 1. Remember thatwk

ij(0) andbkj (0) coincide
with the parameters estimated by the pre-training step;

2. Backpropagate the gradient of the errorC in the DNN, i.e.
compute the gradient∆wk

ij(l) and∆bkj (l) of C w.r.t the
weights and the biases of the DNN.

3. Update the weightswk
ij(l) = wk

ij(l − 1)− ǫ∆wk
ij(l), and

the biasesbkj (l) = bkj (l − 1) − ǫ∆bkj (l), whereǫ is the
learning rate;

Many refinements have been proposed in order to improve
the computation of the weights and the biases from the train-
ing setE in (12). These refinements rely on a random mini-
batch to compute the gradient of the error and the momentum
method to improve the speed of learning [17].

4. SIMULATIONS

4.1. Dataset

We present the results for audio context classification that
we have obtained with DNN. The dataset that we use in this
section is the publicly available audio scene dataset acquired
by the LITIS Rouen [18]. The dataset is composed of3026
recordings whose duration is30 seconds in such a way that
about1500 minutes of audio scene have been recorded. The
data are scattered in19 classes : plane, bus, busy street,
cafe, car, student hall, train station hall, kid game hall, mar-
ket, metro-paris, metro-rouen, billard pool hall, quiet street,
restaurant, pedestrian street, shop, train, high-speed train and
tubestation. More details on the dataset can be found in [6].

Our experimentations are based on a standard feature set
which consists in computing12 MFCC, its first order deriva-
tives (∆MFCC) and6 subband spectral flatness coefficients
[19] for every15ms-spaced frames of length30ms.

To evaluate our system, we have followed the protocol
proposed in [6] i.e.80% of the examples were used for train-
ing while the remaining recordings were kept for testing (and
results were averaged over20 different splits of the dataset).
As an evaluation criterion, we have considered the recogni-
tion rate. Since the classes are not represented by the same
number of recordings, the recognition rate reads

Rec Rate =
1

C

C
∑

i=1

TP(i)

Card(C(i))
,

whereC = 19, TP(i) is the number of examples of classi
correctly classified andCard(C(i)) the number of examples
in classi. The final decision for a recording is taken by first



averaging the output of the DNN for each input frame which
forms the recording and next choosing the class with the best
result.

On one hand, our simulations aim at studying the perfor-
mances of DNN for CASR in function of the number of hid-
den layers and the number of neurons for a given layer. On
the other hand, we also study the effect of the number of the
concatened frames of30ms (1, 5, 10...) at the input of the
DNN.

Finally, to be sure that our experiments are reproducible
by others, we mention the specific parameters we have used
for the learning procedures. The number of epochs for the
pre-training and the fine-training is100 and300 respectively;
the learning set is set to1 for the pre-training and0.1 for the
supervised training; a batch size of100 is used for both train-
ing procedure; the momentum is set to0.5 for the first five
epochs of both training and next to0.9. Finally, a weight cost
is set to0.2× 10−5, for the pre-training. An interpretation of
these parameters can be found in [17].

4.1.1. Influence of the size of the DNN

In this paragraph, we consider a fixed number of15 input
frames (so the size of the input layer of our DNN is15×30 =
450) and we compare the performances in function of the
number of hidden layers and the number of neurons for each
hidden layer. For simplicity, we have considered the same
number of neurons for each hidden layer. In figure 2 we have
displayed the recognition rate in function of these parameters.
Overall, DNN perform better when the number of hidden lay-
ers and neurons is greater but it can be seen that when the
number of neurons is weak, increasing the number of hidden
layers does not necessarily improve the performances. The
worse recognition rate (80%) is obtained for2 hidden layers
of 50 neurons and the best performances (91.6%) are obtained
with 5 hidden layers of500 neurons. For reasons of space, we
have not reproduced the confusion matrix associated to this
configuration. Roughly speaking, all classes have a recog-
nition rate greater than80%, except the quiet street and the
pedestrian street which have a recognition rate of66.66% and
75%, respectively. Theses classes are mainly confused with
the shop and market classes. For larger DNN, we have not ob-
served a major improvement. Indeed, for a DNN with7 hid-
den layers and1000 neurons, the recognition rate is92.2%.

4.1.2. Influence of the input of the DNN

We now set the number of hidden layers to3 and the num-
ber of neurons to50 and we perform a simulation in function
of the number of input frames. Increasing the number of in-
put frames has the advantage to reduce the computational cost
when we need to do many classifications. From a computa-
tional cost point of view, it is clear that it is preferable touse
30 × 15 = 450 coefficients at the input of the DNN rather
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Fig. 2. Performances of DNNs for audio classification scene
in function of the size of the DNN. Here, the number of input
frames is15.
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Fig. 3. Error rate in terms of recordings for the validation set
in function of the number of input frames. The DNN has3
hidden layers of50 neurons.

than doing15 classifications with30 coefficients. However,
when the final decision is taken after several classifications,
the mean error rate per recording is optimal for10-15 frames
as we see in Fig. 3.

We have also computed a classifier based on Gaussian
Mixture models (GMM). We have trained4 mixtures for each
class via the Expectation Maximization (EM) algorithm. The
best recognition rate for this classification method is80.91%
and is obtained by considering one input frame. It seems that
the concatenation of frames is only interesting for architec-
tures like DNN because they permit to encode the temporal
connections between the frames. This observation is also con-
firmed by the fact that DNN present similar results if we do
not consider the∆MFCC which describe such connections.
Finally, we have also computed a SVM classifier with a Gaus-
sian Kernel and15 concatenated input frames. The recogni-
tion rate is 86.5 %.



5. CONCLUSION

We have proposed a DNN-based approach for the CASR
problem. The rationale of the training algorithms associated
to DNN has been recalled and the performances of these
architectures have been studied in function of their size and
of the number of concatenated input frames, which define
the input layer of the DNN. DNN have been compared with
more classical classifiers such as GMM and SVM, with the
same features: the optimal recognition rates obtained are
92%, 81% and 86.5%, respectively. The relevance of the
features used in our simulations have not been discussed, but
we underline that DNN applied to standard features give sim-
ilar results as well-defined features (HOG) classified by an
SVM approach [6] following the same protocol on the same
dataset (best performance is92% in both cases). In this way,
several solutions could be exploited in order to improve the
performances of DNN in this context. First, more adapted
features (HOG features for example) could be used at the
input of the DNN. Alternatively, we could also let the DNN
extract automatically the relevant features by using directly
the spectrum as input.
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