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Deep neural networks for audio scene recognition

INTRODUCTION 1.Generalities

The CASR problem consists in determining automatically the context or environment around a device [START_REF] Peltonen | Computational auditory scene recognition[END_REF]. A variety of features have been proposed for CASR, but the majority of the past work uses features that are well-known for structured data, such as speech and music. In this way, timedomain (zero-crossing rate), frequency-domain (band-energy ration, spectral centroid, spectral flatness) and cepstral (Melfrequency cepstral coefficients) features are naturally used in the literature [START_REF] Peltonen | Computational auditory scene recognition[END_REF] [2] [3] [START_REF] Perttunen | Auditory context recognition using SVMs[END_REF]. Only few recent articles have proposed new sets of features which try to encode some relevant information for unstructured environmental sound classification. The choice of these new features is often inspired by other research fields than audio one such as image processing (spectrogram pattern [START_REF] Khunarsal | Very short time environmental sound classification based on spectrogram pattern matching[END_REF], histogram of gradient (HOG) features [START_REF] Rakotomamonjy | Histogram of gradients of time-frequency representations for audio scene classification[END_REF]), chaos theory (Recurrence Quantification Analysis descriptors [START_REF] Roma | Recurrence quantification analysis features for environmental sound recognition[END_REF]) or compressed sensing (Matching Pursuitbased features [START_REF] Chu | Environmental sound recognition with time-frequency audio features[END_REF]). In this paper, we do not discuss on the relevance of audio features for CASR but we investigate classification approaches. Indeed, whatever the complexity of the features proposed in the literature, the classification step is always based on standard machine learning approaches such as K-nearest neighbors [START_REF] Peltonen | Computational auditory scene recognition[END_REF] [5] [START_REF] Chu | Environmental sound recognition with time-frequency audio features[END_REF], Gaussian Mixture Mod-els (GMM) [START_REF] Peltonen | Computational auditory scene recognition[END_REF] [START_REF] Chu | Environmental sound recognition with time-frequency audio features[END_REF], hidden Markov models [START_REF] Eronen | Audiobased context recognition[END_REF] [START_REF] Ma | Acoustic environment classification[END_REF], Support Vector Machines (SVM) [START_REF] Perttunen | Auditory context recognition using SVMs[END_REF] [6] [START_REF] Roma | Recurrence quantification analysis features for environmental sound recognition[END_REF]. Or, while DNN have led to significant advances in automatic speech recognition [START_REF] Hinton | Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups[END_REF], this approach has never been used in the field of CASR to the best of our knowledge. In this paper, we study how to deploy DNN for audio context recognition and we show that DNN can produce promising results even when we use standard audio features which are not necessarily optimized for the CASR problem.

Feed forward artificial neural networks

Feed forward artifical neural networks (ANN) are popular computer architectures which can be used for classification. More precisely, when the objective is to classify a feature of interest x among C classes, an ANN estimates the probabilities p j , j ∈ {1, • • • , C}, of each class given the input feature x. In our audio classification problem, the input x represents the concatenation of audio features [START_REF] Mohamed | Acoustic modeling using deep belief networks[END_REF] [START_REF] Bourlard | Connectionist Speech Recognition: A Hybrid Approach[END_REF], such as cepstral (Mel-frequency cepstral coefficients (MFCC)) and frequency features (spectral centroid, spectral flatness,...); the class represents the audio context (car, bus, office, street, restaurant, ...). A graphical representation of this architecture is given in Figure 1.
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hidden layer hidden layer output layer Fig. 1. An ANN is described by an input (a feature vector), a given number of hidden layers, a given number of neurons per layer and an output which describes the class probabilities.

In order to compute the outputs p j of the ANN, we first need to compute the ouput of each hidden unit. In an ANN, the connection between the k -1-th hidden layer and the k-th one is described by a matrix of weights W k , and a bias vector b k ; the output h k j of the j-th neuron of the k-th layer is then computed from

h k j = f i w k ij h k-1 i + b k j , (1) 
where f (.) is the sigmoid function:

f (x) = sigmoid(x) = 1 1 + e -x .
(2)

Finally, the output is computed via the softmax nonlinearity,

p j = e i=1 w p ij h p-1 i +b p j k e i=1 w p ik h p-1 i +b p k , ( 3 
)
where p is the number of layers (without counting up the input layer).

The training of ANN (i.e. the estimation of parameters W k and b k ) relies on supervised methods such as the Back-Propagation (BP) algorithm [START_REF] Rumelhart | Neurocomputing: Foundations of research[END_REF] whose the principle will be reminded in section 3. However, when the number of hidden layers and neurons increases, supervised methods are not reliable and ANN are difficult to tune. Particularly, these methods can be stuck in a poor local optima when we look for estimating the parameters. Recently, new procedures for training DNN (i.e. ANN with at least two hidden layers) have been proposed to overcome the limitations of classical training algorithms [START_REF] Hinton | A fast learning algorithm for deep belief nets[END_REF] and rely on an unsupervised pretraining which aims at initializing properly the parameters of the DNN. The rest of this paper is organized as follows. In Section 2, we describe the pre-training step of DNN which relies on Restricted Boltzman Machines (RBM) and Deep Belief Networks (DBN) and which are both probabilistic graphical models. In Section 3, the principle of the supervised training via the BP algorithm is recalled. Finally, in section 4, we focus on the tuning of DNN for CASR problem by performing experimentations on an audio context dataset.

PRE-TRAINING OF DNN VIA DBN

We now focus on the initialization of the parameters of DNN by considering DBN which are generative graphical model. Thus, the initialization of the parameter of a DNN relies on those of the associated DBN. However, maximizing the likelihood of a DBN is impossible. Consequently variational methods based on RBM models have been developed and consists in training separately each layer of the DBN as an RBM. These models are described in our next paragraph.

RBM

An RBM is a probabilistic graphical model which connects a set of m visible random variables (r.v.

), v = (v 1 , • • • , v m ),
with a set of q hidden r.v., h = (h 1 , • • • , h q ) [START_REF] Larochelle | Classification using discriminative restricted boltzmann machines[END_REF]. In this model, the joint probability density function (pdf) of the visible and hidden units depends on an energy function and reads

p(v, h) = 1 Z e -E(v,h) , (4) 
where

E(v, h) = - i a i v i - j b j h j - i,j w ij v i h j , (5) 
Z = v,h e -E(v,h) (6) 
for a Bernoulli-Bernoulli RBM (BBRBM) (i.e. an RBM in which v i and h j take their values in {0, 1}). Equations related to a Gaussian-Bernoulli RBM (GBRBM) and which are more adapted for real values can be found in [START_REF] Hinton | Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups[END_REF].

From an unlabeled visible dataset (x 1 , • • • , x N ), our objective is to learn the parameters of the RBM. More precisely, starting from ( 4)-( 6), we intend to maximize the likelihood

p(x 1 , • • • , x N ) = N i=1 p(x i ), where p(x i ) = h p(x i , h) = 1 Z h e -E(x i ,h) , (7) 
w.r.t. a i , b j and w ij . However, the gradient of the log-likelihood,

1 N N k=1 ∂ log p(x k ) ∂w ij = 1 N N k=1 hj p(h j |x k )x k i h j - vi,hj v i h j p(v i , h j ), (8) 
is not computable but can be interpreted as the sum of two expectations. Consequently, (8) can be approximated by a Monte Carlo method. More precisely, in an RBM (4), one can show that

p(h j = 1|v) = sigmoid(b j + i w ij v i ), (9) 
where the sigmoid function sigmoid(.) is defined in (2) and that p(

v i = 1|h) = sigmoid(a i + j w ij h j ). (10) 
Finally, the first expectation in ( 8) is easy to approximate by sampling according to p(v i |h); sampling according to p(v i , h j ) is more difficult but can be achieved via a Gibbs sampler in which we sample alternatively from p(v|h) = m i=1 p(v i |h) and p(h|v) = q i=j p(h j |v). In practice, the expectations are approximated with only 1 sample and the Gibbs sampler relies on 1 iteration. This procedure is called the Contrastive Divergence (CD-1) algorithm and leads to an approximate maximization of (8) via a gradient descent method.

Deep Belief Networks

Let us now consider the DBN probabilistic model defined by a layer of visible unit x = h 0 (our input data) and p -1 hidden layers, denoted [START_REF] Bourlard | Connectionist Speech Recognition: A Hybrid Approach[END_REF] where p(h p-2 , h p-1 ) is an RBM and coincides with (4), and p(h i-1 |h i ) is deduced from [START_REF] Mohamed | Acoustic modeling using deep belief networks[END_REF].

h 1 , • • • , h p-1 . The pdf of (h 0 , h 1 , • • • , h p-1 ) in a DBN reads p(h 0 , h 1 , • • • , h p ) = p-2 i=1 p(h i-1 |h i )p(h p-2 , h p-1 ),
Again, the maximization of the likelihood p(x) in model ( 11) w.r.t parameters W k and b k associated to each layer h k is not possible. A greedy layer wise procedure has been proposed in the literature [START_REF] Hinton | A fast learning algorithm for deep belief nets[END_REF] [15] [START_REF] Yoshua | Learning Deep Architectures for AI[END_REF] and consists in approximating the DBN [START_REF] Bourlard | Connectionist Speech Recognition: A Hybrid Approach[END_REF] as a stacking of RBM [START_REF] Perttunen | Auditory context recognition using SVMs[END_REF].

Strictly speaking, p(h k-1 , h k ) in [START_REF] Bourlard | Connectionist Speech Recognition: A Hybrid Approach[END_REF] does not satisfy (4) and so is not an RBM, except for k = p -1. However, justifications of the following procedure can be found in [START_REF] Yoshua | Learning Deep Architectures for AI[END_REF] [13] and relies on Kullback Leibler Divergence arguments.

In summary, the unsupervised training of a DBN (i.e. the pre-training of our DNN) consists of the following steps; starting from a training dataset

{x 1 , • • • , x i , • • • , x N } :
1. train the first RBM (h 0 , h 1 ) (i.e. compute W 1 and b 1 associated to the first layer) via the procedure described in section 2.1;

2. compute the output associated to the data set 1)-( 2) using the parameters W 1 and b 1 obtained after the pre-training;

{x 1 , • • • , x i , • • • , x N } via (

train the next RBM

(h 1 , h 2 ), • • • , (h p-2 , h p-1
) by repeating steps 1. and 2.

FINE-TRAINING OF DNN

We now consider that the parameters estimated by the pretraining algorithm are used for the initialization of the supervised training algorithm of the DNN. So now we assume that we have a set of labeled data

E = {(x 1 , d 1 ), • • • , (x i , d i ), • • • , (x N , d N )} (12) 
where

d i = [d i 1 , • • • , d i K ]
T is the known class vector associated to x i and K the number of classes: d i j=C = 1 if x i belongs to the C-th class and d i j =C = 0 otherwise. Note that this set could be different from the one used in the previous section for the learning of the associated DBN.

Supervised training consists in tuning matrices W k and biases b k from the set E in [START_REF] Rumelhart | Neurocomputing: Foundations of research[END_REF]. Here, our objective is to minimize the cross entropy C = -

K k=1 d k log(p k ) between the output of the DNN p = [p 1 , • • • , p K ] T and the target prob- abilities d = [d 1 , • • • , d K ] T .
The BP method is a popular algorithm to compute recursively the gradient of C w.r.t. the weights w k ij and the biases b k j of the DNN [START_REF] Rumelhart | Neurocomputing: Foundations of research[END_REF]. Finally, the algorithm includes a gradient descent method in order to approximate the parameters which minimize C. In summary, from a given labeled data (x, d) and for a given iteration l: 1. Compute the output p associated to the input x by using weights w k ij (l -1) and biases b k j (l -1) of the previous iteration l -1. Remember that w k ij (0) and b k j (0) coincide with the parameters estimated by the pre-training step; 2. Backpropagate the gradient of the error C in the DNN, i.e. compute the gradient ∆w k ij (l) and ∆b k j (l) of C w.r.t the weights and the biases of the DNN.

Update the weights w

k ij (l) = w k ij (l -1) -ǫ∆w k ij (l), and the biases b k j (l) = b k j (l -1) -ǫ∆b k j (l)
, where ǫ is the learning rate; Many refinements have been proposed in order to improve the computation of the weights and the biases from the training set E in [START_REF] Rumelhart | Neurocomputing: Foundations of research[END_REF]. These refinements rely on a random minibatch to compute the gradient of the error and the momentum method to improve the speed of learning [START_REF] Hinton | A practical guide to training restricted Boltzmann machines[END_REF].

SIMULATIONS

Dataset

We present the results for audio context classification that we have obtained with DNN. The dataset that we use in this section is the publicly available audio scene dataset acquired by the LITIS Rouen [START_REF]LITIS Rouen audio dataset[END_REF]. The dataset is composed of 3026 recordings whose duration is 30 seconds in such a way that about 1500 minutes of audio scene have been recorded. The data are scattered in 19 classes : plane, bus, busy street, cafe, car, student hall, train station hall, kid game hall, market, metro-paris, metro-rouen, billard pool hall, quiet street, restaurant, pedestrian street, shop, train, high-speed train and tubestation. More details on the dataset can be found in [START_REF] Rakotomamonjy | Histogram of gradients of time-frequency representations for audio scene classification[END_REF].

Our experimentations are based on a standard feature set which consists in computing 12 MFCC, its first order derivatives (∆MFCC) and 6 subband spectral flatness coefficients [START_REF] Ramalingam | Gaussian mixture modeling of short-time Fourier transform features for audio fingerprinting[END_REF] for every 15ms-spaced frames of length 30ms.

To evaluate our system, we have followed the protocol proposed in [START_REF] Rakotomamonjy | Histogram of gradients of time-frequency representations for audio scene classification[END_REF] i.e. 80% of the examples were used for training while the remaining recordings were kept for testing (and results were averaged over 20 different splits of the dataset). As an evaluation criterion, we have considered the recognition rate. Since the classes are not represented by the same number of recordings, the recognition rate reads

Rec Rate = 1 C C i=1 TP(i) Card(C(i))
,

where C = 19, TP(i) is the number of examples of class i correctly classified and Card(C(i)) the number of examples in class i. The final decision for a recording is taken by first averaging the output of the DNN for each input frame which forms the recording and next choosing the class with the best result.

On one hand, our simulations aim at studying the performances of DNN for CASR in function of the number of hidden layers and the number of neurons for a given layer. On the other hand, we also study the effect of the number of the concatened frames of 30ms (1, 5, 10...) at the input of the DNN.

Finally, to be sure that our experiments are reproducible by others, we mention the specific parameters we have used for the learning procedures. The number of epochs for the pre-training and the fine-training is 100 and 300 respectively; the learning set is set to 1 for the pre-training and 0.1 for the supervised training; a batch size of 100 is used for both training procedure; the momentum is set to 0.5 for the first five epochs of both training and next to 0.9. Finally, a weight cost is set to 0.2 × 10 -5 , for the pre-training. An interpretation of these parameters can be found in [START_REF] Hinton | A practical guide to training restricted Boltzmann machines[END_REF].

Influence of the size of the DNN

In this paragraph, we consider a fixed number of 15 input frames (so the size of the input layer of our DNN is 15× 30 = 450) and we compare the performances in function of the number of hidden layers and the number of neurons for each hidden layer. For simplicity, we have considered the same number of neurons for each hidden layer. In figure 2 we have displayed the recognition rate in function of these parameters. Overall, DNN perform better when the number of hidden layers and neurons is greater but it can be seen that when the number of neurons is weak, increasing the number of hidden layers does not necessarily improve the performances. The worse recognition rate (80%) is obtained for 2 hidden layers of 50 neurons and the best performances (91.6%) are obtained with 5 hidden layers of 500 neurons. For reasons of space, we have not reproduced the confusion matrix associated to this configuration. Roughly speaking, all classes have a recognition rate greater than 80%, except the quiet street and the pedestrian street which have a recognition rate of 66.66% and 75%, respectively. Theses classes are mainly confused with the shop and market classes. For larger DNN, we have not observed a major improvement. Indeed, for a DNN with 7 hidden layers and 1000 neurons, the recognition rate is 92.2%.

Influence of the input of the DNN

We now set the number of hidden layers to 3 and the number of neurons to 50 and we perform a simulation in function of the number of input frames. Increasing the number of input frames has the advantage to reduce the computational cost when we need to do many classifications. From a computational cost point of view, it is clear that it is preferable to use 30 × 15 = 450 coefficients at the input of the DNN rather than doing 15 classifications with 30 coefficients. However, when the final decision is taken after several classifications, the mean error rate per recording is optimal for 10-15 frames as we see in Fig. 3.

We have also computed a classifier based on Gaussian Mixture models (GMM). We have trained 4 mixtures for each class via the Expectation Maximization (EM) algorithm. The best recognition rate for this classification method is 80.91% and is obtained by considering one input frame. It seems that the concatenation of frames is only interesting for architectures like DNN because they permit to encode the temporal connections between the frames. This observation is also confirmed by the fact that DNN present similar results if we do not consider the ∆MFCC which describe such connections. Finally, we have also computed a SVM classifier with a Gaussian Kernel and 15 concatenated input frames. The recognition rate is 86.5 %.

CONCLUSION

We have proposed a DNN-based approach for the CASR problem. The rationale of the training algorithms associated to DNN has been recalled and the performances of these architectures have been studied in function of their size and of the number of concatenated input frames, which define the input layer of the DNN. DNN have been compared with more classical classifiers such as GMM and SVM, with the same features: the optimal recognition rates obtained are 92%, 81% and 86.5%, respectively. The relevance of the features used in our simulations have not been discussed, but we underline that DNN applied to standard features give similar results as well-defined features (HOG) classified by an SVM approach [START_REF] Rakotomamonjy | Histogram of gradients of time-frequency representations for audio scene classification[END_REF] following the same protocol on the same dataset (best performance is 92% in both cases). In this way, several solutions could be exploited in order to improve the performances of DNN in this context. First, more adapted features (HOG features for example) could be used at the input of the DNN. Alternatively, we could also let the DNN extract automatically the relevant features by using directly the spectrum as input.
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 3 Fig. 3. Error rate in terms of recordings for the validation set in function of the number of input frames. The DNN has 3 hidden layers of 50 neurons.
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