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Abstract1

Theories of cross-linguistic phonetic category perception posit that listeners per-2

ceive foreign sounds by mapping them onto their native phonetic categories, but,3

until now, no way to effectively implement this mapping has been proposed. In this4

paper, Automatic Speech Recognition (ASR) systems trained on continuous speech5

corpora are used to provide a fully specified mapping between foreign sounds and6

native categories. We show how the machine ABX evaluation method can be used7

to compare predictions from the resulting quantitative models with empirically at-8

tested effects in human cross-linguistic phonetic category perception.9

10

c© 2018 Acoustical Society of America11

Keywords: phonetic categories; human perception; quantitative modeling; ASR;12

machine ABX.13
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1. Introduction14

The way we perceive phonetic categories (i.e. basic speech sounds such as consonants15

and vowels) is largely determined by the language(s) to which we were exposed as16

a child. For example, native speakers of Japanese have a hard time discriminating17

between American English (AE) /ô/ and /l/, a phonetic contrast that has no equiva-18

lent in Japanese (Goto, 1971; Miyawaki et al., 1975). Perceptual specialization to the19

phonological properties of the native language has been extensively investigated using20

a varieties of techniques (see Strange 1995 and Cutler 2012 for reviews). Many of the21

proposed theoretical accounts of this phenomenon concur that foreign sounds are not22

perceived faithfully, but rather, are ‘mapped’ onto one’s pre-existing (native) phonetic23

categories, which act as a kind of ‘filter’ resulting in the degradation of some non-24

native contrasts (Best, 1995; Flege, 1995; Kuhl and Iverson, 1995; Werker and Curtin,25

2005). In none of these theories, however, is the mapping specified in enough detail to26

allow a concrete implementation. In addition, in most of the existing theories1, even if27

a fully specified mapping was available, it remains unclear how predictions on patterns28

of error rates could be derived from it (the filtering operation). These theories remain29

therefore mainly descriptive.30

In this paper, we propose to leverage ASR technology to obtain fully speci-31

fied mappings between foreign sounds and native categories and then use the machine32

ABX evaluation task (Schatz et al., 2013; Schatz, 2016) to derive quantitative pre-33

dictions from these mappings regarding cross-linguistic phonetic category perception.34

More specifically, our approach can be broken down into three steps. First, train a35

phoneme recognizer in a ‘native’ language using annotated continuous speech record-36

ings. Second, use the trained system to derive perceptual representations for test stimuli37

in a foreign language. In this paper, these will be vectors of posterior probabilities over38

each of the native phonemes. Third, obtain predictions for perceptual errors by run-39

ning a psychophysical test over these representations for each foreign contrast. Machine40

ABX discrimination tasks will be used for this.41

To showcase the possibilities offered by the approach, we look at predictions42

obtained for three empirically-attested effects in cross-linguistic phonetic category per-43

ception. The first two effects are global effects that apply to the set of phonetic con-44

trasts in a language as a whole. First: native contrasts tend to be easier to distinguish45

than non-native ones (Gottfried, 1984). Second: patterns of perceptual confusions are46

function of the native language(s): two persons with the same native language tend47

to confuse the same foreign sounds, which can be different from sounds confused by48

persons with another native language (Strange, 1995). Thanks to the quantitative and49

systematic nature of the proposed approach, these effects are straightforward to study.50

We show that ASR models can account for both of them. Most effects documented in51

the empirical literature on cross-linguistic phonetic category perception are more local52

however. They describe patterns of confusion observed for very specific choices of lan-53

guages and contrasts. We illustrate how such effects can be studied with our method54

through the classical example of AE /ô/-/l/ perception by native Japanese listeners55

(Goto, 1971; Miyawaki et al., 1975). We show that ASR models correctly predict the56

difficulty of perceiving this distinction for Japanese listeners.57

Previous attempts at specifying mappings between foreign and native cate-58

gories relied on phonological descriptions of the languages involved. Analyses at the59

level of abstract (context-independent) phonemes, however, were found not to be suf-60

ficient to fully account for perceptual data (Kohler, 1981; Strange et al., 2004). For61

example, the French [u-y] contrast can be either easy or hard to perceive for native AE62

listeners, depending on the specific phonetic context in which it is realized (Levy and63

Strange, 2002). Attempting to specify mappings explicitly through finer-grain phonetic64

analyses certainly remains an option, but involves a formidable amount of work. An65
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attractive and potentially less costly alternative consists in specifying mappings implic-66

itly, through quantitative models of native speech perception. By this, we mean models67

that map any input sound to a perceptual representation adapted to the model’s ‘native68

language’. This representation can take the form of a phonetic category label, a vector69

of posterior probabilities over possible phones or some other, possibly richer, form of70

representation. Predictions regarding human perception of foreign speech sounds are71

then derived by analyzing the ‘native representations’ produced by the model when72

exposed to these foreign sounds.73

Let us now explain the rationale for turning toward ASR technology, when the74

goal is to model human speech perception. This approach is best understood in the75

context of a top-down effort, where the focus is on developing models first at the in-76

formation processing level, before considering issues at the algorithmic and biological77

implementation levels (Marr, 1982). Native speech perception is thought to arise pri-78

marily from a need to reliably identify the linguistic content in the language-specific79

speech signal to which we are exposed, despite extensive para-linguistic variations.80

ASR systems, whose goal is to map input speech to corresponding sequences of words,81

face the same problem. ASR systems seek optimal performance, and can thus be inter-82

esting as potential normative models of human behavior from an efficient coding point83

of view (Barlow, 1961), even though biological plausibility is not taken into account in84

their development.85

We found two previous studies taking steps in the proposed direction. In the86

first one (Strange et al., 2004), a Linear Discriminant Analysis model was trained to87

classify AE vowels from F1/F2/F3 formant plus duration representations. The classi-88

fication of North German vowels by this model was then compared to assimilation89

patterns from a phoneme classification task performed by native AE speakers exposed90

to North German vowels. The model’s predictions only partially matched observed hu-91

man behavior. In the second study (Gong et al., 2010), Hidden-Markov-Models (HMM)92

with a structure inspired from ASR technology were trained to classify Mandarin con-93

sonants from Mel-Frequency Cepstral Coefficients2 (MFCC). The classification of AE94

consonants by this model was then compared to assimilation patterns from a phoneme95

classification task performed by native Mandarin speakers exposed to AE consonants.96

There was a good consistency between model’s predictions and human assimilation97

patterns in most cases, although the model provided more variable answers overall98

and differed markedly from humans in its preferred Mandarin classification of certain99

AE fricatives.100

The present work expands over these previous studies in several respects. First,101

we replace ad hoc speech processing models trained on restricted stimuli3 with general-102

purpose ASR systems trained on natural continuous speech. This has both conceptual103

and practical benefits. Conceptually, the information processing problem our models104

attempt to solve is closer to the one solved by humans, who have to deal with the full105

variability of natural speech. From a practical point of view, this allows us to capital-106

ize on existing corpora of annotated speech recordings developed for ASR. A second107

difference with previous studies is that we improve on the evaluation methodology,108

by replacing informal analysis of assimilation patterns with quantitative evaluations109

based on a simple model of an ABX discrimination task, leading to clean and clearly110

interpretable results. Finally, we conduct more systematic evaluations, testing for two111

global and one local effect in cross-linguistic phonetic category perception.112

2. Methods113

2.1. Speech recordings114

To train and evaluate ASR models, 5 corpora of recorded speech in different languages115

were used: a subset of the Wall Street Journal corpus (WSJ) (Paul and Baker, 1992),116

April 26, 2018



Quantitative models of
phonetic category perception Page 5 Schatz, JASA-EL

the Buckeye corpus (BUC) (Pitt et al., 2005), a subset of the Corpus of Spontaneous117

Japanese (CSJ) (Maekawa, 2003), the Global Phone Mandarin (GPM) corpus (Schultz,118

2002) and the Global Phone Vietnamese (GPV) corpus (Vu and Schultz, 2009). Impor-119

tant characteristics of the corpora are summarized in Table 1. Two corpora in American120

English were included to dissociate language-mismatch effects, in which we are inter-121

ested, from channel-mismatch effects due to differences across corpora in recording122

conditions, microphones, speech register, etc. Phonetic transcriptions were obtained123

by combining word-level transcriptions with a phonetic dictionary for the WSJ, BUC,124

GPM and GPV corpora. For the CSJ corpus, manual phonetic transcriptions were used.125

For all corpora, timestamps for the phonetic transcriptions were obtained by forced126

alignment using an ASR system similar to those described in the next section, but127

trained on the whole corpus.128

2.2. ASR models129

State-of-the-art ASR systems are built from deep recurrent neural networks. These sys-130

tems, however, typically require hundreds of hours of data to be reliably trained and131

we decided to focus in this study on using older, but more stable, Gaussian-Mixture132

based Hidden-Markov Models (GMM-HMM) to ensure reasonable performance across133

all corpora. Each corpus was randomly split into a training and a test set of approx-134

imately the same size, each containing an equal number of speakers. There was no135

overlap between training and test speakers. Models were trained with the Kaldi toolkit136

(Povey et al., 2011) using the same recipe with the same parameters and input fea-137

tures to train all models4. The Word-Error Rate5 (WER) on the test set for each of the138

resulting models is reported in Table 1.139

We will not attempt to describe the inner workings of the models beyond men-140

tioning that a generative model is trained for each phone, with explicit mechanisms for141

handling variability due to changes in speaker, phonetic context or word-position. We142

refer to the Kaldi documentation for further detail 6. Input to the models takes the form143

of 39 MFCC coefficients7 plus 9 pitch-related features8 extracted every 10ms of signal.144

These 48-dimensional input features can be seen as a universal auditory-like baseline145

representation that is not tuned to any particular ‘native language’. The model pro-146

duces ‘native’ representations under the form of output vectors produced every 10ms,147

which list the posterior probabilities, according to the model, that the corresponding148

stretch of speech signal belongs to each of the segment in the phonemic inventory of149

the model’s ‘native language’9. The test set of each corpus is decoded with each of the150

5 ASR models and we also use the input features directly, without any GMM-HMM151

decoding, as a language-independent control, yielding a total of 6 different represen-152

tations of each corpus to be evaluated.153

Table 1. Word-Error-Rates obtained by the ASR systems trained on each corpus as
well as the language, total duration, speech register and number of speakers for
each corpus. AE stands for American English, Spont. stands for Spontaneous.

Corpus Language Time Type Spk WER
WSJ AE 143h Read 338 8.5%
BUC AE 19h Spont. 40 48.0%
CSJ Japanese 15h Spont. 75 30.0%
GPM Mandarin 30h Read 132 31.0%
GPV Vietnamese 20h Read 129 23.5%
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2.3. Machine ABX evaluation154

We evaluate our ASR models with a machine version of an ABX discrimination task155

(Schatz et al., 2013; Schatz, 2016) that allows us to quantify how easy it is to distin-156

guish two phonetic categories based on representations produced by one of our models.157

The basic idea is to take two acoustic realizations A and X from one of the phonetic158

categories and one acoustic realization B from the other category and to test whether159

the model representation for X is closer to the model representation for A than to160

the model representation for B. The probability for this to be false for A, B and X161

randomly chosen in a corpus is defined as the ABX error rate for the two phonetic162

categories according to the model. If it is equal to 0, the two categories are perfectly163

discriminated. If it is equal to .5, discrimination is at chance level.164

For each A, B and X triplet, we use the phone-level time alignments to select165

corresponding model representations. Because the stimuli have variable durations, the166

resulting representations can have different lengths. To find a good alignment and167

obtain a quantitative measure of dissimilarity between A and X and B and X, we use168

Dynamic Time Warping based on a frame-wise symmetric Kullback-Leibler divergence169

for posterior probability vectors and a frame-wise cosine distance for the input features170

control. In the specific ABX task considered here, we select only triplets such that A, B171

and X occur in the same phonetic context (same preceding phone and same following172

phone) and are uttered by the same speaker. For each phonetic contrast an aggregated173

ABX error rate is obtained by averaging over stimulus order, context and speaker. Let174

us illustrate this through the example of the /u/-/i/ contrast. First, we average error175

rates obtained when A and X are chosen to be /u/ and B is chosen to be /i/ and vice-176

versa, then we average over all possible choices of speaker and finally we average over177

all possible choices of preceding and following phones. We either report directly the178

scores obtained for individual phonetic contrasts or we average them over interesting179

classes of contrasts, such as consonant contrasts or vowel contrasts.180

Note that, because we are studying very robust empirical effects that reflect181

what subjects learn outside the lab and that are expected to be observed in any well-182

designed experimental task, our evaluation method focus on simplicity of application183

rather than detailed modeling of human performance in a specific experimental setting.184

3. Results185

See supplementary material for the raw (unanalyzed) confusion matrices obtained for186

each model on each test corpus.187

3.1. Native vs. non-native contrasts188
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Fig. 1. (color online) ABX error-rates averaged over all consonant contrasts of AE.
Left: using stimuli from the WSJ corpus test set. Right: using stimuli from the BUC
corpus test set.

Native phonetic categories are easier to distinguish than non-native categories189

(Gottfried, 1984). This is consistent with the predictions of our models shown in Figure190
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1. The AE models (in red) separate AE phonetic categories better than other models (in191

blue). This is true even when they are tested with AE stimuli from a corpus different192

from the one on which they were trained, showing that the differences observed cannot193

be explained simply by channel-mismatch effects and reflect a true language-specificity194

of the representations learned by the models. Another interesting observation is that,195

while a moderate improvement in phone separability is observed when comparing196

‘native’ AE models to the ‘universal’ input features control, the most salient effect is197

a large decrease in performance for ‘non-native’ models. A possible interpretation is198

that, while ASR models can provide categorical representations of ‘native’ speech that199

are much more compact than the input features, they do it at the expense of a loss of200

representation power for coding speech in other languages10.201

3.2. Native-language-specific confusion patterns202
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Fig. 2. (color online) Two-dimensional embeddings of the different models based
on the average cosine similarity between their patterns of ABX errors across the five
test corpora. The distance between models in the embedding space directly reflects
whether they make the same type of confusions or not. Left: for consonant contrasts.
Right: for vowel contrasts. Text labels are centered horizontally and vertically on the
point they represent.

The specific confusions we make between sounds of a foreign language differ203

according to our native language (Strange, 1995). Consistent with this effect, Figure 2204

shows that, for both consonant and vowel contrasts, the confusion patterns obtained205

with the two AE models over the different corpora are more similar to each other than206

to the confusion patterns obtained with models trained on other languages. Confusion207

patterns for input features occupy a somewhat central role. In this figure, the distance208

between two points is proportional to the observed similarity between confusion pat-209

terns obtained from the associated models11. Confusion patterns on a given corpus210

consist of vectors listing the ABX errors for either all consonant contrasts or all vowel211

contrasts in this corpus. For example for a language with n consonants, n(n − 1)/2212

consonant contrasts can be formed and the corresponding ABX errors are listed in a213

vector of size n(n − 1)/2. The similarity between confusion patterns of two models is214

defined as the average of the cosine similarity between the confusion patterns obtained215

with these models on each of the five corpora12. Importantly, the rescaling invariance216

of the cosine similarity ensures that our analysis of confusion patterns is independent217

from the average ABX error rates studied in Section 3.1.218

3.3. Japanese listeners and American English /ô/-/l/219

AE /ô/ and /l/ are much harder to perceive for Japanese than for AE native speak-220

ers (Goto, 1971; Miyawaki et al., 1975). Figure 3 shows that our models’ predictions221

are fully consistent with this effect: when comparing the Japanese model to both AE222

models and to the input features, the /ô/-/l/ discriminability drops spectacularly, much223
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Fig. 3. (color online) Comparison of the ABX error-rates obtained with the input
features, with the two AE models and with the Japanese model on the AE /ô/-/l/
contrast. ABX Error-rates for the /w/-/j/ contrast and ABX Error-rates averaged
over all consonant contrasts of AE are also shown as controls. Left: using stimuli
from the WSJ corpus test set. Right: using stimuli from the BUC corpus test set.

more than the discriminability of two controls. This is observed both when using test224

stimuli from the WSJ and from the BUC corpora.The first control is the AE /w/-/j/ con-225

trast. Like /ô/ and /l/, /w/ and /j/ are liquid consonants, but unlike those, they have226

a clear counterpart in Japanese. The second control is the average ABX error rate from227

Section 3.1. This control allows to check that there is a specific deficit of the Japanese228

model on AE /ô/-/l/ discrimination, that cannot be explained by an overall weakness229

of this model.230

4. Discussion231

Fully specified mappings between foreign sounds and native phonetic categories were232

obtained for several language pairs through GMM-HMM ASR systems. Coupled with a233

simple model of a discrimination task, they successfully accounted for several empir-234

ically attested effects in cross-linguistic phonetic category perception by monolingual235

listeners. This includes two types of global effects: first, that the phonetic categories236

of a language are overall harder to discriminate for non-native speakers than for na-237

tive speakers and second, that the pattern of confusions between phonetic categories238

for non-native speakers is specific to their native language (e.g. native speakers of239

Japanese do not make the same confusions between phonetic categories of American240

English than native speakers of French). We also showed that the proposed model can241

account for a well-known local effect: American English /ô/ and /l/ are very hard to242

discriminate for native speakers of Japanese.243

These results provide a proof-of-concept for the proposed approach to evalu-244

ating ASR systems as quantitative models of phonetic category perception. They also245

show promise regarding the possibility of modeling human phonetic category percep-246

tion with ASR systems. Yet we do not claim, at this point, to have provided definitive247

evidence that the particular GMM-HMM ASR systems considered provide the best, or248

even a particularly ‘good’, such model. A host of local effects have been documented249

in the empirical literature on phonetic category perception beyond the one investi-250

gated here (Strange, 1995; Cutler, 2012) and the empirical adequacy of the proposed251

models with respect to more of these effects will need to be determined before any252

conclusion can be reached. Effects that are hard to predict from conventional phono-253

logical analyses, such as how the phonetic or prosodic context can modulate the dif-254

ficulty of perceiving certain foreign contrasts (Levy and Strange, 2002; Kohler, 1981;255

Strange et al., 2004), should be of particular interest. Finally, let us underline that256

we only investigated predictions obtained with one particular ASR architecture. There257
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are multiple ways of instantiating ASR systems, which might yield different predic-258

tions. For example, modeling variability in the signal due to the phonetic context259

explicitly with context-dependent phone models, as in this article, or implicitly with260

context-independent phone models, might affect predictions regarding the aforemen-261

tioned context-dependent effects. Another example of a potentially significant decision262

is whether to use HMM-GMM or neural-network systems. HMM models have known263

structural limitations for modeling segment duration (Pylkkönen and Kurimo, 2004),264

from which neural-network models do not suffer. Thus, neural-network ASR systems265

may provide better models of native perception in languages like Japanese, where du-266

ration is contrastive. The multiplicity of documented empirical effects and available267

computational models calls for an extensive investigation, which could in turn trigger268

a more systematic experimental investigation of non-native perception and result in269

applications in foreign language education.270
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Notes282

1Best 1995 being a possible exception.283

2MFCC (Mermelstein, 1976) are speech features commonly used as a front-end to ASR systems. They284

can be thought of as moderate-dimensional descriptor (d = 13) of the whole shape of regularly-spaced285

spectral-slices in a mel-scale log-spectrogram. They are usually taken every 10ms and augmented with their286

first and second time derivatives to incorporate dynamic information, leading to 100 vector descriptors of287

dimension d = 39 per second of signal.288

3Previous studies used as training stimuli a limited sample of 264 AE vowels occurring either in289

[hVba] context or within a unique carrier sentence (Strange et al., 2004) and 3331 Chinese consonants290

occurring in isolated VCV context (Gong et al., 2010).291

4See https://goo.gl/RsKMA3.292

5Error-rate obtained in a word recognition task using the trained acoustic model with a language293

model (in our case a word-level bigram estimated from the training set).294

6See http://kaldi-asr.org/.295

7See footnote 1.296

8Pitch features were added because two of the languages considered (Mandarin and Vietnamese) are297

tonal languages.298

9More specifically, we use Viterbi-smoothed phone-level posteriorgrams obtained with a phone-level299

bigram language model estimated on the training set of each corpus.300

10Note that Renshaw et al. (2015) observed a different pattern when testing a neural-network-based301

ASR system trained on AE on the Xitsonga language: the ‘AE-native’ model improved Xitsonga phone sep-302

arability relative to the input features control. There are, at least, two possible interpretations for this dis-303

crepancy: it could be due to general differences between GMM-HMM and neural-network architectures or304

it could be due to differences in the representation format chosen (they used ‘bottleneck features’ extracted305

from a middle layer of the neural network, which are not constrained to represent phonetic categories, while306

our posterior features are)307

11Two-dimensional embeddings are obtained with scikit-learn’s non-metric multi-dimensional-scaling.308

12Observed range of cosine similarities: [0.90-0.96] for consonants and [0.85-0.94] for vowels.309
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