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Fungal naphtho-y-pyrones—secondary metabolites

of industrial interest

Elodie Choque - Youssef El Rayess + José Raynal -
Florence Mathieu

Abstract Naphtho-y-pyrones (NGPs) are secondary metab-
olites mainly produced by filamentous fungi (Fusarium sp.,
Aspergillus sp.) that should be considered by industrials.
Indeed, these natural biomolecules show various biological
activities: anti-oxidant, anti-microbial, anti-cancer, anti-HIV,
anti-hyperuricuric, anti-tubercular, or mammalian triacyl-
glycerol synthesis inhibition which could be useful for phar-
maceutical, cosmetic, and/or food industries. In this review,
we draw an overview on the interest in studying fungal NGPs
by presenting their biological activities and their potential
values for industrials, their biochemical properties, and what
is currently known on their biosynthetic pathway. Finally, we
will present what remains to be discovered about NGPs.

Keywords Naphtho-y-pyrones - Filamentous fungi -
Aurasperone - Rubrofusarin - Anti-oxidant

Introduction

Because of their negative perception of chemicals, some con-
sumers presently claimed and were ready to pay significant
premiums for natural products (Young 1998; Sebranek and
Bacus 2007; Karre et al. 2013; Aneja et al. 2014). In order to
satisfy this demand, manufacturers are constantly seeking new
natural molecules with helpful properties that could replace or
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diminish synthetically produced chemicals in their products.
In this search for new natural compounds, secondary metab-
olites produced by plant, fungi, or bacteria are an important
potential resource due to their diversity and their various
biological activities. For example, toxins such as aflatoxins,
ochratoxins, or fumonisins have a detrimental effect on
humans and animals (Nielsen et al. 2009; Kew 2013; Wu
et al. 2014). On the other hand, other secondary metabolites
are beneficial and can be used as food additives, pigments,
antibiotics, anti-oxidant, or anti-cancer agents (Archer et al.
2008; Nielsen et al. 2009; Chang et al. 2011; Lee and Pan
2012).

Among the polyketide secondary metabolites prospected,
naphtho-y-pyrones (NGPs) are widespread in nature; hence,
they are produced not only by a wide variety of filamentous
fungi but also by lichen (Ernst-Russell et al. 2000), higher
plants (Li et al. 2001; Graham et al. 2004; Lee et al. 2006), and
echinoderms (Bokesch et al. 2010, Chovolou et al. 2011).
These natural compounds present a broad range of biological
activities such as anti-oxidant, anti-microbial, or anti-tumor
(Koyama et al. 1988; Zhang et al. 2007; Barrow and
McCulloch 2009; Nielsen et al. 2009; Lu et al. 2014). As an
example of application of NGPs in industry, it was demon-
strated that an Aspergillus niger extract containing NGPs
protected lard from being oxidized (Zaika and Smith 1975).
Besides, a patent was recently filed for the preparation of a
herbal extract of Cassia tora leaves for treating anxiety disor-
ders (WO 2010109318 A1l). Relying on previous works de-
scribing hepatoprotective and anti-mutagenic properties of
NGPs extracted from Cassia tora, authors of the patent sug-
gest that NGPs extracted from the leaves of Cassia tora could
be one of the active compounds for treatment against anxiety
(Wong et al. 1989; Choi et al. 1997).

There is few data available in the literature regarding the
biological role of NGPs in their producing organisms. Y WAL,
a monomer NGP, is described to be a precursor of the black



pigment dihydroxynaphthalene (DHN)-melanin in
Aspergillus sp. (Watanabe et al. 1998; Tsai et al. 1998) and
of the red pigment aurofusarin in Fusarium sp. (Malz et al.
2005; Frandsen et al. 2006). Rubrofusarin, another monomer
NGP, was also linked to aurofusarin synthesis in Fusarium sp.
(Frandsen et al. 2006). Besides, recent results suggest that
NGPs could be involved in virulence of producing fungal
strains. Indeed, Slesiona and colleagues (2012) showed that
YWA1 was sufficient to allow Aspergillus fumigatus escape
from macrophages by inhibition of phagolysosomes acidifi-
cation during the first step of infection in invasive
bronchopulmonary aspergillosis (Langfelder et al. 1998; Tsai
et al. 1998; ThywiBlen et al. 2011; Slesiona et al. 2012;
reviewed in Heinekamp et al. 2012). Going further, Slesiona
and colleagues (2012) conditionally expressed wA gene, re-
quired for YWA1 production, in Aspergillus terreus, a strain
that does not produced this precursor. This conditional expres-
sion led to the production of YWA1 and was sufficient to
prevent acidification of phagolysosomes (Slesiona et al.
2012). This result emphasizes the role of NGPs in the inter-
action of Aspergillus sp. with macrophages during the infec-
tion process. Some of the remaining questions are for exam-
ple: are other NGPs linked to fungal pigmentation and/or
virulence? Are they involved in other biological processes?

Unlike higher plants, filamentous fungi, such as 4. niger,
are frequently used in the fermentation industry for the pro-
duction of primary and secondary metabolites like organic
acids (Alvarez-Vasquez et al. 2000; Roukas 2000) and en-
zymes (Maldonado and Strasser de Saad 1998) because they
are easy to handle and allow the massive production of inter-
esting compounds. As NGPs represent the most abundant
family of secondary metabolites in 4. niger (Nielsen et al.
2009), it makes this filamentous fungus a good candidate for
the production of these molecules. The aim of this review is to
provide an overview of the production of NGPs by filamen-
tous fungi. We will present their industrial potential, then their
biochemical properties. Even though, several drawbacks,
which will be presented in this review, now prevent their
massive production. Describing what is known on the biosyn-
thetic pathway of NGPs and what remains to be known will
help us in improving the industrial process to produce/extract
these potentially interesting molecules.

Biological activities of fungal NGPs and their potential
industrial applications

The biological effects or activities of NGPs produced by
different filamentous fungi have been partially studied. For
example, the biological activities of some NGPs have already
been reviewed showing anti-viral, anti-microbial, insecticidal,
and anti-estrogenic activities (Barrow and McCulloch 2009;
Lu et al. 2014). In the search of natural compounds with

attractive biological properties, NGPs produced by fila-
mentous fungi were identified within two opposite strate-
gies: (i) screening for a specific activity and elucidation of
responsible compounds (Singh et al. 2003; Song et al.
2004; Shaaban et al. 2012; Kong et al. 2013) and (ii)
biochemical discovery of new family members and testing
of their putative anti-microbial properties (Ehrlich et al.
1984; Akiyama et al. 2003; Bouras et al. 2005). An exhaus-
tive list of NGPs produced by filamentous fungi is present-
ed in Table 1, including producer organisms and their
described biological properties like anti-HIV, anti-tubercu-
lar, anti-hyperuricemia, anti-microbial, anti-tumor, and an-
ti-oxidant, as many biological activities could be valued in
pharmaceutical, cosmetic, and food industry.

It should be noticed that NGPs were first described as
toxical compounds (Ghosal et al. 1979). We would like to
discuss this point before going further into the description of
beneficial biological activities of NGPs that could be valued
by industrials. In late 1970s, Ghosal and collaborators showed
that intraperitoneal injection of 50 mg/kg of mixture contain-
ing NGPs, extracted from A. niger van Teigh cultured on
mango pulp, caused albino mice and rats death through central
nervous system (CNS) depression (Ghosal et al. 1979).
Conversely, another study showed that oral ingestion by rats
of 0.1 % of their daily ration, of a methanol extract from
A. niger ATCC 9029 containing NGPs, during 60 days did
not seem to cause an acute toxicity for animals but show a
hepatoprotective effect (Rabache and Adrian 1982). The dif-
ferences between these studies resided in the fungal strain
from which the NGPs were extracted, the organic solvents
used for the extraction, the quantity, and the way it was
administered. Besides, considering the way that NGPs were
extracted before administration, it could not be excluded that
mycotoxins should have been present in the mixture but
biochemically undetectable. Indeed, other experimental stud-
ies show that NGP extracts could be toxic when intraperito-
neally injected, even though, they do not exclude the putative
presence of highly toxic bioactive malformin compounds in
the extract (DeLucca et al. 1983; Ehrlich et al. 1984). Through
bioactive fractionation, Zhan et al. (2007) show that cytotox-
icity of an organic extract of Aspergillus tubingensis was due
to malformin A1 and not to any of the ten NGPs present in the
extract (asperpyrone D, TMC256A1, rubrofusarin B, fonsecin
B, fonsecin, fonsecinone A, asperpyrone A, aurasperone A,
dianhydro-aurasperone C, aurasperone E) (Zhan et al. 2007).
None of these ten NGPs showed toxicity on different types of
cancer cell line or normal human fibroblast when tested on cell
culture to a concentration of 5 pg/ml (Zhan et al. 2007). It
seems that NGPs are not toxic when a small dose is daily
orally ingested (Rabache and Adrian 1982). Even though,
chosen extracts will require toxicological assessments (der-
matological, pharmaceutical, etc.) before their use in pharma-
ceutical, cosmetic, or food industry.



Table 1 Listing of fungal NGPs, their producing strains, and their described biological properties

NGPs Strains Activities References
Asperpyrone Asperpyrone A A. KJ-9; A. niger; A. tubingensis Akiyama et al. (2003); Zhang et al. (2007);
Zhan et al. (2007); Li et al. (2013);
Xiao et al. (2014)
Asperpyrone B A. niger Anti-microbial Akiyama et al. (2003); Song et al. (2004)
Asperpyrone C A. niger Anti-fungal Akiyama et al. (2003); Zhang et al. (2007)
Asperpyrone D A. tubingensis; A. niger Zhan et al. (2007); Li et al. (2013)
Asperpyrone E A. niger Lietal. (2013)
Aurasperone Aurasperone A A. alternata; A. niger; A. tubingensis;, Anti-microbial; xanthine Tanaka et al. (1966); Wang and Tanaka
A. fonsecaeus; Aspergillus sp. oxidase inhibition (1966); Ghosal et al. (1979); Priestap
FKI-3451; A. awamori; A. aculeatus (1984); Ehrlich et al. (1984); Akiyama
et al. (2003); Song et al. (2004); Campos
et al. (2005); Zhang et al. (2007);
Zhan et al. (2007); Sakai et al. (2008);
Shaaban et al. (2012)
Isoaurasperone A A. KJ-9; A. niger Ghosal et al. (1979); Ehrlich et al. (1984);
Li et al. (2013); Xiao et al. (2014)
Aurasperone B A. alternata; A. niger; A. fonsecaeus, Anti-fungal; anti-oxidant Tanaka et al. (1966); Tanaka et al. (1972);
A. awamori; A. vadensis Priestap (1984); Ehrlich et al. (1984);
Bouras et al. (2005); De Vries et al.
(2005); Zhang et al. (2007); Shaaban
et al. (2012)
Aurasperone C A. alternata; A niger; A. awamori Tanaka et al. (1966); Tanaka et al. (1972);
Ehrlich et al. (1984); Bouras et al.
(2005); Shaaban et al. (2012)
Dianhydro-aurasperone C A. KJ-9; A. niger; A. M39; A. tubingensis ~ Reverse multidrug resistance Ikeda et al. (1990); Zhang et al. (2007);
on human KB cells Zhan et al. (2007); Li et al. (2013);
Xiao et al. (2014);
Aurasperone D A. niger Ghosal et al. (1979); Ehrlich et al. (1984);
Bouras et al. (2005); Li et al. (2013)
Aurasperone E A. niger; A. tubingensis Ehrlich et al. (1984); Bouras et al. (2005);
Zhan et al. (2007)
Aurasperone F A. alternata; A. niger Ghosal et al. (1979); Bouras et al. (2005);
Shaaban et al. (2012)
Isoaurasperone F A. niger Lietal. (2013)
Aurasperone G A. niger Bouras et al. (2007)
Cephalochromin ~ Cephalochromin C. vilior; F508; Cephalosporium Anti-proliferative effect cancer cell; Haskins and Knapp (1969); Carey and Nair

sp.; SCF-125; Nectria sp.;
Pseudoanguillospora sp.;
Verticillium sp. K-113

anti-bacterial; nitric oxide production
inhibition; calmodulin-sensitive
phosphodiesterase inhibition;

(1975); Matsumoto et al. (1975); Koyama
et al. (1988); Hegde et al. (1993); Ishii et al.
(2005); Zheng et al. (2007); Kock et al.




Table 1 (continued)

NGPs Strains Activities References
botulinum neurotoxin serotype (2009); Cardellina et al. (2012); Hsiao
A inhibitor et al. (2014)
Cephalochromin 5-methy] ether Cephalosporium sp. Ishii et al. (2005)
Cephalochromin A 5,5"-dimethyl ether ~ Cephalosporium sp. Ishii et al. (2005)
Chaetochromin Chaetochromin A Fusarium sp.; Chaetomium sp. Nitric oxide production inhibition; Sekita et al. (1980); Koyama et al. (1988);
botulinum neurotoxin serotype Singh et al. (2003); Ishii et al. (2005);
A inhibitor; anti-diabetes Paranagama et al. (2007); Cardellina
et al. (2012); Xu et al. (2014); Qiang
et al. (2014)
Chaetochromin A 5,5"-dimethyl ether Chaetomium sp. Ishii et al. (2005)
Isochaetochromin A Penicillium sp. FKI-4942 Inhibition of triacylglycerol Ugaki et al. (2012)
synthesis in mammalian cells
Isochaetochromin A, Chaetomium microcephalum Xu et al. (2014)
Chaetochromin B Chaetomium sp.; Fusarium sp. Koyama et al. (1988); Singh et al. (2003);
Xu et al. (2014)
Isochaetochromin B Fusarium sp. HIV-1 integrase inhibition Singh et al. (2003)
Isochaetochromin B Penicillium sp. FKI-4942; Fusarium sp. Inhibition of triacylglycerol Singh et al. (2003); Ugaki et al. (2012)
synthesis in mammalian cells
HIV-1 integrase inhibition
Isochaetochromin B, Penicillium sp. FKI-4942; M. Inhibition of triacylglycerol Singh et al. (2003); Ugaki et al. (2012);
anisopliae; Fusarium sp. synthesis in mammalian Kong et al. (2013)
cells; anti-tubercular;
HIV-1 integrase inhibition
Chaetochromin C Fusarium sp. Koyama et al. (1988)
Chaetochromin D Fusarium sp. Koyama et al. (1988); Singh et al. (2003)
Isochaetochromin D, Fusarium sp. HIV-1 integrase inhibitory activity Singh et al. (2003)
Flavasperone Flavasperone A. niger sp.; A. carbonarius; Lund et al. (1953); Bycroft et al. (1962);
A. fonsecaeus Ghosal et al. (1979); Ehrlich et al.
(1984); Zhang et al. (2008)
Fonsecin Fonsecin A. alternata; A. carbonarius; A. niger; Anti-mycobacterial Galmarini et al. (1962); Ehrlich et al.
A. tubingensis; A. fonsecaeus (1984); Bouras et al. (2005); Zhan et al.
(2007); Zhang et al. (2008); Shaaban
et al. (2012)
Fonsecin B A. alternata; A. tubingensis Zhan et al. (2007); Lee et al. (2010);
Shaaban et al. (2012)
10,10"-Bifonsecin B A. carbonarius Zhang et al. (2008)
Fonsecin monomethyl ether A. niger Ehrlich et al. (1984)
Fonsecinone Fonsecinone A A. KJ-9; A. niger; A. tubingensis; Anti-microbial Priestap (1984); Akiyama et al. (2003);

A. fonsecaeus; Aspergillus aculeatus;

Song et al. (2004); Campos et al.




Table 1 (continued)

NGPs Strains Activities References
Cladosporium herbarum (2005);Ye et al. (2005); Zhang et al.
(2007); Zhan et al. (2007); Chiang
et al. (2011);Xiao et al. (2014)
Fonsecinone B A. niger; A. fonsecaeus Anti-oxidant Priestap (1984); Zhang et al. (2007)
Fonsecinone C A. niger; A. fonsecaeus Priestap (1984); Zhang et al. (2007)
Fonsecinone D A. niger; A. fonsecaeus Anti-oxidant Priestap (1984; Zhang et al. (2007)
Hypochromin Hypochromin A H. vinosa Inhibitory effects on tyrosinase, Ohkawa et al. (2010)
proliferation, migration, and
tubule formation
Hypochromin B H. vinosa Inhibitory effects on tyrosinase, Ohkawa et al. (2010)
proliferation, migration, and
tubule formation
SC2051 H. vinosa Inhibitory effects on tyrosinase, Ohkawa et al. (2010)
proliferation, migration,
and tubule formation
Indigotides Indigotide B C. indigotica; M. anisopliae Asai et al. (2012); Kong et al. (2013)
Indigotide G M. anisopliae Kong et al. (2013)
Indigotide H M. anisopliae Kong et al. (2013)
Nigerasperone Nigerasperone A A. niger Zhang et al. (2007)
Nigerasperone B A. niger Zhang et al. (2007)
Nigerasperone C A. niger Anti-fungal; anti-oxidant Zhang et al. (2007)
Nigerone Nigerone A. niger; A. carbonarius Ehrlich et al. (1984); Divirgilio et al.
(2007); Zhang et al. (2008)
Nigerone methyl ether A. niger Ehrlich et al. (1984)
Isonigerone A. carbonarius Zhang et al. (2008)
6'-O-demethylnigerone A. carbonarius Zhang et al. (2008)
8'-O-demethylisonigerone A. carbonarius Anti-microbial Zhang et al. (2008); Lee et al. (2013)
8'-O-demethylnigerone A. carbonarius Anti-microbial Zhang et al. (2008); Lee et al. (2013)
Rubasperone Rubasperone A A. tubingensis Huang et al. (2010)
Rubasperone B A. tubingensis Huang et al. (2010)
Rubasperone C A. tubingensis «-Glucosidase inhibition Huang et al. (2010)
Rubasperone D A. tubingensis Huang et al. (2011)
Rubasperone E A. tubingensis Huang et al. (2011)
Rubasperone F A. tubingensis Huang et al. (2011)
Rubrofusarin Rubrofusarin A. niger; A. tubingensis; Fusarium sp. Tyrosinase inhibition Ashley et al. (1937); Tanaka and Tamura

(1961); Ghosal et al. (1979); Ehrlich




Table 1 (continued)

NGPs Strains Activities References
et al. (1984); Huang et al. (2010)
Rubrofusarin B A. KJ-9; A. alternata; A. M39; Reverse multidrug resistance on Ikeda et al. (1990); Song et al. (2004);
A. niger; A. tubingensis; human KB cells; anti-microbial; Ye et al. (2005); Zhan et al. (2007);
A. carbonarius; Cladosporium anti-tumoral Zhang et al. (2008); Huang et al. (2010);
herbarum Shaaban et al. (2012); Xiao et al. (2014)
Rubrofusarin-6-O-«-D-ribofuranoside A. niger Lietal. (2013)
Rubrofusarin-6-O-3-(4-O- T. lutearostata Isaka et al. (2007)
methylglucopyranoside)
TMC 256 TMC-256A1 A. carbonarius; A. tubingensis; A. niger IL-4 signal transduction inhibition Sakurai et al. (2002); Zhan et al. (2007);
Zhang et al. (2008); Li et al. (2013)
TMC-256B1 A. niger IL-4 signal transduction inhibition Sakurai et al. (2002)
TMC-256C1 A. niger IL-4 signal transduction inhibition Sakurai et al. (2002)
Ustilaginoidin Ustilaginoidin A Villosiclava virens Shibata et al. (1963); Koyama et al. (1988);
Koyama and Natori (1988)
Isoustilaginoidin A Verticillium sp. K-113 Matsumoto et al. (1975)
Dihydroisoustilaginoidin A A. butyri; Verticillium sp. K-113 Nitric oxide production inhibitory activity =~ Matsumoto et al. (1975); Ishii et al. (2005)
Ustilaginoidin B Villosiclava virens Shibata and Ogihara (1963)
Ustilaginoidin C Villosiclava virens Shibata and Ogihara (1963)
Ustilaginoidin D M. anisopliae; Fusarium sp. Anti-tubercular Koyama et al. (1988); Singh et al. (2003);
Kong et al. (2013)
Ustilaginoidin E Fusarium sp. Koyama et al. (1988)
Ustilaginoidin F Villosiclava virens Koyama et al. (1988)
Ustilaginoidin G Villosiclava virens Koyama et al. (1988)
Ustilaginoidin H Villosiclava virens Koyama et al. (1988)
Ustilaginoidin | Villosiclava virens Koyama et al. (1988)
Ustilaginoidin J Villosiclava virens Koyama et al. (1988)
YWAL YWAIL Aspergillus sp.; Fusarium sp. Fujii et al. (2001); Frandsen et al. (2011)




Going through medical consideration, some NGPs have
been described for their anti-tubercular, anti-tumor, anti-HIV,
and anti-hyperuricosuric effects (Singh et al. 2003; Song et al.
2004; Shaaban et al. 2012) (Table 1). For example,
aurasperone A and rubrofusarin B, extracted from A. niger
IFB-E003, show a xanthine oxidase inhibitory effect equiva-
lent to the one of allopurinol, a commonly used anti-
hyperuricosuric. These NGPs also show anti-tumor properties
against a colon cancer cell line (Song et al. 2004). In the search
of new and more powerful drug against tuberculosis, Shaaban
et al. (2012) show that rubrofusarin B and aurasperone A,
extracted from Alternaria alternata D2006, have high anti-
microbial properties and show really weak toxicity at a
10 pg/ml concentration (Shaaban et al. 2012). Anti-tumor
and anti-microbial activities of NGPs were recently detailed
by Lu and collaborators (2014). Finally, considering anti-HIV
drugs, four NGPs of the chaetochromin family, extracted from
Fusarium sp., show good inhibitory properties against HIV-1
integrase and should be deeply studied for their therapeutic
use (Singh et al. 2003).

Thanks to literature and personal unpublished data, it is
possible to think that one of the most attractive properties of
NGPs was their anti-oxidant capacity. First described by
Rabache and colleagues (1982), the anti-oxidant activity of
NGPs seems to have both a beneficial effect on rats growing
and a hepatoprotective activity, probably due to a better intes-
tinal absorption of retinol and tocopherol (Rabache et al.
1982). Xie et al. (2012) have recently shown that a previous
animal treatment with Cassia seed ethanol extract (CSE)
protected mice against CCl4-induced liver injury via an en-
hancement of the anti-oxidant capacity (Xie et al. 2012). It
was previously demonstrated that CSE contained NGPs
(Kitanaka et al. 1998; Li et al. 2001). Anti-oxidant properties
of NGPs were also described for nigerasperone C,
aurasperone B, fonsecinone B, and fonsecinone D, extracted
from A. niger EN-13, which show an anti-oxidant capacity
two times lower than the one of BHT (Zhang et al. 2007).
Besides, experiments using 2,2'-azino-bis(3-ethylbenzothiaz-
oline-6-sulfonic acid) (ABTS) test on A. niger C-433, which
did not produce ochratoxin A (Bouras etal. 2005; Bouras et al.
2007), show that the anti-oxidant power of an ethanol extract
containing NGPs is equivalent to vitamin C (unpublished
personal data). Unlike natural anti-oxidants currently used
(vit. C, vit. D, vit. E, etc.) (Scotter and Castle 2004; Burke
2007; Stamford 2012), the anti-oxidant capacity of this etha-
nol extract is also stable over the time and resists to temper-
atures up to 60 °C (unpublished personal data). Study of the
anti-oxidant properties of NGPs will allow having significant
impacts in a variety of areas. As described above, the anti-
oxidant activity of NGPs prevents lard oxidation (Zaika and
Smith 1975), so NGPs could be a good substitute to actual
conservators such as sulfur or synthetic anti-oxidants. In
health and cosmetics industry, NGPs could be an ideal dietary

supplement or formulate in cream as anti-skin-aging com-
pounds (Ye et al. 2014).

Chemistry of fungal NGPs

Naphtho-y-pyrones (NGPs) belong to the family of
naphthopyrones. They are C13 (C6-C4-C3) basic skeleton
molecules consisting of a naphthalene core and a pyrone core.
Greek letters («, 3, v) indicate the position of the oxygen
atom relative to the carbonyl group on the pyrone core
(Barrow and McCulloch 2009) (Fig. la). The
naphthopyrone group comprises 18 isomeric forms. Only
three can exist as NGPs. As shown in Fig. 1a, one isomeric
form has the basic skeleton organized in a linear form where
the remaining two forms have angular organization. Up to
now, the NGP family (Table 1) is composed of various
monomers, fonsecin, flavasperone, rubrofusarin, etc.
(Fig. 2a), and dimers, asperpyrones, aurasperones,
fonsecinones, nigerones, etc, whose diversity is presented
in Fig. 2b. Dimers result from the association of two mono-
mers, depending on their structure (linear and angular), the
position of the chemical bond between monomers, and the
decoration present on both naphthalene and pyrone cores
(Ehrlich et al. 1984; Chiang et al. 2011). As mentioned in
Fig. 2, some NGPs share the same structure, but they are
conformational isomers. Conformation of these NGPs was
recently reviewed by Lu et al. (2014).

The relationship between the structure of NGPs and their
biological activities is poorly described in the literature.
Concerning the anti-oxidant activity, it is possible to make
a comparison with what it is described on naphtho-«-
pyrones by Leitdo et al. (2002). They suggest that the
anti-oxidant capacity of naphthopyrones produced by
Paepalanthus sp. is due to presence and number of free
hydroxyl groups (Leitdo et al. 2002). Unpublished personal
data show that aurasperone C has a higher anti-oxidant
capacity than aurasperone B and F (unpublished personal
data). As shown in Fig. 2b, aurasperone C has five free
hydroxyl groups while aurasperone B and F have only four
hydroxyl groups. Besides, aurasperone F has a higher anti-
oxidant activity than aurasperone B, suggesting that the
position of the hydroxyl groups is important too.

Elucidation of NGP structures so far was mostly done
using semi-preparative reverse-phase HPLC purification
and mass spectrometry analysis (Campos et al. 2005;
Bouras et al. 2005). It was shown that NGPs contain a fully
conjugated system, giving rise to very characteristic UV/vis
spectra, strongly absorbing between 200 and 450 nm
(Fig. 1b). The absorption spectra mainly depend on the
isomeric form and the polymerization degree (Nielsen
etal. 2009) (Fig. 2b). As example, flavasperone (monomer-
ic, angular) presents two peaks with equal maximum



Fig. 1 Biochemical properties of
NGPs. a Linear and angular forms
of NGPs. Both present a
naphthalene core and a pyrone
core. b UV/vis spectra of
flavasperone (monomer) and
aurasperone B (dimer) adapted
from Nielsen et al. (2009)

absorbance (224 nm, 276 nm) whereas aurasperone B (di-
meric, linear) shows a maximum absorbance peak (282 nm)
and three little peaks (236, 334, 408 nm) (Nielsen et al.
2009; for UV/vis spectra references, please refer to Table 1)
(Fig. 1b). Unfortunately, despite of the possible discrimi-
nation of different NGPs using their specific absorption
spectra, reliable standards are missing to precisely estimate
the NGP concentration of purified extracts. Indeed, the only
standard presently available is rubrofusarin, a NGP mono-
mer linear, isolated from Fusarium graminearum
(Adipogen, CAS 3567-00-8).

Their specific structure confers NGP hydrophobic charac-
ters allowing their extraction by several organic solvents, such
as ethyl acetate (Xiao et al. 2014; Li et al. 2013; Zhang et al.
2007), acetone (Zhang et al. 2007), methanol (Akiyama et al.
2003; Bouras et al. 2005; Bouras et al. 2007), chloroform/
methanol mix (Song et al. 2004), or methylene chloride
(Ehrlich et al. 1984). Thanks to this hydrophobic property, it
is also possible to consider their extraction by a nontoxic
organic solvent as ethanol, as it is already done in higher
plants (Kitanaka et al. 1998; Li et al. 2001; Xie et al. 2012).
Even though, the issue remains the purity of the extract
because one-step extraction with any organic solvent leads
to a crude extract containing all hydrophobic compounds
present in matrices. Right now, purification process for isola-
tion and structure elucidation of NGPs is composed of numer-
ous steps of drying, elution, and chromatography (Akiyama
et al. 2003; Li et al. 2013; Xiao et al. 2014). However, purity
of these molecules is not a prerequisite for their potential
industrialization, as ethanol extracts are already used (Xie
etal. 2012, WO 2010109318 A1). Considering their attractive
biological properties, it is interesting to better understand their
biosynthetic pathway in order to optimize their production.

The poorly known biosynthetic pathway of NGPs

In the purpose of improving NGP production/extraction pro-
cess, a strong knowledge of their biosynthetic pathway is a
relevant fact. Unfortunately, only few data are available in the
literature. The first step of NGP biosynthetic pathway eluci-
dation was done by Watanabe and colleagues (1998)
(Watanabe et al. 1998; Watanabe et al. 1999). Studying co-
nidial pigmentation in Aspergillus nidulans (4. nidulans), they
showed that wA gene encodes a polyketide synthase respon-
sible for the formation of the linear monomer NGP, YWAI1,
required for the formation of the dark green conidial pigment
(Watanabe et al. 1998). Indeed, 4. nidulans strain lacking wA
gene produces white conidia. It was lately shown that the C-
terminal part of w4 was required for the naphthopyrone syn-
thesis (Fujii et al. 2001). Indeed, A. nidulans strain expressing
a C-term-modified wA gene produces a heptaketide
isocoumarin instead of YWAI. Authors assume that the C-
term part of wA, and particularly a Claisen cyclase domain, is
involved in the cyclization of the second aromatic ring of
YWAT (Fujii et al. 2001).

At the same time, Tsai and colleagues (1998), working on
conidial morphology and virulence of 4. fumigatus, charac-
terize albl gene, A. nidulans wA ortholog, putatively encoding
the pentakide tetrahydroxynaphthalene (THN) (Tsai et al.
1998). THN is a precursor in the DHN-melanin, a well-
known virulence factor of both plant and human (Langfelder
et al. 2003; Heinekamp et al. 2012). albl was then
overexpressed in Aspergillus oryzae, which does not possess
an orthologous gene (Watanabe et al. 2000). This overexpres-
sion leads to the production of the heptaketide naphthopyrone
YWAL instead of THN (Watanabe et al. 2000). These results
suggest that albl encodes a naphthopyrone synthase instead



Fig. 2 Structural formula of the presented naphtho-y-pyrones. a NGP monomers. b NGP dimers. Underlined NGPs names with the same structural

formula represent stereoisomers

of a THN synthase. Besides, it was then described that the
esterase-like enzyme Aygl allows the formation of THN from
YWAL, in A. fumigatus (Fujii et al. 2004). Interestingly, in
Colletotrichum lagenarium, it was shown that synthesis of the
THN pentaketide only required the presence of the polyketide
synthase PKS1 (Watanabe and Ebizuka 2004). Unlike
Aspergillus sp., NGP production is not described in
Colletotrichum sp. So, in Aspergillus sp., the presence of this
additional first step, leading to the formation of YWAI, sug-
gests that this monomer NGP could be a common precursor
for both DHN-melanin and NGPs.

Considering NGP biosynthesis in Aspergillus sp., two si-
multaneous studies show that alb4, albl ortholog in A. niger,
was responsible of YWA1 synthesis which seems to be a
precursor of both DHN-melanin and NGPs produced by this
filamentous fungus (Jergensen et al. 2011b; Chiang et al.
2011) (Fig. 3). Jergensen et al. (2011b) tried to elucidate black
pigmentation biosynthetic pathway in A. niger N402, using
UV mutagenesis to select spore color mutants. Thus, they
described three different spore color mutants: fawn, olive,
and brown. Using a complementation method, they showed
that a specific gene required for DHN-melanin biosynthesis



Fig. 2 (continued)



Fig.3 Biosynthesis pathways of NGPs. Black arrows represent common
biosynthesis pathways of DHN-melanin and NGPs in Aspergillus sp., red
arrows represent putative common biosynthesis pathways of aurofusarin
and NGPs in Fusarium sp., and blue arrows represent NGP biosynthetic

was mutated in each color phenotype. Mutation on a/bA was
responsible for the “fawn” phenotype while mutations on
aygA and abrA (ortholog of A. fumigatus aygl and abrl) gave
olive and brown phenotypes, respectively. Interestingly, they
also showed that in addition to a light color indicating a defect
in pigment synthesis, fawn mutants were not able to produce
NGPs, suggesting that AIbA is also involved in the biosyn-
thetic pathway of NGPs (Jergensen et al. 2011b). Olive and
brown mutants were still able to produce some NGPs, sug-
gesting that AygA and AbrA are not involved in NGP biosyn-
thetic pathway (Jorgensen et al. 2011b). Those results were
confirmed by Chiang and collaborators (2011) who deleted
albA and aygA in A. niger ATCC1015 in order to determinate
cryptic secondary metabolites by suppressing NGP produc-
tion (Chiang et al. 2011). However, compared to the work
done by Jorgensen et al. (2011a, b), fungal phenotypes of
mutants are different. Various hypotheses can be made to
explain those differences: genetic background of each strain,
culture medium and growth conditions, hazardous mutation
versus deletion, or the major point of DNA repair mechanism
disruption used by Chiang et al. (2011) to facilitate 4. niger

pathway in Cordyceps indigotica. When arrows are represented with a

full line, the biosynthetic pathway is known whereas when arrows are

represented with dotted line, the biosynthetic pathway has to be
discovered

transformation and which can lead to huge genetic variation.
Indeed, it may be seriously considered that disruption of DNA
repair machinery could let appeared spontaneous mutations
emphasizing the colorless phenotype and the lack of NGPs.
The precursor YWA 1 was also described in the biosynthet-
ic pathway of the homodimeric naphthoquinone aurofusarin, a
red color pigment produced by Fusarium sp. (Fig. 3) (Malz
et al. 2005; Frandsen et al. 2006; Frandsen et al. 2011).
Identification of the gene cluster responsible for the synthesis
of aurofusarin indicates that nor-rubrofusarin and
rubrofusarin, two NGP monomers, were precursors of this
red pigment (Frandsen et al. 2006). It was first admitted that
F. graminearum PKS12 was the polyketide synthase respon-
sible of nor-rubrofusarin production as an intermediate to
aurofusarin (Malz et al. 2005). Determination of AurZ and
Aur] functions allows demonstrating that rubrofusarin synthe-
sis passes through the production of YWA1 by PKS12
(Frandsen et al. 2011) (Fig. 3). As described above for w4
gene in A. nidulans, it was shown that a Claisen cyclase
domain in the C-terminal part of PKS12 was required for the
formation of YWA (Serensen et al. 2012). Disruption of this



PKS12 domain leads to the formation of a lactone,
citreoisocoumarin, instead of YWAI1. This result suggests
the presence of a conserved regulatory mechanism in the
formation of YWA1. Then, AurZ is responsible for the pro-
duction of nor-rubrofusarin from YWAI1, and Aur] was re-
quired next for the production of rubrofusarin (Frandsen et al.
2011). Rugbjerg et al. (2013) showed that PKS12, AurZ, and
Aur] were necessary and sufficient for the production of
rubrofusarin. Indeed, heterologous expression of these three
proteins in Saccharomyces cerevisiae allows weak production
of rubrofusarin by the yeast (Rugbjerg et al. 2013).
Interestingly, some NGP dimers, such as chaetochromin or
ustilaginoidin, are also produced by Fusarium sp. (Singh et al.
2003). However, any study describes a link between
aurofusarin biosynthetic pathway and the one of
chaetochromin or ustilaginoidin. Questions remaining are
does YWA and/or rubrofusarin are precursors for NGP bio-
synthesis in Fusarium sp. and is rubrofusarin the second key
step, after YWAI, in the general biosynthetic pathway of
NGPs (Fig. 3). Besides, it has to be noticed that AurZ is the
first representative of a novel class of dehydratases that act on
hydroxylated y-pyrones (Frandsen et al. 2011). This informa-
tion will be significant for bioinformatic selection of putative
candidates involved in the biosynthetic pathways of NGPs in
fungal organisms.

Obviously, NGPs and fungal pigments are clearly biosyn-
thetically linked in both Aspergillus sp. (DHN-melanin or
A. nidulans dark green pigment) and Fusarium sp.
(aurofusarin) (Malz et al. 2005; Chiang et al. 2011;
Jorgensen et al. 2011b). It was even proposed that a second
type of polymeric subunit made upstream from YWA1 could
be incorporated into the final melanin polymer in 4. fumigatus
(Tsai et al. 1999; Fujii et al. 2004; Wheeler et al. 2008). The
role of this particular biosynthetic link between NGPs and
pigment is not yet elucidated and introduces important ques-
tions on the fungal role of these molecules.

Does NGP biosynthesis could depend of more than one
pathway? Some studies suggest that it could be the case.
Indeed, still working on conidia coloration of 4. niger N402,
Jorgensen et al. (2011a, b) show that flavasperone and
aurasperone B, two NGPs, were associated to conidia forma-
tion (Jorgensen et al. 2011a). Besides, they showed that
flavasperone production did not show the same dependence
on AlbA depending on the culture conditions, submerged
against subaerial (Jorgensen et al. 2011a, b). This difference
could be explained by induction of a complementary PKS or
an efficient metabolism of flavasperone in subaerial settings.
In the same study, they determined that low level of
aurasperone B was found in a mutant derived from AalbA
background suggesting partial redundancy to synthesize
NGPs (Fig. 3) (Jorgensen et al. 2011a). The question here is
does A. niger genome contain a candidate polyketide synthase
for this complementary biosynthetic pathway hypothesis? It

was shown that more than 70 % of fungal PKS-encoding gene
clusters were transcriptionally suppressed under various stan-
dard laboratory culture conditions (Scherlach and Hertweck
2009; Zerikly and Challis 2009; Fisch et al. 2009). That is
why, treatment of 4. niger ATCC 1015 with suberoylanilide
hydroxamic acid (SAHA), an inhibitor of histone deacetylase
(HDAC) used for epigenetic studies, led to transcription up-
regulation of many secondary metabolites encoding biosyn-
thetic gene clusters (Fisch et al. 2009). Comparing the con-
served domain composition of the polyketide synthases pres-
ent in 4. niger, they showed that only one PKS, An03g05440,
possesses the same conserved domains as AlbA (Fisch et al.
2009). Besides, genes encoding those PKS show a strong
homology. Interestingly, 4n03g05440 was strongly upregu-
lated by SAHA whereas albA was not. This specific property
of An03g05440 can lead to the use of SAHA for a better
understanding of NGP biosynthetic pathway in A. niger.
Supporting those results, the use of an HDAC inhibitor on
Cordyceps indigotica (C. indigotica) culture allows the puri-
fication of indigotides, characterized as NGPs (Asai et al.
2012) (Fig. 3). Trying to understand the way that indigotides
are synthesized by C. indigotica, Asai and collaborators
(2012) established the profile of a NGP precursor synthesized
from malonyl CoA, different from YWAT1. This putative pre-
cursor supports the hypothesis of multiple biosynthetic path-
ways for the production of NGPs.

Further perspectives

Manufacturers are always seeking for new molecules with
beneficial biological properties. Numerous natural extracts
are studied for their putative biological properties at a labora-
tory scale (Akiyama et al. 2003; Shaaban et al. 2012; Xie et al.
2012; Kong et al. 2013). Fungal NGPs show biological
properties such as anti-oxidant, anti-tumoral, and anti-
microbial activities that could find potential applications
in food, health, and cosmetics areas. They are natural
molecules produced in large amount by industrial fungi,
such as A. niger (Nielsen et al. 2009). Besides, they can
be co-extracted, with other hydrophobic compounds, in a
single step with ethanol allowing accreditation for “non-
organic” label, attractive for industry (Kitanaka et al.
1998; Li et al. 2001; Xie et al. 2012). Personal experi-
mental data suggest that ethanol extracts containing NGPs
highly resist to temperature up to 60 °C conserving their
biological properties, particularly their anti-oxidant activity,
and seem to be strongly stable over the time. The dark color
of some extracts issued from 4. niger may be incompatible
for their industrial use from consumer’s perceptions.
However, these crude extracts could still be commercialized
as dietary supplements. Besides, the black color of the
extracts could still be removed by addition of melanin



inhibitors in culture media or using genetically modified
strains unable to produce melanin as described by
Jorgensen et al. (2011a, b) and Chiang et al. (2011).

Optimization of the production/extraction process of fungal
NGPs has to be done. The first step will be the improvement
of culture conditions such as culture media, temperature, pH,
incubation time, and the fungal strain chosen. Then, a partic-
ular attention should be made at the purification process. As
hydrophobic molecules, NGPs are currently extracted with
different organic solvents resulting to the simultaneous extrac-
tion of other hydrophobic compounds and thus requiring
various purification steps, predominantly chromatography
(Bouras et al. 2005; Campos et al. 2005). Depending on the
potential industrial applications, purification should not be
always necessary; the use a fungal bioactive extract containing
NGPs could be possible, as it is already the case for ethanol
crude extracts produced by plants (WO 2010109318 A1; Xie
etal. 2012).

In addition, determination of NGP biosynthetic pathway is
absolutely required for the improvement of the production/
extraction of fungal NGPs. This knowledge will help guide
the production of a specific NGP directly in the culture ac-
cording to the chosen biological property. Besides, a complete
knowledge of this pathway should allow the heterologous
synthesis of targeted NGPs as it was done by Rugbjerg and
colleagues (2013) for rubrofusarin (Rugbjerg et al. 2013). This
specific production will greatly facilitate the current extraction
process.
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