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PHYLOG: a model-based certification framework
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Thomas Polacsek and Nathanaël Sensfelder
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Abstract—This paper describes PHYLOG, a framework in-
tended to help certify the use of a multi-core in an aeronautical
context. Specific guidelines for such systems have been published
in a document, the MCP-CRI / CAST-32A, which provides a
series of objectives to be fulfilled. To justify that an objective
is indeed achieved, PHYLOG relies on structured graphical no-
tations, recursively refining each objective by solving it using a
strategy, itself having its own sub-objectives, until all that remains
are evidences found either through the use of formal methods,
as part of the design choices, or in external documentation. The
PHYLOG framework includes such formal methods, providing the
means to model the multi-core and to acquire further evidences
through automatic analysis.

I. INTRODUCTION

A. Context
An aircraft is allowed to enter in operation if the man-

ufacturer has obtained a type certificate from the certifi-
cation authorities. For that, the aircraft manufacturer must
demonstrate the compliance of its product with the regulatory
requirements [EAS17]. An accepted mean of compliance with
the requirements is to rely on mature standards, such as the
ARP 4754 [SAE10], for the system’s development process.
When using this way to prove that a product is trustworthy,
the certification activities consist in providing a detailed docu-
mentation, and justifications, that argue how the development
process is indeed compliant with the standard.

The last decade has seen the emergence of multi-core
processors and many-core architectures, i.e. chips integrating
several cores interconnected by either a shared bus or a
network on chip. Although these architectures may provide
huge gains in terms of performance, they also face important
challenges to their integration in safety critical environment.
Unfortunately, existing standards, such as the ARP 4754
[SAE10] (recommendation on the development process), the
DO 254 [RTC05] (recommendation on the hardware) and the
DO 178 B/C [RTC08], [RTC11a] (recommendation on soft-
ware development), do not fully cover the case of multi-core.
This is the reason why aeronautic certification authorities,
associated with industrial manufacturers, have published the
Multi-Core Certification Review Item (MCP-CRI) [EAS16]
(also published as the CAST32-A position paper [Cer16]), in
order to provide a set of guidance for software planning and
verification on multi-core chips. As a consequence, certifying
those new architectures is a novel and challenging task.

B. Objectives of the project
PHYLOG1 is a four years DGAC (French Civil Aviation)

1http://w3.onera.fr/phylog/

project (2016-2020) that aims at offering a model-based and
software-aided certification framework for aeronautics systems
based on multi/many-core architectures. More precisely, our
goal is twofold: to reduce as much as possible the amount of
textual documentation, by replacing it with model(s) wherever
possible; to promote automatic analysis and replace part of the
testing with formal methods, as recommended by the DO333
[RTC11b].

Such an approach offers several advantages: simplify the
certification activities; cope with inflation of documentation;
reuse design models; improve the coverage of requirements.
Thus, our methodology aims at helping both the applicant
answer the requirements and the certification authority to
assess the arguments provided by the applicant. In previous
works [BBD+16], [Pol16a], we proposed the basics of a new
framework to simplify the certification of IMA systems. In
PHYLOG, we reuse and improve those ideas to specifically
address multi/many-core issues.

C. Methodology and focus of the paper

With our purpose being to cover the MCP-CRI / CAST-
32A requirements, our first task has been to carefully analyze
it. We briefly review those requirements in section II, and
proceed to focus on two of them (namely RU2 and RU3) as
a way to support the description of our methodology.

We believe that, in some situations, model-based approaches
are more convenient than textual documentation. Because of
this, we have identified which elements can be modeled and
automatically analyzed.

The overall PHYLOG framework is detailed in section III.
Our first step is to organize the justification around structured
graphical notations diagrams, which we have used to refine the
requirements. This argumentation methodology is presented in
section IV, which features the application of a justification
pattern on RU2.

As part of that framework, we proposed PML (PHYLOG
meta-model) in [BBB+18]. It lets its users create a model
describing the platform architecture (including its hardware
and executive layers), which is intended to be used both as
a mean to perform automatic analysis, and as way to obtain
evidences to be used in the argumentation.

We then apply part of the methodology on RU2 in sections
V and VI on two different use cases. We take the role of
an applicant and show how to use the framework for these
requirements.



II. CERTIFICATION OBJECTIVES

Multi-core platforms offer huge parallelisation capabilities
and resource sharing that were unavailable in the mono-core
platforms. This technological breakthrough motivates the need
to adapt and create new certification objectives as formalized
in the CAST32-A. In this section, we provide an overview of
two particular objectives.

A. Position paper overview

The MCP-CRI / CAST-32A is not applicable in every
situation: for instance, only DAL A, B or C systems are
concerned, hyper-threading is not covered, lock-step systems
do not need these additional requirements, etc.

Example 1. Let us consider the simple, yet representative,
multi-core COTS architecture depicted in the figure 1. If
embedded in an aircraft, this architecture would have to be
compliant with the MCP-CRI / CAST-32A.

Real-time kernel

Core1 Core2

MMU1 MMU2

Cache1 Cache2

Interconnect

DDR Controller

Bank1 Bank2 Bank3

Executive Layer

Multi-core platform

Fig. 1. Running example

The processor is composed of two cores, each of which
has its own private L1 and L2 caches, as well as a Memory
Management Unit (MMU) that offers memory protection. The
shared memory, a DDR composed of three banks, can be
accessed via a shared interconnect and a memory controller.
Not represented here are the peripherals also accessible via
the interconnect. The executive layer is composed of a real-
time kernel that provides partitioning and follows the Arinc
653 [Aer97] paradigm. This means that any application will be
statically mapped on a given core and wrapped in a partition
the schedule of which is computed off-line.

The certification objectives of the MCP-CRI / CAST-32A
[Cer16] are classified into four categories:
Planning: the 2 associated objectives consist in describing the

architecture family (AMP,...), its usage and the plans to
meet the objectives;

Resource Usage: the 3 associated objectives concern the de-
scription of the configuration settings, the identification
of all interference channels and their mitigation, the

description of the shared resources and how they will
be used;

Software: these 2 objectives concern the correct execution of
the software even in the context of multi-core;

Error Handling: the last objective concerns the possible
hardware failures, the impact of interference generated
by these failures and the means of mitigation.

We will focus in the sequel on two particular objectives,
namely RU2 and RU3.

B. Resource Usage 2 (RU2): Alteration handling on configu-
ration settings

The second resource usage objective is focused on the
alteration of configuration settings. The configuration settings
are registers and pin settings which enable, disable or restrict
the usage of some multi-core processor resources such as:
activation or deactivation of resources (cores, peripherals like
DMA); modification of core frequency; management of dy-
namic features such as energy saving management; etc. Thus,
the alteration of such configuration settings may change the
behavior of the multi-core processor in a way that prevents
the applicant from ensuring that functional, timing and safety
requirements are still fulfilled.

Objective 2. The applicant has planned, developed, docu-
mented, and verified a means that ensures that, in the event
of any of the Critical Configuration Settings of the multi-core
processor being inadvertently altered, an appropriate means
of mitigation is specified.

Example 2. Let us again consider the example 1 and let us
assume that the core frequency can be modified at run-time
by changing the value of a register. In such cases, the appli-
cant must consider the hazard core frequency modified by a
corruption. They must first assess whether the configuration
setting is critical and, if the answer is positive, they must add
some means of mitigation on the platform.

- Identification of the effect: If the frequency is changed, then
the WCET of any application mapped on the core will be
modified. If it increases, then there may be a deadline
miss and, if the application is DAL A, the consequences
may be not acceptable. Therefore, the setting can be
categorized as critical;

- Mitigation solution: one possible mitigation is to store a
copy of the core frequency in a trusted resource, i.e., a
memory with a low failure rate, and regularly compare
the values of the register with the trusted copy. When the
comparison fails, the mitigation can modify the register
to restore the nominal situation;

- Validation of the means of mitigation: for the chosen solu-
tion, the applicant must argue that it is appropriate,
and that the platform will fulfill the high level safety
requirements.

In section V, we show how to construct an argumentation
for that alteration and the proposed mitigation solution.
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Fig. 2. Overview of the PHYLOG framework

C. Resource Usage 3 (RU3): Interference analysis and miti-
gation

On a multi-core processor, software components can in-
terfere, because of concurrent shared resource accesses. The
CAST32-A identifies several types of interference:

Definition 1 (Interference). An interference is any perturba-
tion of the execution of functionally independent applications
hosted on the same multi-core processor such as:

- Time interference : causing a delay in software execution;
- Functional interference : causing data corruption between

independent applications;
- Others: the aforementioned list is not supposed to be ex-

haustive, so the applicant must consider any type of
interference not mentioned in the position paper but
observable on the platform.

Definition 2 (Interference channel). An interference channel
is a platform property that may cause interference between
independent applications.

Objective 3. The applicant has identified the interference
channels that could permit interference to affect the software
applications hosted on the MCP cores, and has verified the
chosen means of mitigation for those interference.

Example 3. Let us again consider the architecture of example
1 and let assume that two applications run on top of the real-
time kernel, one mapped on core1 and the other on core2. If
both applications simultaneously access the same bank, there
may be a contention at the interconnect level, at the memory
controller level or at the bank level. Thus, the applicant must
assess whether the interference is acceptable or not. In the
second situation, they must define a means of mitigation.

- Identification of the effect: After a series of benchmarks,
the applicant has observed that the interference on the
interconnect and the memory controller are acceptable,
whereas the sharing of a common bank is not acceptable;

- Mitigation solution: Applications executing on different
cores are allocated to separate banks;

- Validation of the means of mitigation: for the chosen solu-
tion, the applicant must argue that it is appropriate.

III. PHYLOG FRAMEWORK

The main objective of PHYLOG is to define a new certi-
fication framework in order to introduce model-based doc-
umentation and automatic verification for multi-core-based
systems that need to satisfy the CAST32-A requirements. That
proposed overall approach is shown in figure 2.

There are two inputs: the MCP-CRI / CAST-32A position
paper and some external documents. The latter could be
the documentation on the multi-core or the results of some
external activities (e.g. an safety analysis made on the multi-
core by safety experts).

A. Design choices input
Another input is the documentation on the design choices.

This should include the detailed description of the config-
uration settings and the chosen means of mitigation. Those
information must be specifically traced as they are the basis
of the evidences required on the argumentation process.

B. Argumentation pattern-based approach
Our first contribution is to rely on justification patterns,

which are templates allowing their users to express a structured
reasoning with a set of evidences and a conclusion. We have
translated each CAST32-A objective as generic argumentation
patterns. An example of generic argumentation pattern is given
for the RU2 objective in section IV-B.



C. Model-based documentation approach

We have defined a very generic model, in the sense that it
is not dedicated to a specific platform. The PML (PHYLOG
meta-model) has been introduced in [BBB+18]. The idea is
to represent the architecture, including its hardware and the
executive layers. More specifically, the applicant must provide
the configuration settings, indicate which shared resources are
used and how, and specify which interference channels exist.
This model has been applied on parts of two real platforms,
the T4240 [Fre14] and a Kalray MPPA cluster [Cor12].

D. Software-aided framework

We then need to select formal methods to automatically
analyze a PML model and show its compliance with some re-
quirements (refined as a justification pattern). As an example,
we can currently automatically compute the topological inter-
ference channels with a solver in an efficient way [BBB+18].
The topological analysis consists in computing all potential
topological paths, and our enumeration is an equivalence class
compared to the automatic enumeration of [MJB+17]. With
the different models defined in the argumentation, model and
design choices worlds, we can make some analyses:

• the first of these analyses is checking that the different
models are all coherent. As an example, if, in the con-
figuration, it is stated that 3 cores are used, the model
description of the architecture must contain at least 3
cores;

• some requirements could be analyzed by an automatic
tool. This is the case for part of RU3, which requires the
enumeration of all interference channels;

• formal methods could also help prove the coverage of a
requirement by a set of evidences.

E. Validation of the approach

Another important aspect is the validation. We must offer
tools that will: first, prove that a model is compliant with the
real system; second, ensure the coverage of the CAST32-A
requirements. This is a future work of the project.

IV. ARGUMENTATION-BASED METHODOLOGY

A. A need of justification

A system is said to be critical if it has the potential
to endanger a person’s life. Those systems are subject to
certification, not only in aviation, but also in several other
domains. Examples of certification authorities are: the Eu-
ropean Aviation Safety Agency (EASA), and the Federal
Aviation Administration (FAA), for civil aviation; the Depart-
ment of Defense (DoD) for military matters; the European
Medicines Agency (EMA), and the Food and Drug Admin-
istration (FDA), for drugs and medical devices. In any case,
the applicant must convince the relevant authority that their
system is operable. For this, they must provide elements of
the design and Verification and Validation (V&V) operations
that have been carried out. To structure, organize and share
all these V&V items between stakeholders, more and more
organizations are using assurance cases.

An assurance case is defined by [RKR15] as: “an organized
argument that a system is acceptable for its intended use with
respect to specified concerns (such as safety, security, correct-
ness)”. Thus, assurance cases cover a broad range of issues,
including security [AHK11] and dependability [WGH04]. As
assurance cases could be complex, lots of work in the literature
[McD94], [KW04], [EC02], or carried out by standardization
organizations [OMG13], [ISO11], propose ways to standardize
these practices to make them intelligible.

In its study on Certifiably Dependable Software Systems
[Cou07], the National Research Council points out that:
“concrete evidence must be present that substantiates the
dependability claim. This evidence will take the form of a “de-
pendability case,” arguing that the required properties follow
from the combination of the properties of the system itself (that
is, the implementation) and the environmental assumptions”.
The whole problem here is, for the designers, how to argue
well, and, for the certification authority, how to evaluate an
argumentation. Indeed, the assurance case is an argumentative
process in which one has a conclusion that one seeks to
establish on the basis of evidences. Obviously, the conclusion
is not formally provable as it results from the evidences and
a plausible link from the evidences to the conclusion. Such a
process belongs to the context of argumentation. In the sequel
we will use equally argumentation or justification.

Based on the Toulmin schema [Tou03], we have introduced
the concept of Justification Diagrams [Pol16b] to organize in
diagram form the various elements, formal and informal, that
contribute to the justification of a result. For the authority, a
justification diagram gives a rational view of the documenta-
tion and, for the development teams, it gives – as a sort of a
recipe – the list of necessary evidences. Experiments on the
use of justification diagrams have already been conducted in
various domains and contexts:

• in an European project, TOICA, to structure all justifica-
tions that would be needed to convince an authority that
a thermal simulation process, and the associated results,
upheld a particular conclusion [PSCT18];

• in a project with the French aerospace technical center,
to build a model-based frame of reference for the certifi-
cation of embedded modular architectures [BBD+16];

• in the context of medical experimental studies and med-
ical software certification [DCBF17], [DPB18].

What has emerged from these experiments were the follow-
ing key points: most of the time, justification diagrams are
used to define patterns, in the sense that a common structure
could be re-used in several cases. Then, in practical cases,
the justification diagrams are an instantiation of a pattern that
has been defined for a generic solution. In that case, it is
better suited to speak of Justification Patterns (JPs) rather
than justification diagrams. A justification pattern can be seen
as a template dedicated to a specific conclusion, a specific
property. Thus, for a given conclusion, generic patterns can list
the necessary evidences as well as the means which make it
possible to justify this conclusion. These patterns are the result



RU2: Means of mitigation against inadvertent changes to Configuration
Settings

Check all identified settings alterations are mitigated (∀ai ∈ Alt ai mitigated)

All critical configuration settings alterations Alt identified
(no case missing)

ai is mitigated

Set of justifications for
alterations (ai)

Fig. 3. JP-RU2: Means of mitigation against inadvertent changes to Critical Configuration Settings.

of good practices and experts consultations. In the context of
certification, they can be provided by the authority or by the
system designers. In addition, the patterns can be a part of the
definition of means of compliance defined by the authority and
the stakeholders. We will have a deeper look at the notion of
justification pattern and justification diagram by applying it
to the RU2 objective.

B. RU2 justification pattern

Let us structure the RU2 objective in the form of justifica-
tion pattern. Making such a pattern is like eliciting justification
requirements that fall within the scope of CAST32-A. In the
case of RU2, the applicant must ensure that any critical settings
that could be altered must be mitigated appropriately. The
pattern of Figure 3 focuses on establishing that the means
of mitigation are trustable. The conclusion is on the top of the
figure. It relies on two evidences:

• on the left hand side of the figure, a safety analysis
has correctly identified all conditions that can alter the
configuration settings, has classified them according to
high level safety requirements to extract the critical ones
(set Alt) and has been itself validated (there are no
other condition that may alter the configuration settings to
something which is not in Alt). This leaf is an evidence,
no further details in the argumentation tree is provided;

• on the right hand side, a set of justifications that critical
configuration settings are appropriately mitigated. Each
configuration settings alteration mitigation has its own
justification. This second leaf could be a document or
a new justification step. In that case, the leaf is a sub-
conclusion that will become the conclusion of a new
justification pattern (see next section).

The passage from the evidence to the conclusion is based
on the argument that a verification step has been done. For
RU2, the check consists in verifying that, for each possible
alteration, a justification of its mitigation is provided. The
graphical symbol for this step is the strategy: “Check all
identified settings alterations are mitigated (∀ai ∈ Alt ai,
mitigated)”. The strategy here refers to a document that
explains how this verification was done.

ai is mitigated

Argumentation over means of mitigation

Recovery
achieved after
any alteration

Real-time
requirements
fulfilled

Safety
requirements
fulfilled

Fig. 4. JP-RU2-SC: ai is mitigated.

C. RU2 sub-conclusion

The right hand side of Figure 3 is a sub-conclusion that
needs some further refinement, which is given as the pattern
of Figure 4. The pattern applies to all potential alteration and
has to be instantiated for every possible condition leading to
an alteration. The justification is organized as follows: first, the
applicant must argue how the means of mitigation performs
the recovery correctly; second they must justify how the means
of mitigation fulfilled its Real-time and Safety requirements.
The evidence for Recovery achieved after any alteration could
be for instance a safety analysis result demonstrating that, if
the resources used by the means of mitigation are available,
then the effect of the alteration is corrected. The two other
evidences are again refined as justification patterns.

D. JP-RU2-SC sub-conclusions

Real-time requirements fulfilled

Expert Check

Mean of mitigation
response time

Acceptable maximal delay
of mitigation

Fig. 5. JP-RU2-SC-RT: focus on the real-time requirements.

The pattern Figure 5 focuses on the real-time requirements
of the sub-conclusions from pattern 4. The justification is
composed of two evidences: the acceptable maximal delay
before mitigating an alteration and a justification of why



this delay is acceptable. The aim here is to justify that the
implementation respects the real-time requirement. For this,
the strategy is based on expert verification that the means of
mitigation’s response time is below the maximal delay time.
The evidence relating to the mean of mitigation’s response
time may link, for example, to a worst-case response time
(WCRT) analysis which takes WCETs and a scheduling policy
as inputs. The evidence relating to the maximal delay time
links to the real-time requirements document.

Safety requirements fulfilled

Safety requirements refinement

Means of mitigation is fail-
safe

Means of mitigation im-
proves safety indicators for
FC

Fig. 6. JP-msr: Means of mitigation fulfilled the Safety requirements.

The pattern Figure 6 focuses on the safety requirements and
relies on two evidences:

• on the left hand side, the justification that, in case of
one or several resource losses, the means of mitigation
will be fail-safe i.e. will not cause additional losses of
resources (for instance by corrupting external resources).
These justifications can be provided by safety analysis
results;

• on the right hand side, a set of justifications that if the
means of mitigation’s resources are available then the
safety indicators (probability and cutsets size) will be
better, for each failure condition fc ∈ FC. Those failure
conditions come from the initial system (i.e. without the
means of mitigation). Note that failure conditions are
inherited from a preliminary system safety assessment
and should be identified in the Error Handling objective.
The justifications here can be provided by safety analysis
results.

V. APPLICATION OF THE METHODOLOGY FOR RU2 ON USE
CASE 1

Let us apply the methodology on RU2 objective on the
1 example. First, according to the justification pattern RU2
(see figure 3), the applicant must identify all the critical
configuration settings and how each of them could be altered.
As explained in example 2, since the core frequency could be
modified at run-time by an adversarial event, such as an SEU,
and since the effect on the applications could be a serious slow-
down, the frequency register configuration settings is classified
as critical. In the sequel, we focus in this critical settings and
we argue that it is mitigated following pattern of figure 4.

A. Design choice: means of mitigation – trusted value pattern

For the means of mitigation, we elaborate on the solution
previously introduced in example 2. This mechanism, called

the trusted value pattern, works as follows: the means of
mitigation M reads the core register value and the trusted
copy. If they disagree, M reads several times the trusted copy
until reaching a consensus on the value or a maximal number
of attempts, in which case the alteration reparation fails. If
a consensus has been reached on a value then there are two
cases. Either the value is not equal to the register, in which
case M will write the computed value in the register and the
alteration is corrected, or the value is equal to the one in the
register, in which case no alteration has occurred.

M executes on core1 every 10 ms on the real-time kernel
which is supposed to be Arinc 653 [Aer97] compliant. Thus,
M executes as a partition with a period of 10ms and a slot
length of 1ms.

B. Recovery achieved after any alteration

This evidence is a document summarizing the different
verifications and testings that have been done on the imple-
mentation. We will not go further on this part, as it is a usual
activity as required by the DO 178.

C. Safety requirements argumentation

1) Fault model: To perform the safety analysis, one must
define the failure modes of each component and the propaga-
tion of these local failures within the system, which, in our
case, is the multi-core. Let us consider that any component
of the architecture of figure 1 can fail, i.e. does not provide
the expected service to the application. The identified failure
modes are:

• the cores can be erroneous (incorrect execution of the
software request) or lost (no processing of the request);

• the frequency registers can be corrupted;
• the MMU can be lost (no transaction between the core

and the rest of the platform);
• the cache can be erroneous (corruption of the cache

content);
• the DDR controller can be lost (all memory accesses are

discarded);
• the banks can be erroneous (corruption of the content);
• corruption occurring during the traversal of the read

request in the network and the DDR controller will never
produce the same erroneous value. So any corruption of
the request is detected by the mitigation algorithm

An application transaction is properly processed by the
hardware if every involved component is in its nominal mode.
For instance, the transaction realized by M when reading the
trusted value involves 1) Core1 that sends an access request
to the memory/cache through the MMU; 2) the MMU1 that
controls and redirects the request accordingly; 3) Cache1 and
Memory1 as we don’t know if the data is in the cache or
should be retrieved from the memory; 4) the network and the
DDR controller that dispatch the request.

The two evidences asked by the safety pattern Figure 6 are
that the means of mitigation is fail-safe and that the means of
mitigation improves safety indicators. In order to assess the
validity of both evidences, we consider the cases when that



they are not fulfilled and represent them as the two failure
conditions:
FC1: not fail-safe : the trusted-value pattern M corrupts the

core register;
FC2: no improvement : the trusted-value pattern M does not

correct the frequency registered when altered.
With the safety analysis, we then want to show that these two
failure conditions are improbable if not impossible.

2) Evidences in the form of safety analysis: The dysfunc-
tional model has been done using ALTARICA [APGR99] and
its associated tool CECILIA OCAS [Avi15]. All the sequences
of failure events leading to the considered failure conditions
have been computed, when considering that a sequence is
composed of up to three failures.

Analysis 1 (FC1: not fail-safe). The means of mitigation can
only corrupt the register when: 1) Core1 executes incorrectly
M ; 2) Bank3 that contains the trusted copy is corrupted.
Thus the cut sets are:

{{Core1.err}, {Bank3.err}}

Argumentation 1 (FC1 is acceptable). If the first cut set
occurs, that is Core1 is erroneous, then the frequency register
is also highly probably altered. If the failure Core1 erroneous
is permanent, the core must not be used anymore, which has
to be ensured by a means of mitigation at the Error Handling
requirement level and in that case the frequency problem is
the least of the issues. If the failure is temporary, then the next
execution of M will be valid and the register will be corrected.

If the second case occurs, an hypothesis of the design choice
was that the Bank failure is highly improbable.

Analysis 2 (FC2: no improvement). The mitigation of a
register corruption fails if and only if one of the resources
involved in the execution of M is unavailable. That is 1) the
core on which M executes is unavailable; 2) the MMU or the
DDR controller systematically discard the read request. {Core1.lost},

{Core1.Reg.fail, MMU1.lost},
{Core1.Reg.fail, DDRController.lost}


Argumentation 2 (FC2 is acceptable). If Core1 is lost, the
frequency issue is of least importance. The Error Handling
must mitigate the loss.

For the other cases, M improves the safety indicators as
there are 2 cut sets that are of length 2, instead of a single cut
set of length 1. Moreover, if MMU1.lost or DDRController.lost
are permanent, the problem will, once again, be managed at
the Error Handling level.

D. Real-time requirements argumentation

The last missing evidence concerns the real-time require-
ments fulfillment, see pattern of figure 5. The acceptable delay
of mitigation has been computed and validated in a document
written by safety and real-time experts. The value is 50ms. A
real-time analysis provides the maximal time needed by M
to correct an alteration which is 30ms. Indeed, if an alteration

occurs just at the moment where M starts, it will take 2 periods
to correct the register. Moreover, the experts take an additional
margin of 1 period in case M suffers from temporary failures
when executing. The worst-case situation is shown in figure
7. The strategy of JP-RU2-SC-RT checks that 30 < 50.

M

MAF

M

MAF

M

MAF

0 10 20 30
alteration recovery

Fig. 7. M worst-case scenario schedule

VI. APPLICATION OF THE METHODOLOGY FOR RU2 ON
USE CASE 2

Let consider another architecture inspired from a cluster of
the Kalray MPPA [Cor12]. We only focus on 4 cores that are
directly connected via hardware link. The executive layer is
bare-metal.

Core1

Core2

Core3

Core4

M1 M3

M4M2

Fig. 8. Cluster architecture

A. Design choice: means of mitigation – cross-register check
Let us introduce another means of mitigation, called the

cross-register check. For this architecture, on each Corei a
means of mitigation Mi (4 identical instances of the same
pattern) executes. Mi reads the frequency values of the three
other cores plus its own register value, and writes the consen-
sus value to its own register if it disagrees with the consensus.

As the executive layer is bare-metal, on off-line scheduling
[PNP15] is computing ensuring by construction that Mi ex-
ecutes alternatively, with no temporal overlapping. Each Mi

executes with a period of 10 ms and their WCET is below
1ms.

We summarize in the justification diagram of figure 9 the
organization of the documentation and analyses. This diagram
is an instantiation of the justification pattern of figure 4 for
a particular architecture and a particular critical configuration
settings.

B. Recovery achieved after any alteration
This evidence is again a documentation on the implemen-

tation and the V & V activities.

Document 1. Reference to development document summariz-
ing traceability, V & V activities, code review . . .



C. Safety requirements argumentation

1) Fault model: We consider that an erroneous behavior of
the corei leads to the halting of Mi.

2) Evidences in the form of safety analysis: We, once
again, use ALTARICA to assess the safety requirements on
this architecture. The requirements are similar to the 2 failures
conditions FC1 and FC2 of the previous use case.

Analysis 3 (FC1: not fail-safe). The safety assessment demon-
strates that there are no failures of hardware component that
could lead to the corruption of a core register by the cross-
check register pattern. This comes from the fact that the loss of
the mitigation resources (the register access and the core) is
either impossible (safe register access) or leads to an harmless
loss of the mitigation software (core loss).

Argumentation 3 (FC1 is acceptable). This mitigation pattern
is, unlike the previous use case, completely fail-safe.

Analysis 4 (FC2: no improvement). The sequences leading to
a mitigation failure are listed below. These scenarios highlight
the only weakness of the pattern, i.e. a triple corruption of the
registers.

Core1.Reg.fail, Core2.Reg.fail, Core3.Reg.fail
Core1.Reg.fail, Core3.Reg.fail, Core4.Reg.fail
Core1.Reg.fail, Core3.Reg.fail, Core4.Reg.fail
Core2.Reg.fail, Core3.Reg.fail, Core4.Reg.fail


Argumentation 4 (FC2: no improvement). The means of
mitigation clearly improves the probability of system failure
conditions. Indeed, this pattern abides by the fail-safe require-
ment and replaces the event Corei.Reg.fail by four cutsets
of size three. As a result, the cross-check register pattern
enhances the safety indicators on all fc ∈ FC involving
Corei.Reg.fail.

D. Real-time requirements argumentation

As with the previous use case, the acceptable delay of
mitigation has been computed and validated in a document
written by safety and real-time experts. The value is 50ms.

Document 2. Reference to the design document that explicitly
states the value to be 50 ms.

Similarly to the previous use case, a real-time analysis
provides the maximal time needed by the union of Mi to
correct an alteration which is 30ms.

Analysis 5 (Maximal time for recovery). Result of the real-
time analysis which considers the case where the alteration
occurs right after the beginning of Mi and which is corrected
at the next valid execution of Mi assuming that one occurrence
may fail.

VII. CONCLUSION

We have presented an overview of the PHYLOG framework
and detailed an argumentation-based methodology rooted in
graphical and structured notation techniques. Furthermore, we

have illustrated its capabilities by applying it to the RU2
objective, through two detailed case studies.

In the future, we plan to provide similar guidelines for all of
the MCP-CRI / CAST-32A objectives. We will also provide
efficient exploration techniques for the interference analysis,
not only based on topological description, but also taking into
account the execution model. We will develop a prototype
to support the use of PHYLOG that will include automatic
checking and formal verification.

Finally, we will define means of validation to verify that
a model is compliant to the real architecture. This means
will be based on generic benchmark that could either validate
some assumption but also stress the platform according to
some evidences used in the justification pattern (e.g. when
an interference has been categorized as acceptable).
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